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Abstract: Integrating lexical information into Chinese character embedding is a valid method to
figure out the Chinese named entity recognition (NER) issue. However, most existing methods
focus only on the discovery of named entity boundaries, considering only the words matched by the
Chinese characters. They ignore the association between Chinese characters and their left and right
matching words. They ignore the local semantic information of the character’s neighborhood, which
is crucial for Chinese NER. The Chinese language incorporates a significant number of polysemous
words, meaning that a single word can possess multiple meanings. Consequently, in the absence
of sufficient contextual information, individuals may encounter difficulties in comprehending the
intended meaning of a text, leading to the emergence of ambiguity. We consider how to handle the
issue of entity ambiguity because of polysemous words in Chinese texts in different contexts more
simply and effectively. We propose in this paper the use of graph attention networks to construct
relatives among matching words and neighboring characters as well as matching words and adding
left- and right-matching words directly using semantic information provided by the local lexicon.
Moreover, this paper proposes a short-sequence convolutional neural network (SSCNN). It utilizes the
generated shorter subsequence encoded with the sliding window module to enhance the perception
of local information about the character. Compared with the widely used Chinese NER models, our
approach achieves 1.18%, 0.29%, 0.18%, and 1.1% improvement on the four benchmark datasets
Weibo, Resume, OntoNotes, and E-commerce, respectively, and proves the effectiveness of the model.

Keywords: Chinese named entity recognition; graph attention network; convolutional neural
network; lexicon information

1. Introduction

From a given unprocessed text, the named entity recognition (NER) task seeks to
identify and categorize related entities. Named entity recognition has an essential effect
in subsequent natural language processing (NLP) projects. These projects include relation
extraction [1], question-answering systems [2], and entity linking [3].

The NER aspect of Chinese usually uses character-level annotation strategies to iden-
tify named entities [4]. Several studies have shown that the character-based NER approach
avoids errors in the subword stage [5,6]. However, sometimes the lexical boundary is the
entity boundary; thus, the lack of boundary information provided by the lexicon may cause
the wrong entity to be extracted. Take this one, for instance: “南京市长江大桥 (Nanjing
Yangtze River Bridge)”; if there is no lexical knowledge, some wrong information, such as
“南京市长 (Mayor of Nanjing)” and “江大桥 (Jiang Daqiao)”, may be extracted. Therefore,
recent research has focused on improving NER’s performance by better integrating lexical
information into characters.

To our knowledge, there exist two primary methodologies for integrating character
and lexical information. The first is the dynamic framework method. It designs corre-
sponding structural support for lexical typing, such as Lattice-LSTM [7], LR-CNN [8],
and FLAT [9]. Lattice-LSTM extends the commonly used character-based long short-term
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memory (LSTM) networks to encode character information in sentences while fusing po-
tential word information. The LR-CNN model employs convolutional neural networks
(CNNs) to encode both character attributes and probable word features. Additionally,
attention mechanisms are utilized to effectively integrate the information from characters
and words. However, both RNNs and CNNs have limitations in modeling long-range
dependencies [10]. FLAT overcomes this limitation by designing an ingenious positional
encoding to fuse the lattice structure at the top of the Transformer [10]. As a result, FLAT
can interact immediately with all matching words for characters independent of long-range
dependencies. Despite the research progress, the above methods still need to improve
the specific structure of neural networks, thus limiting the broader application. Another
approach is constructing adaptive embedding based on lexical information, i.e., embed-
ding lexical knowledge in the encoding stage. WC-LSTM uses four encoding strategies to
encode the Lattice-LSTM input statically [11]. WC-LSTM, although an adaptive embedding
paradigm, suffers from information loss. To incorporate contextual information in the
original vector of individual characters, Luo first filters the set of candidate entities for a
given character and then constructs a character–entity relationship graph of characters and
candidate entities [12]. The character representations in the character–entity relationship
adjacency matrix are updated using graph attention networks (GAT). Finally, a character
representation incorporating semantic information of contextual entities is obtained. To bet-
ter utilize the lexical sources, SoftLexicon directly maps word characters to four positions,
begin, middle, end, and single, and then uses a static weighting method to weight the word
frequency magnitude in the lexical set [13]. SoftLexicon has been shown experimentally
to effectively address the underutilization of low-speed inference and matching words,
compensating for the shortcomings of the lattice-based model [14]. The unique feature of
this approach is that it does not require the development of complex sequence modeling
architectures. Therefore, it can be applied to other sequence annotation frameworks.

In addition, some studies have achieved good results without utilizing an external
lexicon. Gu found that most types of entities have strong naming regularity. To effectively
explore the internal compositional information of entities, a Regularity-Inspired reCOgni-
tion Network (RICON) was designed [15]. The model utilizes a regularity-aware module to
capture the internal regularity of each span. Then, a regularity-agnostic module is employed
to mitigate the excessive focus on span regularity. RICON achieves the state-of-the-art
performance of the year on the four datasets. Liu utilized BERT pretrained language models
to replace traditional static word embeddings [16,17]. Employing a context-dependent
dynamic generation of semantic vectors improved the representation of word embeddings.
It could extract entities more accurately and efficiently than traditional named entity recog-
nition algorithms. It also achieved good results in the named entity recognition task within
history and culture. To reduce the dependence on data annotation, Chen developed a new
semisupervised model called MAUIL [18]. Compared with other models, MAUIL cleverly
integrates multiple levels of attribute embedding, such as character-level and word-level
features. This approach enhances the high-level semantic features in text and dramatically
improves the reliability of artificial intelligence programs, such as named entity recognition.
In addition, Li proposed a new method called W2NER, which can handle three types of
NER tasks: planar entities, overlapping entities, and discontinuous entities in a unified
manner [19]. The NER task is constructively transformed into predictive word–word rela-
tion classification. The model structure effectively simulates the adjacency relationships
between entity words using next neighbor word (NNW) and trailing head word-* (THW-*)
relations. W2NER has driven unified NER to achieve the most advanced performance.
These proposed new frameworks bring new ideas to Chinese NER.

