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Abstract: Bioremediation techniques are increasingly popular in addressing soil pollution. Despite
this, using earthworms as first actors or adjuvants in decontamination is an open and little-discussed
field. This paper focuses on vermiremediation effectiveness alone or combined with other bioremedi-
ation methods, such as phytoremediation and bioaugmentation. Literature was collected following
the PRISMA criteria, setting the search with the following keywords: “(vermiremediation) AND
(bioremediation OR phytoremediation OR plant*) AND (bioaugmentation OR bacteria)”. The investi-
gation was performed on Google Scholar, Science Direct, SciFinder and Web of Science databases. The
article data were collected, compared, elaborated, graphically summarised and discussed to assess
if the earthworms’ activities play a critical role in tackling several soil pollutions. Furthermore, the
review aimed to identify the most promising techniques in the function of the xenobiotic examined:
organic, inorganic or both. Any gaps and criticism were highlighted to facilitate future research in
this study area.

Keywords: vermiremediation; phytoremediation; bioaugmentation; co-remediation; Eisenia fetida;
organic contaminant; heavy metal; PHA; pesticide; soil

1. Introduction

A contaminated matrix, such as soil, groundwater, or surface water, is characterised by
contaminants above those considered safe by regulatory agencies [1]. Soil pollution derives
mainly from anthropic activities related to rapid industrial and agricultural development
and represents a growing problem on a global scale [2,3]. Different types of contaminants
continuously accumulate in the environmental compartment [4], causing adverse effects on
the physical, chemical and biological properties of the soil [5] and the health status of plants
and terrestrial organisms [6]. The entry of these pollutants into the food chain can have
carcinogenic and mutagenic effects on humans, causing widespread public concern [7],
the most common and possibly hazardous contaminants found in soil are pesticides,
potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs). Organic
and inorganic pesticides are synthesised naturally or chemically and used in the agricultural
sector to control pests [8], improve the yield and, simultaneously, the quality of crops [9].
The uncontrolled use and their persistent nature make pesticides extremely harmful to
ecosystems [10]. According to the latest FAO report [11], agriculture is responsible for the
global use of approximately 4.2 million tonnes of pesticides [12]. Countries have a wide
disparity in pesticide application rates. The field application increased from 1.55 kg ha−1

in 1990 to 2.7 kg ha−1 in 2019; however, several countries significantly exceeded this
average [11,13]. In particular, developing countries are responsible for a quarter of the
global use of pesticides [14], and they are also the largest producers [15,16].

PTEs include metals and metalloids that can be highly toxic to the environment,
even at low concentrations, such as lead (Pb), mercury (Hg), cadmium (Cd), chromium
(Cr) and arsenic (As), and micronutrients such as copper (Cu), nickel (Ni) and zinc (Zn),
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which become dangerous when they exceed a certain threshold [17]. PTEs have a long
residence time in the environmental matrix, and their bioavailability makes them easily
assimilated by soil organisms [18]. Moreover, due to their inorganic nature [19], they
are not degradable by any biological or physical process [20]. Several soils around the
world are contaminated with PTEs; as reported by He et al. [21], there are more than
five million contaminated sites with soil concentrations that, in many cases, exceed geo-
baseline or regulatory levels. This situation mostly occurs in developed countries such as
the United States of America, Australia, European Union member states and China [22].
The main sources of PTEs contamination in agriculture are represented by activities such
as the irrigation of fields with wastewater [23], the long-term use of large quantities of
fertilisers [24] and pesticides [25]; moreover, the proximity of the crops to traffic routes can
increase the levels of these pollutants [26].

Total petroleum hydrocarbons (TPHs) are a mixture of different hydrocarbon com-
pounds in crude oil employed to produce petroleum products [27]. TPHs include aliphatic
and aromatic compounds [28]; among the aromatic ones, polycyclic aromatic hydrocarbons
(PAHs) are considered the most worrying due to their toxic and mutagenic characteris-
tics [29].

