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Abstract: In this study, we aimed to evaluate the effectiveness of a brain robot in rehabilitation
that combines motor imagery (MI), robotic motor assistance, and electrical stimulation. Thirteen
in-patients with severe post-stroke hemiplegia underwent electroencephalography (EEG), measured
according to the international 10–20 method, during MI. The dicephalus robotic system (DiC) was
activated by detecting event-related desynchronization (ERD) using the Markov switching model
(MSM) and relative power (RP) from the EEG of the motor cortex (C3 and C4). The reaction times
(the time between ERD detection and DiC activation) of the MSM and RP were compared using
Wilcoxon’s signed rank sum test. ERD was detected in all 13 and 12 patients with the MSM and RP,
respectively. The DiC reaction time for the ERD detection process was significantly shorter for the
MSM (13.02 ± 0.16 s) than for the RP (19.95 ± 7.45 s) (W = 9, p = 0.0037). The results of this study
suggest that ERD responses can be detected in the motor cortex during MI in patients with severe
upper-extremity paralysis; the MSM is more effective than the RP in detecting ERD when the EEG
signal is used as a switch to activate the robot, and the reaction time to detect the signal is shorter.

Keywords: motor imagery; brain–computer interface; arm robot; event-related desynchronization;
electroencephalography

1. Introduction

Motor dysfunction due to stroke limits mobility, activities of daily living, and social
participation. Naturally, patients hope for an improvement of upper-extremity paralysis;
however, the recovery of patients with severe upper-limb paralysis is poor, with approxi-
mately 60% of patients not reaching a practical, functional level 6 months after stroke [1].

According to Hebb’s law (use-dependent plasticity), the inability of patients with
severe motor paralysis to perform voluntary upper-limb movements may not be compen-
sated by sufficient motor activity for recovery [2,3]. Recent rehabilitation studies have
shown that the principles of brain plasticity and motor learning rules are deeply involved
in the improvement of motor skills after stroke [4]. Motor learning is presumed to be
facilitated because active upper-limb manipulation results in better neurotransmission
from motor planning to somatosensory perception than passive upper-limb practice, and
somatosensory stimulation is more likely to provide feedback [5]. Therefore, voluntary
active exercise is recommended to improve motor function. In rehabilitation, the use of a
robot in combination with exercise therapy is recommended, as the robot supplements the
amount of exercise required for the recovery of patients with severe paralysis. For example,
a robot is used to ensure that the amount of exercise required outside the rehabilitation
time is fulfilled. Exercise-support robots can provide exercise assistance on behalf of the
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therapist [6,7], and monitoring robots that allow remote therapist–patient interaction allow
patients to train under therapist supervision at home [8]. In addition, robots that can en-
courage independent practice have been developed to enable effective training regardless
of location and time [9]. Techniques have also been developed to assess joint motion with
an accuracy comparable to that of humans and evaluate the effectiveness of these robotic
exercises [10,11].

In rehabilitation robots, brain–computer interface (BCI) technology is used to transmit
the patient’s active brain activity to the robot. A BCI is a system that records brain signals,
decodes them, and converts them into effector movements. This technology operates
robots based on changes in the brain waves and cerebral blood flow [12]. A biofeedback
approach combining BCI with an exoskeletal robot as an effector and electrical stimulation
has been reported to improve the Fugl–Meyer Assessment of upper-extremity (FMA-UE)
function scores compared with conventional robotic therapy [13]. Motor imagery (MI),
which activates certain brain regions when performing movements [14], has been reported
to exhibit a phenomenon in which the electrical potential of the brain rapidly decreases
compared with its resting state, known as event-related desynchronization (ERD) [15].
Therefore, MI-related brain waves are sometimes utilized as biomarkers in BCIs, leading to
the development of BCI robots that provide feedback, such as movement assistance and
electrical stimulation.