According to our findings, most existing studies focus on entity discovery methods.
These methods focus more on detecting entity boundaries and only consider words in the
thesaurus that match entity characters. However, they ignore the knowledge of the interac-
tion between entity characters and their neighboring matching characters. Fusing lexical
information improves the representation for kanji, and this is necessary for Chinese NER.



Appl. Sci. 2023, 13, 9948 3 of 19

However, information on the entity boundary region is essential for entity detection, and
existing lexicon-based methods pay less attention to this region. Our proposed boundary
region is the adjacent region’s front and back zones of the entity boundary, as shown in
Figure 1. It is a boundary region of size K, which we call Zone-K.

... wi−2 wi−1 wi wi+1 wi+2 wi+3 ... wnw1

front zone back zoneentity

Figure 1. The front zone and back zone of the entity.

On the one hand, the lexical semantics of Zone-K helps to improve the understanding
of entities and thus to determine their categories. For example, Figure 2 shows that although
“高雄(Kaohsiung)” can be detected in both sentences 1 and 2, it is a challenge to determine
its category as “PER” in sentence 1 and “LOC” in sentence 2. This is because there are
many polysemous words in Chinese. Thus, even if the boundary of an entity can be
detected correctly, determining its category is still a challenge. In this case, we propose
considering the semantics of Zone-K characters and their lexical matching words. For
example, in sentence 1, the category of “高雄 (Kaohsiung)” can be identified as “PER” by
“演员 (performer)” and “饰演 (play)”. In contrast, in sentence 2, the category of “高雄
(Kaohsiung)” can be identified as “LOC” by “在(in)” and “住(live)”.

S1：     演员高雄饰演霍元甲 S2：     我曾在高雄住过几天

Performer Kaohsiung plays Huo Yuanjia I stayed in Kaohsiung for a few days

PER LOC

Figure 2. Examples of ambiguous entity words.

Second, there is a significant semantic change between the characters in Zone-K and
the boundary characters of the entity. For the example, in Figure 3, for the sentence “我曾
在高雄住过几天 (I stayed in Kaohsiung for a few days)”, since the two character sequences
“在(in)-高 (gao)” and “雄 (xiong)-住(live)” are small probability co-occurrence sequences,
we consider “在(in)-高 (gao)” and “雄(xiong)-住 (live)” as two semantic violators, which
means that the semantic distance between “在 (in)” and “高 (gao)” as well as “雄 (xiong)”
and “住 (live)” is quite far. Therefore, we consider Zone-K as a semantic mutation zone,
which is similar to an image’s contour and reflects the text’s local feature discontinuity.
Semantic changes in Zone-K can help determine the entity’s boundary “高雄 (Kaohsiung)”.

...
曾
once

在
in

高
gao

雄
xiong

住
live

过
after

... ......

front zone back zone

entity

Figure 3. Examples of front and back zones of an entity.

In summary, we propose to use the Zone-K information in two ways.
One is to fuse the lexical knowledge of Zone-K to help determine the category of

entities. For this purpose, we propose to use graph attention networks to catch connec-
tions among characters with their neighboring character-matching words. For example,
based on semantics of the adjacent contextual match “饰演 (play)” for “雄 (xiong)”, “高雄
(Kaohsiung)” can be inferentially tagged as “PER”.

Second, the semantic transformation of Zone-K is introduced to help determine the
boundaries. This is similar to contour detection in images, where local semantic fusion
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can detect semantic change boundaries. For this purpose, we introduce CNN, which uses
sliding windows to fuse short-sequence information of the text to perceive local sequence
features of the text. Furthermore, Chiu and Nichols proposed to combine LSTM and CNN
networks to learn character–word level information for English NERs [20]. This inspired
us to provide a model that combines short-sequence CNN and LSTM coding. The local
features of the text are extracted using short-sequence CNN, resulting in a local contextual
representation. The global context representation is obtained by implicitly encoding the
character sequence using LSTM, and then the local and global representations are used
together for NER.

Our approach bridges the gap in the following aspects compared with previous
approaches. First, the model adopts feature representation, context encoder, and tag
decoder architecture, which has the property of migrating to other networks. Moreover,
it can be combined with BERT [17]. Second, we introduce lexical information from the
character representation layer based on the SoftLexicon method, which is simple and direct.
The graph neural network is used to directly capture the lexical semantic information of
entity neighborhoods without the need to construct dependency parse trees with the help of
external NLP tools. It effectively avoids error propagation issues, makes up for information
loss, and improves the performance of Chinese NER. Finally, the sequence coding layer of
the model effectively balances the acquisition of local and global information and enhances
the recognition of entity boundaries. Adding GAT simply and effectively improves the
prediction accuracy of entity types.

The present study can be succinctly outlined by considering the following facets:

1. We constructed a Chinese NER method with enhanced local information perception.
The method directly utilizes local lexical information to capture the semantic relation-
ship between entity characters and matching lexical entries through graph attention
networks. There is no need to build dependency parse trees with the help of external
NLP tools. This avoids the problem of error propagation caused by this process, thus
effectively improving NER performance.

2. We used a modified short-sequence CNN to fuse local features and achieve encoding
of shorter subsequence features by an additional sliding window module. Then
we combined it with LSTM to obtain a global representation of the sequence. It
compensates for the shortcomings of existing sequence encoders in extracting local
and global features.

3. The experiment achieved advanced results on standard Chinese NER datasets in four
domains. Moreover, entity-type prediction accuracy improved, indicating that the
proposed local information-aware approach is interpretable.