PAHs consist of aromatic hydrocarbons with two or more fused benzene rings config-
urated in various structures [30]. These organic compounds are hazardous to the environ-
ment due to their persistence, molecular stability and hydrophobicity [31,32]. In particular,
the soil ecosystem becomes an actual sink for PAHs [33]; according to recent studies, they
have phytotoxic effects on the metabolic activity of plants [34] and can alter the physico-
chemical properties of the top- and sub-soil [35] as they are strongly adsorbed onto the soil
particles [36]. PAHs are equally distributed in aquatic or terrestrial ecosystems and the
atmosphere [37]. Natural sources of these compounds are negligible compared to those
derived from human activities, which appear to be the most significant [38]. Pyrogenic
PAHs are formed through the incomplete combustion of organic materials such as tobacco,
fossil fuels, wood and agricultural waste [39,40], while those resulting from the loss of
petroleum and its by-products are called petrogenic [38]. Global emissions of PAHs were
estimated in 2015 at about 357 million kg [41]; more than 80% of these were attributed to
developing countries [42].

The extensive and global spread of the above contaminants leads to a growing concern
for environmental and human health. Consequently, effective, inexpensive and eco-friendly
strategies to reduce the content of these pollutants in the soil ecosystem are needed to
improve its health and fertility.

Bioremediation includes various natural processes in which plants (phytoremediation),
microorganisms (bioaugmentation) and soil fauna (vermiremediation) are employed for
biodegrading and mitigating soil contamination [43,44].

Phytoremediation is one of the most employed techniques in the panorama of biore-
mediation [45] and involves plants and their associated microorganisms to extract and
remove pollutants or reduce their bioavailability in the environment [46,47]. This ap-
proach is particularly suitable for the remediation of PTEs [48,49], but it is also widely
used for organic xenobiotics [50]. Phytoremediation techniques can be classified as follows:
phytoextraction which uses hyperaccumulator plants to take up contaminants from the
soil, concentrating them in aboveground biomass (shoots) [51,52]; phytostabilisation to
decrease the bioavailability of xenobiotics, avoiding their mobilisation [53]; phytotrans-
formation which uses the ability of plant enzymes to convert organic pollutants into less
toxic forms [54]; rhizodegradation, in which the root exudates improve and promote the
activity of the microorganisms in the rhizosphere, transforming organic pollutants [55];
phytovolatilisation which uses plants to volatilise organic contaminants and subsequently
release them into the atmosphere by their transpiration process [56,57]; phytofiltration
where hydroponically grown and aquatic plants can be used to remove xenobiotics from
the water [58].
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Bioaugmentation is a green technology that removes organic contaminants by inoc-
ulating, in different matrices, bacteria and/or fungi strains or their consortia [59], which
have specific degradation abilities to the target pollutants [60]. Microorganisms suitable
for bioaugmentation must have specific characteristics, such as rapid growth, easy main-
tenance in laboratory conditions, adaptability and resistance to strongly contaminated
substrates [61]. Microbial strains used in this technique can be indigenous or allochthonous.
Autochthonous strains are isolated from the contaminated environment and, once culti-
vated, are re-inoculated in the original site [59,62]. The other category of microorganisms
is taken from areas with similar contaminations and then introduced into the site to be
remediated [63].