The dicephalus robotic system (DiC), a training robot for the upper-extremity joint
range of motion developed at Saitama Prefectural University, can partially reproduce a
therapist-assisted upper-limb movement [16]. Patients can practice repetitive upper-limb
motion exercises with almost accurate trajectories through assisted movements reproduced
by the robot, thus recovering upper-limb functions. However, BCIs are currently unable
to determine whether the patient is actively performing upper-limb exercises; therefore,
a BCI that can determine the patient’s active participation to enhance motor function
recovery is needed. During rehabilitation, neurofeedback enables active motor function
training, even in patients with poor motor skills due to paralysis. The sequence of joint
movements and sensory feedback in accordance with the motor intention is called a closed
loop, and this repetitive stimulation promotes recovery from paralysis [17]. In other words,
when a robot is activated by a BCI using the brain waves of a patient performing MI,
even a patient with severe paralysis can perform active-assistive upper-limb movements.
By combining the feedback method with brain wave driving, patients can perform the
closed-loop exercise and repeat it, which is expected to accelerate recovery more than the
conventional rehabilitation method [18].

Patients with severe paralysis of the upper extremities after a stroke are believed to
have decreased brain function due to disused plasticity [19]. However, it may be operable
if the ERD in MI can be detected, even in a state of brain dysfunction [20]. Therefore,
we aimed to verify whether ERD can be detected in patients with severe paralysis of
the upper extremities in the recovery phase when they perform MI while watching a
movie about arm movements. We also aimed to verify the appropriate ERD detection
method to develop a BCI application that can activate and deactivate a robot by analyzing
electroencephalography (EEG) signals when patients with severe paralysis of the upper
extremities imagine an arm movement (Figure 1). The DiC is a six-axis dual-arm robot, and
its movement direction is inputted by assisted movement, which allows for a greater degree
of freedom of movement than a typical BCI robot for upper-limb training [16]. We believe
that if a BCI–DiC is developed and introduced into a DiC, a new exoskeletal type of BCI
robot for upper-extremity training of patients with severe paralysis will be more effective.
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Figure 1. Diagram of the research overview. (A) Recording of EEG signals while the patient per-
forms motor imagery. (B) Detection of ERD from the EEG using a classifier of the MSM and RP. (C) 
Measurement of reaction time, which is from the start of the EEG to when the arm starts to move. 
EEG, electroencephalogram; ERD, event-related desynchronization; MSM, Markov switching 
model; RP, relative power. 
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stroke survivors. MSM can accurately detect ERDs with a shorter processing time than 
conventional calculation methods [21]. Second, when the DiC detects ERD due to MI, we 
can verify whether the MSM or relative power (RP), which has been conventionally used, 
is more suitable. 

2.2. Participants 
The participants of this study were patients who were admitted to a convalescent care 

unit within 6 months of the onset of cerebral hemorrhage or infarction. The eligibility cri-
teria were an FMA-UE score of <20 and a Mini-Mental State Examination (MMSE) score 
of ≥24. Patients with visual impairment, those with cognitive impairment to the extent 
that they could not understand the MI instructions, and those with difficulty concentrat-
ing, as determined by their therapists, were excluded. The diagnosis, brain lesions, onset 
dates, age, sex, height, and weight of the patients were obtained from their medical rec-
ords. 

2.3. EEG Measurement 
A Polymate Pro 6100 (Miyuki Giken Co., Ltd., Tokyo, Japan) was used for the EEG 

signal measurements. Active electrodes were applied to C3 and C4 according to the inter-
national 10–20 method. Each participant was seated in a 40-cm-high chair or wheelchair 
in a resting position. A 15-inch LCD screen displaying moving images was placed before 
each participant. The participant’s hands were placed bilaterally on the thighs. A movie 
of a paralyzed patient extending the upper extremity of the paralytic side forward was 
shown, and the participant was instructed to “Please imagine that you are moving your 
arm forward in the same way as the arm movement on the screen. However, do not actu-
ally move your hand.” If the participant’s arm moved, a supervisor stopped the partici-
pant’s arm to minimize body movement. EEG signals were recorded during the MI (Fig-
ure 2). 

Figure 1. Diagram of the research overview. (A) Recording of EEG signals while the patient performs
motor imagery. (B) Detection of ERD from the EEG using a classifier of the MSM and RP. (C) Mea-
surement of reaction time, which is from the start of the EEG to when the arm starts to move. EEG,
electroencephalogram; ERD, event-related desynchronization; MSM, Markov switching model; RP,
relative power.

2. Materials and Methods
2.1. Outline of the Method

First, event-related synchronization (ERS) was detected using the Markov switching
model (MSM), and we verified whether it could be used as an operational signal for the
DiC. ERS is a phenomenon in which the brain potential decreases sharply during MI in
stroke survivors. MSM can accurately detect ERDs with a shorter processing time than
conventional calculation methods [21]. Second, when the DiC detects ERD due to MI, we
can verify whether the MSM or relative power (RP), which has been conventionally used,
is more suitable.