2. Related Work
2.1. Chinese NER

The Chinese language exhibits a distinctive characteristic wherein the demarcation
between words within Chinese texts lacks clarity. Further, Chinese has an intricate gram-
matical structure and numerous synonyms. Due to this rationale, Chinese named entity
recognition typically employs character-level annotation strategies [21]. Furthermore, lexi-
cal data can provide more boundary information for character-based learning. As a result,
some works propose incorporating word information into character sequences to exploit
each character’s lexical information fully [11,22]. The model’s performance is improved
by connecting lexical knowledge with relevant characters in the sentence, enabling addi-
tional lexical features to improve the extraction of semantic features from sentences. Ma
proposed a Chinese NER approach based on SoftLexicon encoding of word information. It
encodes character and lexical information into a joint representation of the model’s input
layer [13]. It first uses the lexicon to find a word for each character corresponding to the
four position types “BMES” [23]. B (begin) denotes the beginning position of a word, M
(middle) denotes the middle position of a word, E (end) denotes the end position of a
word, and S (single) denotes a single word. As shown in Figure 4, “海 (sea)” in “海南海口
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(Hainan Haikou)” can match “海口 (Haikou)” in the “B” position, “南海口 (South Seaport)”
in the “M” position, “南海 (South China Sea)” in the “E” position, and “海 (sea)” in the “S”
position. If a related word does not exist, it is replaced by none, as shown in Figure 5. The
word set embeddings are computed using the frequency of word occurrences. Finally, these
character embeddings containing lexical information are fed into the sequence encoder, and
then the label results are predicted by the conditional random fields (CRF) module [24].

海 南 海 口

南海
(South China Sea)

海口
(Haikou)

海
(Sea)

南海口
(South Seaport)

C1 C2 C3 C4

B

M

E

S

B

M

E

S

B

M

E

S

B

M

E

S

W
e

ig
h
t 南海口 

南海

海

海口 

Bi-LSTM/Transformer layer

f3,4

f2,4

f2,3

f3,3

Input 

sequence

SoftLexicon 

feature

Char 

embedding

Concatenation

Sequence 

encoding layer

CRF layer

Match in 
the lexicon

Figure 4. Overall architecture of the SoftLexicon model. By constructing the SoftLexicon features, the
model adds the lexicon matches to the begin, middle, and end of each character, as well as single
positions. Then it inputs these enhanced character embeddings into the sequence encoding layer and
the conditional random field (CRF) layer to obtain the final prediction results.

高
Gao

雄
Xiong

饰
Act

演
Show

霍
Huo

元
Yuan

甲
Jia

演员
Performer

高雄
Kaohsiung

C1 C3 C4 C5 C6 C7 C8 C9

B={演员}    M={None}

E={None}    S={None}

B={None}   M={霍元甲}

E={None}    S={元}

演
Act

员
Yuan

C1

饰演
Play

霍元甲
Huo Yuanjia

B={None}   M={None}

E={高雄}   S={雄}

C1,2 C3,4 C5,6 C7,9

Figure 5. SoftLexicon method.

2.2. Graph Attention Network

Recently, the successful application of lexical information and graph neural networks
has demonstrated the effectiveness of graph neural network models in enhancing the
performance and sophistication of NER. Gui developed a graph network that utilizes
lexical information and constructed the Chinese NER project to classify nodes in a graph
problem [25]. The advantage of graph attention networks is the application of a multihead
attention mechanism. Hence, they can summarize the features of the graph by allocating
respective weights to adjacent nodes or correspondence edges [26]. Wang found that the
majority existing methodologies relied on static weighting methods in calculating character-
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word set embeddings. This leads to an inaccurate utilization of lexical information, which
seriously affects the performance of NER. For this reason, Wang proposes a polymorphic
graph attention network (PGAT) [27]. It constructs a graph for each of the four lexical
sets of “BMES” [23]. It dynamically captures the relationship between characters and
matching words from multiple dimensions, thus more fully utilizing lexical information.
Furthermore, by utilizing large-scale grammatical information, neural network models
can achieve improved performance [28,29]. However, these methods typically rely on
external NLP tools to build dependency parsing trees, which can lead to error propagation
issues [7,29,30], since word embeddings already available in lexicon can provide lexical
semantic information. In addition, the graph attention mechanism can dynamically adjust
the importance of word meanings based on contextual information, thereby achieving word
sense disambiguation [26]. On the other hand, GAT establishing a joint representation of the
character–word method helps us incorporate the semantic relationship between characters
and words in their neighborhood into the model. For this reason, we constructed a graph
attention network for Chinese NER to capture local feature information and improve the
recognition rate of named entities.

3. Approach

The overarching model framework of our method is shown in Figure 6. The primary
composition of this system consists of four distinct network modules. Initially, the encoder
layer is employed to acquire contextual information pertaining to sentences and to represent
the semantic information associated with the lexicon. Then, it uses SoftLexicon to fuse the
lexicon information and use short-sequence CNN and Bi-LSTM to obtain the sequence’s
local and global hidden details, respectively. Semantic relations between characters and
their adjacent characters’ matching words were captured using GAT [26]. Finally, the
feature representation after fusing the lexicon is summed with the output of the sequence
encoder, and the tags are decoded using the standard CRF model [31].

演

员

高

雄

饰

演

霍

元

甲

X
c
1

X
c
2

X
c
3

X
c
4

X
c
5

X
c
6

X
c
7

X
c
8

X
c
9

演

员

高

雄

饰

演

CRF layer

...

B-occLSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

In
p
u
t s

e
q
u
e
n

c
e

M
a

tc
h

 in
 th

e
 le

x
c
io

n

B
E

R
T

Z
1

Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

Z
8

Z
9

Sliding Window-CNN Bi-LSTM

Lexcion feature layer

Encoder layer

Z’= (Z’1, Z’2, Z’3 … Z’9)

L
in

e
a
r

演

Act

雄

Xiong

员

Yuan

高
Gao

饰

Act

霍
Huo

元
Yuan

甲
Jia

演

Show

演员
performer

高雄
Kaohsiung

饰演
Play

霍元甲
Huo Yuanjia

演

Act

雄

Xiong

员

Yuan

高
Gao

饰

Act

霍
Huo

元
Yuan

甲
Jia

演

Show

演员
performer

高雄
Kaohsiung

饰演
Play

霍元甲
Huo Yuanjia

GAT layer

A
c
t

Y
u

a
n

G
a

o
X

io
n

g
A

c
t

S
h

o
w

H
u
o

Y
u

a
n

J
ia

P
e

rfo
rm

e
rK

a
o

h
s
iu

n
g

P
la

y
H

u
o

 Y
u
a

n
jia

霍

元

甲

...