Most studies have focused on the bioremediation techniques described above, while
the use of soil fauna, such as earthworms, as first actors in decontamination is a poorly
studied field that has to be explored [64]. Vermiremediation was first defined by Rodriguez-
Campos et al. [65] and utilises earthworms’ biotic and abiotic interaction, life cycle, bur-
rowing and feeding activities to transform, degrade or remove contaminants from the soil
environment [66]. The role of earthworms in the terrestrial ecosystem is pivotal because
they positively influence soil’s physical, chemical and biological properties [67]. These
organisms actively contribute to pedogenesis, soil turnover and the increase in soil porosity;
consequently, they are termed ecosystem engineers [68,69]. Thanks to their excavation
and soil ingestion activities, earthworms play a pivotal role in organic matter dynam-
ics, redistributing the elements within the soil profile, and can modify the pore system
architecture [70]. Furthermore, earthworms are widely used as sentinel organisms by
the international scientific community [71]; thanks to their permeable cuticles and large
ingestion of surface soil, they are directly in contact with the soil particles and are sensi-
tive to contamination [72,73]. Earthworms are able to remove contaminants both directly,
through absorption and digestion, and indirectly by stimulating the growth of beneficial
microorganisms for soil remediation [74]. Consequently, there are several mechanisms
involved in vermiremediation: vermiextraction is the process in which earthworms remove
contaminants from the substrate by dermal and intestinal absorption and accumulate them
in their bodies [64,75]; vermitransformation changes organic pollutants, passing through
the earthworm’s gut, by decomposing into less toxic forms by the microorganisms and
enzymes that colonise it [66,75]; the drilodegradation occurs in the 2 mm thick zone around
earthworms’ burrow walls, called drillosphere [76]. Due to the release of earthworm
residues, mucous secretions and casts, this area becomes a microbial hotspot with a great
potential for the degradation of organic compounds [77,78].

This review deals with current literature on the vermiremediation of inorganic and
organic xenobiotics in solid matrices (such as natural or artificial soils, sludges, manure, etc.).
Articles that apply vermiremediation alone or in combination with other bioremediation
techniques have been analysed in detail. The aims were to collect exhaustive data, identify
successful remediation strategies and report the significant criticalities according to the
category of contaminants studied.

2. Materials and Methods
2.1. Data Sources and Search Strategies

The authors systematically searched the literature to evaluate the role of earthworms
in restoring contaminated matrices and their potential in association with other bioremedi-
ation techniques. The research was conducted in four databases (Google Scholar, Science
Direct, Web of Science and SciFinder), setting a time range from the year 2018 to 2023.
The scientific literature search was performed using keywords combined with Boolean
operators as follows: “(vermiremediation) AND (bioremediation OR phytoremediation
OR plant*) AND (bioaugmentation OR bacteria)”. The search yielded a total number of
693 articles; after the screening work, the papers finally included in this review were 53.
Literature collection, screening, inclusion and exclusion criteria are shown in the flow
diagram in Figure 1.
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Figure 1. PRISMA study flow diagram from the initial research and screening to the final selection of
studies to be included in this systematic review.

2.2. Graphical Construction

To obtain an overall and visually intuitive representation of the data, graphs have
been constructed and divided into organic and inorganic contaminants. To produce these
graphs, articles that explicitly reported the reduction percentage values and those in which
the data allowed their calculation were selected. The reduction percentage was carried out
as follows:

Reduction (%) =

(
Ci− C f

Ci

)
× 100

where Ci and Cf represent the initial and final concentration of the xenobiotic understudy,
respectively.

Regarding alone vermiremediation, data were elaborated in radar graphs in which
reduction percentages were calculated as averages of the same contaminant and earthworm
species collected from different articles.

The data on the combined bioremediation techniques were processed by producing
two-input graphs: the percentage of reduction of the xenobiotic (bars) and the initial
concentration (dash).

In the histograms, capital letters represent the various treatments:

- S refers to the substrate;
- E indicates the presence of earthworms for the application of vermiremediation;
- P indicates the presence of plants for the application of phytoremediation;
- M indicates the presence of microorganisms for the application of bioaugmentation;
- O indicates the presence of other remediation strategies.
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The progressive numbers were inserted where more substrates (S1, S2, etc.) or different
treatments (i.e., E1 Eisenia fetida, E2 Lumbricus terrestris, etc.) were tested. The progressive
numbers have been coded in order of the appearance of the various cases in each article.