2.2. Participants

The participants of this study were patients who were admitted to a convalescent
care unit within 6 months of the onset of cerebral hemorrhage or infarction. The eligibility
criteria were an FMA-UE score of <20 and a Mini-Mental State Examination (MMSE) score
of ≥24. Patients with visual impairment, those with cognitive impairment to the extent
that they could not understand the MI instructions, and those with difficulty concentrating,
as determined by their therapists, were excluded. The diagnosis, brain lesions, onset dates,
age, sex, height, and weight of the patients were obtained from their medical records.

2.3. EEG Measurement

A Polymate Pro 6100 (Miyuki Giken Co., Ltd., Tokyo, Japan) was used for the EEG
signal measurements. Active electrodes were applied to C3 and C4 according to the inter-
national 10–20 method. Each participant was seated in a 40-cm-high chair or wheelchair
in a resting position. A 15-inch LCD screen displaying moving images was placed before
each participant. The participant’s hands were placed bilaterally on the thighs. A movie
of a paralyzed patient extending the upper extremity of the paralytic side forward was
shown, and the participant was instructed to “Please imagine that you are moving your
arm forward in the same way as the arm movement on the screen. However, do not actually
move your hand.” If the participant’s arm moved, a supervisor stopped the participant’s
arm to minimize body movement. EEG signals were recorded during the MI (Figure 2).



Appl. Sci. 2023, 13, 9979 4 of 15Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 14 
 

 
Figure 2. Images used for the motion image. (A) An image shown 1 s before the start of MI. The 
patient was instructed not to perform MI during this phase. (B) After 1 s, the patient was shown a 
movie of a hand reaching out from a red card to a white card. The patient was instructed to imagine 
that he/she was stretching his/her hand in accordance with the motion picture. They were cautioned 
not to move their body. (C) After 4 s, the image was switched to a still image of the gazing point. 
MI, motion imagery. 

The patients were asked to view the movie 20 times, with 10 s for one task (1 s for the 
presentation of a still image of the paralyzed forearm on a desk, 5 s for the movie of the 
upper-extremity movement, and 4 s for the interval gazing point). Before measuring the 
EEG signals, the patients were shown the same movie 20 times for the MI practice. The 
interval between the practice and EEG recording phases was 2 min. The participants were 
instructed to rest without thinking while looking at the gazing point. This was one task 
and had to be performed 20 times. The patients practiced first and were then tested (Figure 
3). 
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Figure 2. Images used for the motion image. (A) An image shown 1 s before the start of MI. The
patient was instructed not to perform MI during this phase. (B) After 1 s, the patient was shown a
movie of a hand reaching out from a red card to a white card. The patient was instructed to imagine
that he/she was stretching his/her hand in accordance with the motion picture. They were cautioned
not to move their body. (C) After 4 s, the image was switched to a still image of the gazing point. MI,
motion imagery.

The patients were asked to view the movie 20 times, with 10 s for one task (1 s for the
presentation of a still image of the paralyzed forearm on a desk, 5 s for the movie of the
upper-extremity movement, and 4 s for the interval gazing point). Before measuring the
EEG signals, the patients were shown the same movie 20 times for the MI practice. The
interval between the practice and EEG recording phases was 2 min. The participants were
instructed to rest without thinking while looking at the gazing point. This was one task and
had to be performed 20 times. The patients practiced first and were then tested (Figure 3).

2.4. EEG Analysis

The detection of ERD using the MSM and activation of the DiC by the EEG in patients
with moderate to severe upper-extremity paralysis was verified. The reaction time from
the detection of ERD to the activation of the DiC was measured.

2.4.1. EEG Data Conversion Procedure

The EEG data acquired using the experimental protocol were transformed according
to the following procedures and used for the ERD detection experiment:

1. EEG data were converted into CSV files without filtering from the EEG detection.
2. The CSV files were converted to CAL files compatible with the DiC application using

a data converter application.
3. In the CAL files, according to the MI protocol, potential data were associated with

binary data of 1 during the MI period and 0 during the rest period.
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4. The CAL files were loaded into the DiC application, and the MSM and RP classifiers
were created.