... B-occ

B-per

E-per

O

O

B-per

M-per

E-per

X
w

1
X

w
2

X
w

4
X

w
3

...

Figure 6. The overall proposed NER architecture. After the encoder layer, first, the sequence hidden
state is obtained by short-sequence CNN combined with a Bi-LSTM structure after the fusion of the
matching word information using the lexicon. Then the relationship between characters and their
adjacent characters’ matching words is captured using GAT, and finally, the two outputs are summed
to predict the sequence labels using a CRF layer.



Appl. Sci. 2023, 13, 9948 7 of 19

3.1. Encoder Layer

The character-level-based approach to Chinese NER treats sentences as sequences of
multiple independent Chinese characters: s = {c1, c2, . . . , cn}. Each character vector in the
sentence is represented as

xc
i = ec(ci) (1)

where ec is a character vector’s lookup table. We chose BERT as the input to the model,
which one of the most advanced pretraining models widely used for natural language
tasks [17,32]. The context representation of each character x is obtained after the calculation
of BERT. The NER model based entirely on characters has the problem that word informa-
tion cannot be used to introduce lexical information into the character representation. Re-
garding the given input sequence s = {c1, c2, . . . , cn}, wi,j represents each lexicon matched
by its subsequence

{
ci, ci+1, . . . , cj

}
, with matching words defined as w = {w1, w2, . . . , wm}.

Use dense vectors to represent each word:

xw
i = ew(wi) (2)

where ew is a word vector’s lookup table.

3.1.1. Lexicon Feature Layer

The lexicon feature uses the SoftLexicon method to fuse matching words with charac-
ters. According to the input sentence s = {c1, c2, . . . , cn}, SoftLexicon generates matching
word sets for characters using the word set labeled by the four positional labels “BMES” [23].
B(ci) denotes the set of matching words starting with ci on L. Similarly, M(ci) and E(ci)
represent the set of words matching the middle and end of ci, respectively. The set of words
represented by a single character ci only is denoted as S(ci).

B(ci) =
{

wi,k, ∀wi,k ∈ L, i < k ≤ n
}

(3)

M(ci) =
{

wj,k, ∀wj,k ∈ L, 1 ≤ j ≤ i < k ≤ n
}

(4)

E(ci) =
{

wj,k, ∀wj,i ∈ L, 1 ≤ j < i
}

(5)

S(ci) = {ci, ∃ci ∈ L} (6)

where L denotes the lexicon, wi,k denotes a subsequence from character ci to character cj.
The word set vectors are then aligned and connected to the character vectors. Then each
character can be represented as

vs(S) =
4
Z ∑

w∈S
z(w)ew(w), Z = ∑

w∈B∪M∪E∪S
z(w) (7)

eS(ci) =
[
vS(B(ci)); vS(M(ci)); vS(E(ci)); vS(S(ci))

]
(8)

Y(ci) =
[
ew(ci); eS(ci)

]
(9)

where S denotes the set of words, and z(w) denotes the frequency of occurrence of the
lexicon word w in the dataset.

3.1.2. GAT Layer

We first build the required graph. The GAT layer analyzes the correlations among
matching words and their adjacent characters and adjacent matching words. Thus, each
character and its matching word serve as the graph’s vertex, represented as



Appl. Sci. 2023, 13, 9948 8 of 19

Gh =
[
xc

1, xc
2, . . . xc

n, xw
1 , xw

2 , . . . , xw
m
]
, where n and m denote the count of characters and

matching words, respectively. The adjacency matrix is shown in Figure 7. If matching word
i or character v is associated with adjacent pre- and postmatching words of character j, the
correspondence of (i, j) or (v, j) of the corresponding position of the adjacency matrix M is
then filled with 1. Similarly, if matching word i and another word k are adjacent pre- and
postmatching words, sign “Mik = 1”. Since this adjacency matrix is symmetric, only its
upper triangular region is stored to achieve compressed storage.
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Figure 7. Optimal storage is used to hold the adjacency matrix, which depicts the connections
between graph nodes: (a) original adjacency matrix and (b) optimized adjacency matrix.

We take the node features GF = { f1, f2, . . . , fN} and the adjacency matrix M feed into
the GAT layer. fi ∈ RF, M ∈ RN×N , where F and N are the characteristic dimension and
number of nodes, respectively. Then a new set of node characteristics can be obtained,
that is,

GF
′
=
{

f
′
1, f

′
2, . . . , f

′
N

}
(10)

The following output feature representation is obtained using K-independent atten-
tion mechanisms:

f
′
i =

K
||

K=1
σ

(
∑

j∈Ni

αk
ijW

k f j

)
(11)

αk
ij =

exp
(

LeakyReLU
(

aT
[
Wk fi||WK f j

]))
∑k∈Ni

exp
(

LeakyReLU
(
aT
[
Wk fi||WK fk

])) (12)

where || indicates a connection operation, σ is the nonlinear activation function, Ni in the

network is the node next to node i, αk
ij is an attention factor, and Wk ∈ RF

′×F , a ∈ R2F
′

is a

single-layer feedforward neural network. At this layer, the output dimension of fi is KF
′
.

The averaging operation obtains the final output feature F
′

in the last layer.
Through the computations on the i-th vertex and its associated vertices, we can achieve

the terminal representation for the i-th vertex. The corresponding coefficients calculated
according to the attention mechanism are

f f inal
i = σ

(
1
K

K

∑
k=1

∑
j∈Ni

αk
ijW

k f j

)
(13)
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GAT’s inputs are the vertex set Gh and the adjacency matrix M, then the characteristics
of the node can be obtained:

G = GAT(Gh, M), G ∈ RF
′×(n+m) (14)

G
′
= G[:, 0, n] (15)

Here, we retain the top n columns of these matrices since only the character represen-
tation serves to decode the labels. It is shown in Equation (15). Here is a new sentence
representation that integrates semantic knowledge between characters and their adjacent
character-matching words.