3. Results
3.1. Alone Inorganic Vermiremediation

Vermiremediation is an expanding technology in recent years due to the pivotal role
of earthworms in the soil. Of the 53 papers under study, 14 deal with vermiremediation of
inorganic contaminants; considering the amount of data collected, it was necessary to carry
out a graphic reworking of some (10) of these works to clarify the effects of each species of
earthworm on the different PTEs reported in Figure 2.
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Figure 2. Alone inorganic vermiremediation. Reduction percentages were averages of the same
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reduction values reported for the NA series refer to the test in the absence of earthworms.

Among the research articles, the most used earthworm species involved in the PTEs
vermiremediation is Eisenia fetida. E. fetida is an epigeic earthworm employed in terrestrial
ecotoxicology as the standard test organism for the following reasons: it is easy to breed in
laboratory, has short generation times and is susceptible to chemicals [79,80].

Seven research articles have been identified [81–87] that employ E. fetida for bioremedi-
ation of PTEs, using different types of organic waste as the primary substrate with diverse
contamination levels. The final aim of these experimental tests was to find a sustainable
recycling system for these types of organic waste.

Starting from Cd, one of the elements most analysed by the authors, the mean percent-
age reduction was 55.38%, with maximum values of 100% [86], 92.86% [85] and 91.27% [83].
The experiment performed by Singh et al. [86] achieved the best reduction (100%), working
on pharmaceutical industry sludge, adding from 50% to 75% of cow dung (CD). Also,
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Paul et al. [85] obtained results close to total removal (92.86%) by mixing silk industrial
sludge waste (SIS1) with CD in a 3:1 ratio. However, these matrices were generally poorly
contaminated by Cd compared to the starting substrates of Paul et al. [83], which also
obtained satisfactory results by adding 50% CD to silk industrial sludge (SIS2), reaching a
Cd restoration of 87.30%.

For Cr, the SIS1 and SIS2 matrices gave the greatest reduction percentages, equal
to 96.39% without the addition of CD; however, the result reached with the SIS2 ma-
trix [83] is noteworthy as the starting concentration of this metal was considerably higher
(16.62 mg kg−1) against 1.66 mg kg−1 by SIS1 [85]. By adding 25% or 50% CD to SIS1 and
SIS2, respectively, the Cr was reduced by about 93%; also, in this case, Paul et al. [83]
started from higher initial concentrations (7.76 mg kg−1). Regarding Pb, the combination
of SIS with CD in a 1:1 ratio for both studies [83,85] led to considerable reductions in the
contaminant (80.10%, 86.82%).

The most recent work [83] also evaluated vermibeds based on textile sludge (from the
cotton industry, CTS1) as a substrate, in which earthworms reduced Cd concentrations by
91.27%. E. fetida significantly detoxified Pb (74%); notably, this matrix was characterised by
the highest initial Pb concentration (31.21 mg kg−1) among all the articles analysed.

A good Pb reduction equal to 75.91% was obtained in another study [82] on a matrix
composed of municipal solid waste. In general, the average reduction calculated for Pb
and Cr were 33.14% and 48.35%, respectively, as shown in Figure 2.

Observing the graph (Figure 2), the percentage of reduction of Zn is relatively low
(19.3%); this is because in Singh et al. [86] and Sohal et al. [84], the final values of this
metal were recorded as higher than the starting concentrations. Despite the ability of
E. fetida to accumulate metals from the environment, the progressive mineralisation and
decomposition of organic matter during vermicomposting can concentrate and increase the
PTEs contents [88,89]. As reported by Sing et al. [86], also, Cu has negative percentages of
reduction, which affected the final average (Figure 2).

Other papers not shown in the radar graph used E. fetida to remedy organic sludge
waste [90–93], obtaining ecologically stabilised products rich in nutrients and with PTEs
concentrations below the imposed limits.