5. In the MSM, the ERD transition probability was derived from four events: the true-
positive rate (TPR), false-positive rate (FPR), true-negative rate (TNR), and false-
negative rate (FNR).

6. In RP, the ERD was derived by calculating the root mean square (RMS) from the
resting potential and dividing it by the EEG potential.

7. The EEG threshold for ERD appearance was set as the signal that activated the DiC;
therefore, the ERD appearance probability for MSM and the rate of change based on
the resting EEG for RP were used.

8. The CAL files were loaded again into the DiC application, and when the MSM or
RP threshold was exceeded, a signal was sent to control the DiC, and the DiC arm
was activated.
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2.4.2. Detecting ERD

The MSM was predicted from the change in brain potentials in 1 s to the change in
brain potentials that occurred in the next second (Figure 4). The calculation involved the
following steps: rest time data, which were considered as the EEG reference, were used for
machine learning. The magnitude of the EEG amplitude was converted into a variance, and
variance S1 of the rest state and variance S2 of the ERD state were defined by Equation (1):

yt ∼ N
(

0, σ2
t

)
, (1)

where yt represents the time, t, and the variance at that time, and σ2
t represents the state, St,

as shown in Equation (2):

σ2
t =

{
σ2

rest = S1 = 0

σ2
erd = S2 = 1

(2)
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If the probability of being S1 is p and that of being S2 is q, the probability of the state
of St after 1 s can be expressed in the following form, Equation (3):

Z =

[
p 1 − p

1 − q q

]
, (3)

where p = positive, 1 − p = false − positive, 1 – q = false − negative, and q = negative.
The probability of St can be calculated by Equation (4):

St probability =
variance of(t − 1)× predicted probability

Variance of rest
. (4)

The probability of ERD occurrence predicted by MSM was calculated using Equation (5):

Li =
1√

2πσ2
i

e−y2/2σ2
i , (5)
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where σ2
i is σ2

rest or σ2
erd, and y is the brain potential being measured.

2.4.3. ERD Calculation with RP

The EEG signals of patients during MI were converted to the RMS using Equation (6)
and were used as baseline data.

Baseline =

√
1
n1

∑
i

x2
i = R. (6)

Using Equation (7), the potential difference was calculated by subtracting the brain
potential read using the DiC from the baseline at the time of EEG detection. In addition,
the relative potential decrease or increase was determined using Equation (8):

potential difference = base line − potential at each point =

√
1
n∑

i
x2

i −
√

y2
j = A. (7)

Relative power = ERD% =
(A − R)

R
× 100. (8)

2.5. The DiC

The DiC assists patients’ upper-extremity movements by activating the two arms that
support the upper arm and forearm. The DiC also memorizes the positions of the two arms
in the movements assisted by the therapist. It can reproduce almost the same movements
of the patient’s upper arm and forearm [22]. The DiC can perform repetitive exercises while
reproducing smooth motions performed by humans and practice exercises in the same
manner as therapists. ERDs detected by the MSM or RP classifier were converted into
signals to activate the DiC, and the reaction time taken from the EEG playback to the ERD
detection was measured using the respective calculation methods of MSM and RP.

2.6. Reaction Time of the DiC

The EEG data recorded from the patients were loaded into the DiC, and the reaction
time from when the analysis of ERD detection started to when the DiC arm was activated
was measured. This reaction time was defined as δ(t) from when the EEG was replayed to
when the elbow joint of the arm held by the DiC started flexing.

2.7. Sample Size

The main outcome was considered the EEG processing time for the MSM and RP,
with an α error probability of 0.05, a 1−β error probability of 0.8, and an effect size of 0.71.
The minimum sample size was calculated to be 8 using G*Power version 3.1.9. 2 (HHU,
Düsseldorf, Germany; 2014).

2.8. Statistical Analysis

The ability to detect ERD in stroke survivors was determined using the activation of
the DiC. In the MSM, the sliding window of the EEG-signaled DiC activation occurred
when the probability of ERD occurrence was <60% and the probability of the resting state
was <40% during a moving average of 1 s. In RP, the RMS of the resting EEG was used
as the reference value, and a signal to activate the DiC was sent when the RMS exceeded
1.5 times the reference value for >0.2 s. If the elbow joint of the arm held by the DiC moved
with each signal, ERD was considered detected. The time (t) between the EEG playback
and ERD detection was measured using the MSM and RP, and the reaction times of both
systems were compared using Wilcoxon’s signed rank sum test. The statistical significance
level was set at <5%.
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2.9. Methods for Exclusion of Missing Data and Outliers for the Reaction Time from the EEG
Playback to ERD Detection

The difference between the third and first quartiles of the total reaction time from the
EEG playback to ERD detection was defined as the interquartile range (IQR). ‘Mean + IQR’
and ‘mean − IQR’ were defined as the upper and lower inner boundary points, respec-
tively; values beyond the upper and lower inner boundary points were excluded from the
statistical analysis as outliers.