3.2. Sequence Encoding Layer
3.2.1. Short-Sequence CNN with Sliding Window

Chiu and Nichols considered that by relying solely on word embeddings, it is unable
to utilize explicit character-level features, such as prefixes and suffixes [20]. They, therefore,
proposed a hybrid model of bidirectional LSTMs and CNNs that learns both character-
and word-level features. This approach is of particular interest because it both inputs
word-level embeddings and handles the characters of each word. This approach inspired
us to use LSTMs to process entire sequences and extract features simultaneously for
shorter subsequences. To capture character-based nuances in short sequences, we designed
a sliding window module that sequentially divides the sentence into multiple shorter
subsequences. At the same time, CNN is good at capturing local features (such as n-grams
or short sequences). Combined with LSTM’s ability to solve the long-term dependency
problem, our sequence encoding layer can effectively balance the need for global and local
sequence information.

Convolutional neural networks have a natural advantage for local feature extraction
due to their sliding convolutional computation. The detection of entity boundaries can be
considered as detecting local semantic mutations in text, similar to image contour detection.
Thus, we propose the short-sequence CNN module (SSCNN) to enhance local information
extraction. As illustrated in Figure 8, we construct a sliding window of front zone, zone, and
back zone to generate a subsequence {zi−1,zi, zi+1} of length 3 for each character and the
left and right adjacent characters, and then apply it to a convolutional neural network. The
antecedent and consequent relationships between each character in this subsequence and
its neighboring characters will contain zi-rich local contextual information. This operation
is characterized by the fact that the local features of each character can be highlighted more
clearly without being corrupted by long-distance information.

Padding
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演

员
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元

甲

Padding

Sliding

 Window

...

...

Z1
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Z2
' 

Z3
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' 

Z6
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Figure 8. Short-sequence CNN with sliding window.
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When the sentence length is n, assume that zi ∈ Rd is the corresponding d-dimensional
vector of the i-th character. Furthermore, some sentences need to add padded operations.
The convolution operation involves the filter w ∈ Rhd. Then filters are applied to a single
character (h = 1) in each subsequence {zi−1,zi, zi+1} generated by the sliding window (front
zone, zone, back zone) to generate new features. For instance, feature xi is generated
from the window of character zi, by xi = f (w · zi + b), where f is the hyperbolic function
and b ∈ R is the bias. Use this filter operation for all the windows within the sentence.
Each sub-sequence {zi−1,zi, zi+1} generates a feature map of x = {xi−1, xi, xi+1} and x ∈
Ri−1,i+1. Then, we used a maximum pooling operation on each feature map to capture the
essential features [33]. They finally obtained a brand-new sequence Z

′
=
{

Z
′
1, Z

′
2, . . . , Z

′
n

}
containing local feature information.

3.2.2. LSTM for Global Feature Extraction

After obtaining the character sequence’s local feature information, we feed it into
a single-layer Bi-LSTM to obtain global contextual information [34]. Forward LSTM is
defined as follows:

It = σ(Wi · [ht−1, xt] + bi) (16)

ft = σ
(

W f · [ht−1, xt] + b f

)
(17)

Ot = σ(Wo · [ht−1, xt] + bo) (18)

C̃t = tanh(Wc · [ht−1, xt] + bc) (19)

Ct = ft ∗ Ct−1 + It ∗ C̃t (20)

ht = Ot ∗ tanh(Ct) (21)

where It is input gates, ft is forget gates, and Ot is output gates. W is each weight matrix,
ht is the hidden state at step t, b is the bias to be applied, and σ is the sigmoid function.
In forward LSTM, the input sequence is processed from left to right, whereas in reverse
LSTM, it is processed from right to left, and connecting the LSTMs in both directions is
represented as the output of the final Bi-LSTM.

3.3. Conditional Random Field (CRF) Layer

At the end of the model, we used the sequential CRF layer to make label inferences on
a whole sentence [24].

p(y|s; θ) =
∏n

t=1 φt(yt−1, yt|s)
∑y′∈γs ∏n

t=1 φ
(
y′ t−1, y′t|s

) (22)

where ys denotes all possible tag sequences s; then

φt =
(

y
′
, y|s

)
= exp

(
ωT

y′ ,yht + by′ ,y

)
(23)

where θ denotes the model parameters. ωy′ ,y and by′ ,y are each pair of label (y′, y) cor-
responding to the network training parameters. In the final label prediction stage, the
Viterbi algorithm filters the labels with the maximum probability as possible labels [35].
The following equation shows:

y∗ = yp(y|s; θ) (24)



Appl. Sci. 2023, 13, 9948 11 of 19

3.4. Implementation Details

The size of the model’s character embedding and lexicon embedding is 50. A 2-layer
GAT network is employed, with 3 attentions. A dropout rate of 0.5 is used to mitigate
model overfitting. CNN and LSTM layers have 1 layer, with a dropout rate of 0.1 for
CNN and 0.5 for LSTM. Additionally, ensure that the shortest subsequence provides locally
localized information in Zone-K while being noise-free. The sliding window size consists
of the character and its left and right neighboring characters; i.e., window size is taken as
3 and kernel size is 1. The model uses an Adamax optimization network, and the decay
rate is set to 0.5. Additional specific training details can be found in the training section in
Section 4 of the paper.

4. Experimental Results and Comparison
4.1. Experimental Settings
4.1.1. Datasets

Four commonly used Chinese datasets served as the basis for our experiments: Weibo [22],
Resume [7], OntoNotes [36], and E-commerce [37]. Weibo is from Sina Weibo, and Resume
is from Sina Finance. Weibo is labeled with four entities: personal names, places, organi-
zations, and geopolitics, and contains a certain amount of noisy data; Resume is labeled
with eight entities, such as educational institution, occupation, and title, and datasets have
a limited number of entities but a high range of types. OntoNotes is a dataset derived from
newswires and broadcasts and contains four named entity categories: personal names,
places, organizations, and geopolitics. The E-commerce dataset is a dataset from the manu-
ally labeled e-commerce domain and includes both brand and product, two types of entities.
Table 1 shows the details of these datasets.