2.10. Patients’ Subjective Evaluation of MI

The visual analog scale (VAS) was used for the subjective evaluation of MI by the
patients. The VAS scores (1–10), which were provided by the patients, indicated the quality
of the MI.

2.11. Method for Analyzing the Relationship between the Subjective Quality of MI and the Time
from EEG Playback to ERD Detection

The correlation between the MI quality based on the VAS and the reaction time from the
EEG playback to ERD detection was analyzed using Spearman’s rank correlation coefficient.

3. Results
3.1. Participant Analysis

Among the hospitalized stroke survivors, 18 met the eligibility criteria. Among them,
16 provided informed consent to participate in this study. The case of one patient, who
was discharged from the hospital after the experiment, was postponed because of the
COVID-19 outbreak, and two patients who recovered from paralysis and whose FMA-UE
scores exceeded the eligibility criteria of 20 points were excluded, leaving 13 patients for
the experimental analysis. In the experiment in which ERDs were detected by the MSM
and RP algorithms, the data regarding the 13 patients were detected by MSM, and one
patient, whose data could not be detected by RP, was excluded from the analysis. In the
measurements of the reaction time using the DiC activated by the ERD data detected by
the MSM, one patient, who was an outlier, and three patients whose reaction times could
not be measured owing to machine trouble were excluded. Finally, nine patients were
included in the analysis. Using the ERD data detected by RP, two outliers were excluded,
and 10 patients were analyzed (Figure 5).

3.2. Descriptive Data Regarding the Participants

All the patients were right-handed and had the following clinical characteristics
(presented as medians with [first quartile, third quartile]): age, 63 [53, 77] years; height,
167.0 [153.0, 171.5] cm; weight, 58.5 [57.0, 60.3] kg; days from onset, 84.0 [44.0, 109.0];
FMA-UE score, 8.0 [7.0, 9.0]; and MMSE score, 28.0 [27.0, 29.0]. Five patients had a capsular
hemorrhage, three had open coronary infarction, one had a thalamic hemorrhage, one had
an infarction in the basal ganglia region, one had a lacunar infarction in the left internal hind
leg, and one had an infarction in the left anterior cerebral artery (ACA)/middle cerebral
artery (MCA) region (Table 1).
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Table 1. Clinical characteristics of the patients.

No. Sex Age Handedness Height Weight Days after
Onset Diagnosis Side Lesion

1 Male 53 Right 171 78.6 29 Hemorrhage Left Putamen
2 Female 47 Right 153 59.1 44 Hemorrhage Bilateral Putamen

3 Male 78 Right 153 51.6 75 Infarction Right Basal
ganglia

4 Male 77 Right 171.5 58.5 107 Hemorrhage Right Putamen

5 Female 77 Right 144 48.6 109 Infarction Right Corona
radiata

6 Female 46 Right 154 64.7 84 Hemorrhage Right Putamen

7 Male 79 Right 153 57 37 Infarction Light Corona
radiata

8 Male 81 Right 157 59.9 77 Infarction Right Corona
radiata

9 Male 75 Right 167 43.5 85 Infarction Left Internal
capsule

10 Male 55 Right 173 58.2 42 Infarction Left ACA,
MCA

11 Male 62 Right 167 58 128 Hemorrhage Right Putamen
12 Male 63 Right 174 60.3 194 Hemorrhage Left Thalamus
13 Male 41 Right 175 83.9 110 Hemorrhage Right Putamen

ACA, anterior cerebral artery; MCA, middle cerebral artery.