Table 1. Statistics on the benchmarking dataset for the experiments.

Dataset Type Train Dev Test

E-commerce Char 119.1 K 14.9 K 14.7 K
Weibo Char 73.8 K 14.5 K 14.8 K

OntoNotes Char 491.9 K 200.5 K 208.1 K
Resume Char 124.1 K 13.9 K 15.1 K

4.1.2. Baseline Methods

Aiming to measure and analyze the proposed method, we compared its performance
on various datasets with mainstream models of recent years.

• Lattice-LSTM [7] is a modified LSTM structure that can take as model input the
characters in a sentence along with the lattice of all its potential matching words.

• LR-CNN [8] is based on a CNN model combined with the rethinking mechanism and
using attention mechanism to the integration of character–word feature information.

• PLTE [38] is an expansion of the Transformer model that batch parallelizes the pro-
cessing of characters and their matching words.

• LGN [25] is using graph neural networks to handle named entity recognition as a
graph node categorization operation.

• Multi-Graph [37] is a graph neural network–based approach to named entity recogni-
tion combined with a multigraph that can automatically learn the features of gazetteers.

• FLAT-BERT [9] is a model based on the lattice structure using Transformer’s location
encoding to capture lexical information.

• SoftLexicon-BERT [13] is a method of incorporating lexical information directly into
character representation at the character representation layer.

• PGAT-BERT [27] is a polymorphic graph attention network that can capture fine-
grained character and matching word relationships more efficiently and dynamically.



Appl. Sci. 2023, 13, 9948 12 of 19

4.2. Training

We applied the same pretrained character and lexical embedding as in Lattice-LSTM [7].
The character embedding size and lexicon embedding size are both 50. The multiple heads
used in the graph network are 3. We trained our network using the Adamax optimization
for all datasets. The decay rate is 0.05. All experiments were conducted on a single NVIDIA
GeForce RTX 3090 GPU. Weibo has an optimal learning rate of 0.05, while OntoNotes,
Resume, and E-commerce are set to 0.03. Additionally, we set the batch size to 1 for the
E-commerce dataset and 8 for the Weibo, Resume, and OntoNotes datasets. OntoNotes’
hidden size is set to 300, while Weibo, Resume, and E-commerce are set to 200. These
important hyperparameters can be seen in Table 2. Besides, to avoid overfitting the model,
we used a parameter setting of a dropout rate of 0.5 in the character embedding layer,
word embedding layer, and sequence encoding layer. See Appendix A Table A1 for more
hyperparameter settings. Our model uses precision rate (P), recall rate (R), and F1 score as
the evaluation metrics of performance.

Table 2. The hyperparameters for best models that we have experimented on the given datasets.

Hyper Weibo Resume OntoNotes E-Commerce

Batch Size 8 8 8 1
Decay Rate 0.05 0.05 0.05 0.05

Learning Rate 0.005 0.003 0.003 0.003
Hidden Size 200 200 300 200

4.3. Overall Results

We compare the recently widely used lexicon-based character enhancement model
and the Chinese NER method, applying graph neural networks as baseline methods with
our proposed methods. Comparisons on the Weibo, Resume, and OntoNotes datasets are
shown in Table 3.

Table 3. F1 score statistics on the Weibo, Resume, and OntoNotes dataset.

Models Weibo Resume OntoNotes

Lattice-LSTM [7] 58.79 94.46 73.88
LR-CNN [8] 59.92 95.11 74.45

PLTE [38] 59.92 95.40 74.60
LGN [25] 60.15 95.41 74.85

Multi-Graph [37] 59.50 - 76.00

BERT-LSTM-CRF 67.33 95.51 81.82
FLAT-BERT [9] 68.55 95.86 81.82

SoftLexicon-BERT [13] 70.50 96.11 82.81
PGAT-BERT [27] 70.63 96.53 81.87

ours 71.81 96.40 82.99

Table 3 shows the experimental results of NER obtained by our model and other
baseline models on the Weibo dataset. We compare our model with three traditional
lexicon-based NER models, Lattice-LSTM [7], LR-CNN [8], and PLTE [38], and two graph
neural network–based models, LGN [25] and Multi-Graph [37]. In addition, three recent
mainstream lexicon-based models are also compared with our model. We can observe that
the SoftLexicon-BERT [13] model achieves the best F1 score of 70.63% among all baseline
models. On the other hand, our model improves the total F1 score to 71.81%, an increase
of 1.18%.

The results of the Resume dataset are shown in Table 3. The F1 score of Lattice-
LSTM [7], which released the dataset, is 94.46%; the F1 score of LR-CNN [8] is 95.11%;
and the F1 score of the improved PLTE [38] is 95.40%. In addition, PGAT-BERT [27] uses
the polymorphic graph attention network based on SoftLexicon [13], which obtained the
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highest F1 score of 96.53% among all baseline models. Our model obtained the second-
highest F1 score of 96.40%.

Table 3 also displays the experimental results of various models on the OntoNotes
dataset. BERT-LSTM-CRF and FLAT-BERT [9] both achieved an F1 score of 81.82%. The
most recent polymorphic graph–based attention network, PGAT-BERT [27], achieves an F1
score of 81.87%. SoftLexicon-BERT [13] has the highest F1 score among the baseline models
at 82.81%. We can see that our model obtained the highest F1 score of 82.99%.

We also compared the E-commerce dataset with Multi-Graph [37], PGAT-BERT [27],
and Bi-LSTM-CRF as the baseline. In addition, the Bi-LSTM-CRF methods were compared
by adding three ground name table features, with the separate addition of N-gram features,
position-independent entity type (PIET features), and position-dependent entity type
(PDET features). The results are shown in Table 4.

Table 4. Precision rate, recall rate, and F1 score statistics on the E-commerce dataset.