3.3. ERD Detection during MI

ERD was detected in all 13 patients with the MSM and 12 of the 13 patients with the RP.
An example of ERD detection is shown in Figure 6. ERDs were detected in both the MSM
and RP, and the movement of the DiC arm, which was reconfirmed by moving images, was
included in the analysis.
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In terms of RP, no joint motion of the DiC was observed in the movie captured during
the experiment with patient 1. Therefore, we concluded that the ERD signal could not
be detected in this patient. The data for patient 1 were excluded from the RP analysis.
In addition, outliers were tested for each of the 12 patients, except for patient 1, and two
patients with outliers were excluded from the analysis. Finally, the RP reaction time was
analyzed in 10 patients.

3.4. Comparison of the Reaction Time between the MSM and RP

The reaction time of the DiC for detecting ERD by the MSM and RP were compared.
The time between the start of the EEG playback and the start of elbow flexion by the DiC
was measured and compared with the reaction time (t) (Table 2). Because data normality
was not confirmed when the Shapiro–Wilk test was performed regarding the MSM and
RP reaction times (MSM, W = 0.79, p = 0.014; RP, W = 0.84, p = 0.044), Wilcoxon’s signed
rank sum test was used for this analysis. The MSM reaction time (13.02 ± 0.16 s) was
significantly shorter than that of the RP (19.95 ± 7.45 s) (W = 9, p = 0.0037; Figure 7).

Table 2. Reaction time between the reception of the electroencephalogram and activation of the DiC
and patients’ subjective quality of MI.

No. FMA-UE MMSE MI Quality (VAS) Reaction Time
MSM RP

1 8 29 10 12.3 −
2 6 28 9 12.9 52.6
3 11 26 6 13.2 18.2
4 9 24 8 12.9 22.5
5 8 30 10 13.2 35.9
6 4 28 7 12.8 16.7
7 7 27 6 12.9 91.1
8 7 29 10 13.2 15.2
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Table 2. Cont.

No. FMA-UE MMSE MI Quality (VAS) Reaction Time
MSM RP

9 8 27 1 12.9 15.4
10 9 25 10 13.2 15.5
11 4 30 9 13.0 18.8
12 12 28 10 13.0 27.1
13 12 30 10 13.0 12.5

DiC, Dicephalus system; FMA-UE, Fugl–Meyer Assessment of upper-extremity function score; MSM, Markov
switching model; RP, relative power; VAS, visual analog scale; MI, motor imagery.
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Figure 7. Comparison of the reaction time from ERD detection to DiC activation for the MSM and RP.
The vertical axis indicates reaction time; MSM, n = 12; RP, n = 10; * W = 12, p < 0.0017, by Wilcoxon’s
signed rank sum test.

3.5. Relationship between the Subjective Quality of MI and the Reaction Time of the DiC

Table 2 shows the time from EEG playback in the MSM and RP until the DiC performed
elbow joint flexion and the patients’ subjective MI quality. No significant correlation
between the reaction time from EEG playback to ERD detection and the subjective quality
of MI was found for either MSM (NMSM = 8, rMSM = 0.28, pMSM = 0.50) or RP (NRP = 9,
rRP = −0.11, pRP = 0.78) (Figure 8).
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Figure 8. Correlation between the reaction time from event-related desynchronization (ERD) detection
to DiC activation and subjective quality of motor imagery (MI) in the MSM and relative power (RP).
The vertical axis shows the response time, and the horizontal axis shows the quality score regarding
MI based on the visual analog scale (VAS). (Left) MSM, r = −0.110, p = 0.779, n = 9. (Right) RP,
r = 0.280, p = 0.503, n = 10.

4. Discussion
4.1. ERD Detection during MI in Patients with Severe Post-Stroke Hemiplegia

In the present study, a decrease in EEG potential was observed during MI in a patient
with severe upper-extremity paralysis, and an ERD response was confirmed. ERD suggests
a decrease in EEG potential, which is characterized by a change from α waves seen in a
resting EEG to β and γ waves during MI [23]. Similarly, a recent study reported ERD based
on changes in the EEG potential and frequency bands during MI [22]. In this study, ERD
was detected from the ratio of the RMS of the resting EEG and EEG potential differences
during MI, suggesting that ERD manifesting during MI is detectable in patients with stroke.

The time since stroke onset varied among the patients, with a median of 84 days, a
minimum of 29 days, and a maximum of 194 days. The aim of this study was to verify
whether ERD can be detected in patients with severe paralysis of the upper extremities in
the recovery phase when they perform MI while watching a movie about arm movements.
Patients with stroke experience long-standing deterioration of brain function due to disused
plasticity after stroke onset [16]. Although inactivation of the motor cortex was presumed
to have occurred in the participants of the present study, ERD was detected in 12 of the
13 patients. In this study, 20 MI sessions were performed as a practice set before analyzing
the test set. Our results suggest that MI can excite the motor cortex and detect ERD,
even in patients with short or long periods of inactivity due to severe paralysis of the
upper extremities.

4.2. Implementation of BCI Application by the MSM and RP

The results of this study suggest that the MSM is more efficient than the RP in detecting
ERD. In this study, one MI was performed every 10 s, and an ERD appeared once every
10 s. However, several patients with RP required >20 s before an ERD was detected. This is
presumably because ERD was detected during the second and subsequent trials and not
during the first RP trial.

Owing to the difference between the MSM and RP processing, the reaction time of the
DiC suggested that the MSM required a shorter processing time than RP. This is presumably
because the MSM performs computational processing while predicting the EEG change
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after 1 s, and the time required for feedback is shorter than that for processing based on the
RP results [21]. However, the reaction time from ERD detection to the activation of the DiC
was >10 s, which is too long for real-time feedback, and the issue of shortening the robot’s
reaction time remains. In addition, there was no correlation between the reaction time from
ERD detection to the activation of the DiC and the subjective quality of MI. Two types
of MI have been reported: visual motor imagery (VMI) and kinesthetic motor imagery
(KMI) [24]. A previous study showed a correlation between KMI and the ERD magnitude
during MI [24]. However, the results of this study suggested that the quality of MI did
not affect the time to onset of ERD. This infers that subjective KMI is not related to how
quickly corticospinal excitability is transmitted but to how large the change from resting to
motor imagery state is. Therefore, it is difficult to improve the quality of MI to reduce ERD
detection time, and the control system needs to be adjusted by improving the application to
reduce the detection time. Therefore, the DiC control system must be improved to provide
real-time feedback. The current DiC is programmed to return to the initial position of elbow
flexion before starting the movement to safely move the patient’s joints. This movement
takes approximately 5.1 s for MSM. In addition, to prepare the patient for joint movements,
a countdown was provided for 4 s before the DiC performed joint movements. If the time
to return to the initial position and the countdown time can be eliminated, the time can be
shortened to approximately 9 s. However, at present, priority must be given to the safety of
the patient’s joint motions rather than eliminating the time loss of real-time feedback.

Barrett Technologies’ (Newton, MA, USA) WAM 7-degree-of-freedom arm is a BCI
robot proposed by Gomez-Rodriguez et al., in which each movement block is controlled [25].
WAM was set to perform one trial per block and one drive per MI, and an interval of a
few seconds was provided for each block. For MI, patients are instructed to “relax” at the
beginning, followed by MI following a “GO” cue. When the robot is activated, the patients
are prepared for the exercise, and safety is ensured by not providing rapid assistance. The
current BCI–DiC should also follow this approach and consider controlling the movement
of one block and trial simultaneously.

4.3. Limitations

A potential limitation of our study is the small sample size; it does not reflect the
complexity of the motor dysfunctions in EEG, which are multifactorial in nature and
include factors such as muscle weakness and spasticity after a stroke. Additionally, the
MSM data acquisition failed in 4 out of 13 participants. This failure suggests that the DiC
did not obtain sufficient measurement settings in this study. Therefore, further studies with
a larger number of participants, including ERD estimations of the DiC with multiple EEG
detection methods of the robotic system, are warranted to improve the generalizability of
our findings.

Our analyses were conducted in a laboratory using the sampled patients’ EEGs, and
the patients did not directly manipulate the DiC. Therefore, this study did not prove that
the patients could operate the DiC appropriately. In addition, the time from stroke onset
varied among the patients, which may have caused individual differences in the quality of
MI due to the different degrees of progression of disused plasticity. In our next study, a
more limited investigation of the onset period is needed to clarify the operability of the DiC.

5. Conclusions

The results of our study suggest that ERD can be detected on EEGs, even in patients
with severe upper-extremity paralysis. This is an important finding for expanding the range
of applications of BCI robots. To make the BCI–DiC practical, it will be necessary to conduct
investigations regarding methods to shorten the feedback time, improve safety control
systems, devise problem-solving methods, and verify the effectiveness of the BCI–DiC
for development.
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6. Patents
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