Models P R F1

Bi-LSTM-CRF 71.1 76.1 73.6
(+N-gram features) 71.2 75.9 73.5

(+PIET features) 71.7 75.8 73.7
(+PDET features) 72.6 75.1 73.8

Multi-Graph [37] 74.3 76.2 75.2
PGAT-BERT [27] 79.7 81.7 80.7

ours 81.6 82.1 81.8

Table 4 shows the results on the E-commerce dataset. The classical BERT-LSTM-CRF
obtains an F1 score of 73.6%. In addition, the F1 scores in Multi-Graph [37] and PGAT-
BERT [27] are 75.2% and 80.7%, respectively. Consistent with the observations in the Weibo
and OntoNotes datasets, our model obtained the highest F1 score of 81.8%.

By observation, our model performs best on the Weibo dataset. This shows that our
model can deal with data with a certain amount of noise. On the E-commerce dataset in the
e-commerce domain, the model also achieves a significant improvement (1.1%). Since the
E-commerce dataset only contains two types of entity labels, our model is more suitable for
processing datasets with fewer types of entities. Compared with the Resume dataset with
eight types of entities, our model’s F1 value is 0.13% lower than PGAT-BERT [27], ranking
second among all baseline models. Finally, the performance on the OntoNotes dataset is
also better than the baseline model, which means that the model can also handle larger
datasets. Our model gives the Chinese NER project fresh insights while improving the
entity identification performance simply and effectively.

To evaluate the model’s performance on real-world datasets, we also consider the
Youku dataset, which consists of video titles from Youku.com [39]. We use the same
hyperparameter settings as for the Weibo dataset. Jie crawled these data from the Youku
video site and manually annotated such data with named entities. They present a novel but
easy-to-implement method for identifying named entities with incomplete data annotations.
We choose the model in which all entities are retained as the baseline. The results of the
experiment can be seen in Table 5. The experimental results in the above table show
that the algorithm proposed in this paper obtains better performance than the baseline
algorithm. This indicates that our method equally applies to real industrial application
scenario datasets.

Table 5. Precision rate, recall rate, and F1 score statistics on the Youku dataset.

Models P R F1

Baseline 83.0 81.7 82.4
Ours 87.0 85.1 86.1
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4.4. Ablation Study

To further validate the benefit of the GAT layer and short-sequence CNNs in terms of
their respective gains on the model, the outcomes of Weibo, E-commerce, and OntoNotes–
based ablation experiments are recorded in Table 6.

Table 6. Ablation study.

Models Weibo OntoNotes E-Commerce

Complete model 71.81 82.99 81.83
w/o SSCNN 71.66 82.66 81.61

w/o GAT 70.69 82.64 81.03
w/o SSCNN and GAT 70.51 82.58 81.21

The ablation studies were designed as follows:

• w/o SSCNN: without short-sequence CNN module;
• w/o GAT: no GAT layer module;
• w/o SSCNN and GAT: there is no short-sequence CNN and GAT layer module.

Removing any module leads to significant performance degradation. Specifically,
the performance difference between “w/o GAT” and “Complete model” on Weibo and
E-commerce is enormous, especially in the Weibo dataset, where F1 decreases the most
(1.12%). This indicates that without the GAT module, the model cannot capture the semantic
interaction information between characters and their neighbors. Since dialectal slang and
irregular phrases are prevalent in social domains, we must rely on GAT to more accurately
capture data correlations to utilize more local information for complex contexts. Similarly,
model performance deteriorates when the SSCNN module is removed. The local details
captured by the SSCNN module can provide a balanced view of the global sequence
details from Bi-LSTM. It is shown that SSCNN can better capture the local semantics of
the text, which is crucial for capturing character-based nuances in Chinese text. On the
OntoNotes dataset, removing the performance gap between the modules similarly validates
the usefulness of the GAT layer and SSCNN for capturing local information. The ablation
study demonstrates that the GAT layer and SSCNN are crucial for enhancing the perception
of local information in the model. Both character and word neighborhood information
helps to enhance the performance of NER, while the combination of the two gives the
best results.

4.5. Case Study

To more intuitively demonstrate the rich local information that our model can provide
in relation to adjacent terms, Figure 9 shows a case study with and without GAT layers.
In Case 1, with the GAT layer, the model can correlate the information of the adjacent
matching words and accurately identify the entity “理想 (Li Auto)”. Similarly, in Case
2, the label of the entity “俞兆林 (Yu Zhaolin)” is tagged as “PER” as a personal name
term. The GAT layer accurately predicts the label of “俞兆林 (Yu Zhaolin)” as “ORG” by
integrating the semantic information of the adjacent matching words “品牌 (brand)” and
“成立 (found)” of “俞兆林 (Yu Zhaolin)”.

To investigate the effect of the local perception enhancement method of this paper on
the detection quality of entities, we further observe the performance of extracting entities
with fused local information. We selected 300 pieces of data from the Weibo dataset as
test samples to test the performance of the prediction of entity types with and without the
GAT module. Figure 10 displays the experiment’s outcomes. As shown in diagram (a), the
values of the model’s P, R, and F1 scores are improved after the use of the GAT layer. This
indicates that the number and accuracy of entities predicted by our model were enhanced
after adding the GAT layer.

In the meantime, we save the output of the model prediction results in the presence
and removal of GAT. Filter for differences in the prediction results of entity labels in
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each sentence sample under the two conditions. We used tools to successfully select
37 sentence samples from the test set samples and made careful observations and statistics
manually. As shown in diagram (b), we found that after adding the GAT module, the
model accurately corrected 64 (approximately 16% of total entities) entity label types that
the model did not or incorrectly predicted when the GAT layer was removed. We added a
total of 28 (approximately 7% of total entities) nonentity false prediction labels. Although
sometimes the model incorrectly predicts words as an entity, higher recall can ensure the
efficiency of entity lookup in some specific scenarios. In addition, we found from the
output sample that the model’s processing capacity for a single entity is still insufficient
after adding the GAT module, and the model can easily mispredict the consecutive single
entity labels “S” and “S” as the whole entities “B” and “E”.

Case 1
Sentence 比亚迪和理想发布了车型.

BYD and Li Auto have released their models.
Lexical word 比亚迪(BYD), 理想(Li Auto ), 发布(release), 车型(model)
Gold label 比, 亚, 迪, 和, 理, 想, 发, 布, 了, 车, 型

B-ORG,M-ORG, E-ORG, O, B-ORG, E-ORG, O, O, O, O, O
Without GAT B-ORG,M-ORG, E-ORG, O, O, O, O, O, O, O, O
With GAT B-ORG,M-ORG, E-ORG, O, B-ORG, E-ORG, O, O, O, O, O

Case 2
Sentence 品牌俞兆林成立于上海.

Brand Yu Zhaolin was founded in Shanghai.
Lexical word 品牌(brand), 俞兆林(Yu Zhaolin), 成立(found), 上海(Shanghai)
Gold label 品, 牌, 俞, 兆, 林, 成, 立, 于, 上, 海.

O, O, B-ORG, M-ORG, E-ORG, O, O, O, B-LOC, E-LOC
Without GAT O, O, B-PER, M-PER, E-PER, O, O, O, B-LOC, E-LOC
With GAT O, O, B-ORG, M-ORG, E-ORG, O, O, O, B-LOC, E-LOC

Figure 9. Case study. We use bold and italics to identify entities. Characters are split using commas
between them: (1) lexical word row: words matched in the lexicon; (2) gold label row: label correct
entities as italicized and bolded representations; (3) without GAT row: entities without GAT effect
predictions are labeled as italicized and bolded representations; (4) with GAT row: entities with GAT
modules are labeled as italicized and bolded.

65

70

75

P R F1

20

10

0

Correction number Incorrect number(%) Without GAT With GAT (%)

(a) (b) 

Figure 10. Performance of entity type predictions with and without the GAT module on the Weibo
dataset: (a) comparison of results with/without the GAT layer; (b) ratio of correction/incorrect new
entities to total entities.
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5. Constraints and Future Work

Integrating lexical information into Chinese character representations effectively im-
proves the performance of Chinese named entity recognition. A continuously accumulated
and improved entity lexicon in the vertical field steadily improves NER performance.
However, finding a suitable and extensive lexicon and ensuring that the lexicon’s content
is adapted to the task at hand lead to limitations when using an external lexicon. At
the same time, building a lexicon is time-consuming, and the quality of the lexicon may
need improvement. In addition, our proposed two-stream network consisting of a lexicon
feature layer and a GAT layer affects the interaction between various feature information,
complicating the model.

In our future research, we will further investigate how to efficiently integrate inter-
action knowledge from more distant entity neighborhoods in a single-stream network.
Additionally, we will explore how to integrate local features by discovering patterns from
the internal composition of entities, thereby enhancing the performance of Chinese NER
without relying on external resources.

6. Conclusions

This paper proposes a local information perception enhancement–based method for
Chinese NER, through the graph attention network fusion of entity characters with match-
ing words, as well as information about matching words and entity adjacent contextual
matching words, thereby enhancing the perception of the entity neighborhood informa-
tion. Moreover, local text features in short-sequence CNN sliding windows are encoded.
Combining local details from CNNs and global sequence details from Bi-LSTMs gives the
model a balanced perspective. Chinese datasets from four distinct domains were employed
in experiments, and the results demonstrate that our method performs better than the
currently used baseline model and significantly enhances Chinese NER performance. A
real-world dataset indicates that our method is equally applicable for real industrial ap-
plication scenario datasets. The case study experiment also indicates that the proposed
method can better use the entity’s neighborhood information and enhance the precision of
entity boundary and type labeling predictions.

Author Contributions: Presenting algorithmic ideas and reviewing and revising the first draft, L.L.;
implementing the computer code, writing and revising the first draft, and managing and visualizing
data, M.Z. All authors have read and agreed to the published version of the manuscript.

Funding: Funding through Chongqing Natural Science Foundation (cstc2021jcyj-msxmX0594); fund-
ing through Action Plan for High-Quality Development of Graduate Education of Chongqing Uni-
versity of Technology (gzlcx20233205).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This manuscript utilizes publicly available datasets, which can be
accessed at the following links: Weibo dataset (https://github.com/quincyliang/nlp-public-dataset/
tree/master/ner-data/weibo (accessed on 16 October 2021)), Resume dataset (https://github.com/
jiesutd/LatticeLSTM (accessed on 16 October 2021)), OntoNotes dataset (https://catalog.ldc.upenn.
edu/LDC2013T19 (accessed on 18 May 2022)), E-commerce dataset (https://github.com/
PhantomGrapes/MultiDigraphNER3 (accessed on 13 August 2022)), and Youku dataset (https:
//github.com/allanj/ner_incomplete_annotation (accessed on 23 August 2023)).

Acknowledgments: We gratefully acknowledge the support of the Department of Computer Science
and Technology, Chongqing University of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/quincyliang/nlp-public-dataset/tree/master/ner-data/weibo
https://github.com/quincyliang/nlp-public-dataset/tree/master/ner-data/weibo
https://github.com/jiesutd/LatticeLSTM
https://github.com/jiesutd/LatticeLSTM
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
https://github.com/
PhantomGrapes/MultiDigraphNER3
https://github.com/allanj/ner_incomplete_annotation
https://github.com/allanj/ner_incomplete_annotation


Appl. Sci. 2023, 13, 9948 17 of 19

Abbreviations
The following abbreviations are used in this manuscript:

SSCNN short-sequence CNN
RNN recurrent Neural Network
GAT graph attention networks
CRF conditional random field

Appendix A

There are some details about the experimental process using systems such as LSTMs,
CNNs, and graph attention networks that require fine-tuning of the hyperparameters, and
some details about this process are given in the following appendix.

Table A1. Some other hyperparameter settings about the experiment.

Hyperparameter Value

LSTM model
Num-Layer 1

Dropout Rate 0.5
Optimizer ReLU

CNN model
Num-Layer 1

Dropout Rate 0.1
Window Size 3
Kernel Size 1

Padding 1

GAT model
Num-Layer 2

Dropout Rate 0.5
Alpha 0.1

Nheads-K 3
Optimizer LeakyReLU
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