Lumbricus terrestris, although studied in only one [94] among the twelve articles
considered in this subchapter, achieved the greatest reduction percentages compared to
the other earthworms for all the metals studied. The authors applied vermiremediation on
seven soils collected near welder and auto mechanic workshops with different starting PTEs
concentrations. Despite variability in contaminations, L. terrestris has shown itself to be
particularly efficient, with reduction averages always higher than 80% for all studied metals
except for Zn (69%). Averaging the reduction percentages due to earthworms’ presence
(comparing the PTEs concentrations in the same soils without or with earthworms) from
all the soils analysed, the authors found that Pb was the element that best lends itself
to vermiremediation with L. terrestris. Data reported by Iheme et al. [94] also deal with
Eudrilus eugeniae and, comparing its remediation capacity with L. terrestris, finds it even
more efficient.

Both Paul et al. 2022 and 2020 [83,95] evaluated the vermiremediative power of E.
eugeniae by applying these earthworms to cotton textile sludge (CTS1, CTS2). Regarding
Cd, the most newsworthy result was found in the CTS2 matrix; in fact, starting from a high
initial concentration (59.03 mg kg−1), a reduction of 70.96% was obtained. Also, in CTS1,
earthworms restored the substrate from Cd (84.73%), although the level of contamination
was low. More interesting results were found in CTS1 relating to Cr, Pb and Zn. However,
the Cr, Zn and Cu removal efficiency was higher in the mixtures CTS2 and CD in a 1:1 or
2:1 ratio.

The primary industrial source of Cr pollution comes from the leather industries
because this metal is widely used as a tanning agent [96]. The tannery sludge substrate
used in the experiment conducted by Goswami et al. [97] contains high concentrations
of Cr (711.6 mg kg−1). In the pure matrix, E. eugeniae effectively reduced the amount of



Appl. Sci. 2023, 13, 10239 7 of 25

that PTE by 63.95%, while in the mixture with 50% CD, the reduction reached 89.45%,
starting from a lower initial concentration (467.2 mg kg−1). Aerobic composting, in the
absence of earthworms, showed very low and even negative reduction values, indicating
the fundamental role of E. eugeniae in this work.

The remediation capacity of the epigeic earthworm Perionyx excavatus was studied
in the article by Yuvaraj et al. [98] on a substrate composed of sludge from paper mill
wastewater added with CD in various proportions. The authors measured that earthworms
improve the remediation of all PTEs studied (linear regression analysis showed a positive
correlation in earthworm treatments). More satisfactory results were obtained when the
contaminated matrix was mixed with 50% CD; in this treatment, the health parameters of
earthworms (biomass, fertility and histopathological changes) were significantly better, and
vermiremediation caused a significant decrease in the level of elements in the following
order: Pb (56%) > Cr (46%) > Cu (42%) and Cd (27%).

3.2. Alone Organic Vermiremediation

Regarding vermiremediation for organic xenobiotics, it was found that many species
were used only for one contaminant; instead, E. fetida, Amynthas robustus and the combina-
tion of Drawida modesta + Lampito mauritii have been tested for different types of pollutants
(Figure 3).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 25 
 

and Zn. However, the Cr, Zn and Cu removal efficiency was higher in the mixtures CTS2 
and CD in a 1:1 or 2:1 ratio. 

The primary industrial source of Cr pollution comes from the leather industries 
because this metal is widely used as a tanning agent [96]. The tannery sludge substrate 
used in the experiment conducted by Goswami et al. [97] contains high concentrations of 
Cr (711.6 mg kg−1). In the pure matrix, E. eugeniae effectively reduced the amount of that 
PTE by 63.95%, while in the mixture with 50% CD, the reduction reached 89.45%, starting 
from a lower initial concentration (467.2 mg kg−1). Aerobic composting, in the absence of 
earthworms, showed very low and even negative reduction values, indicating the 
fundamental role of E. eugeniae in this work. 

The remediation capacity of the epigeic earthworm Perionyx excavatus was studied in 
the article by Yuvaraj et al. [98] on a substrate composed of sludge from paper mill 
wastewater added with CD in various proportions. The authors measured that 
earthworms improve the remediation of all PTEs studied (linear regression analysis 
showed a positive correlation in earthworm treatments). More satisfactory results were 
obtained when the contaminated matrix was mixed with 50% CD; in this treatment, the 
health parameters of earthworms (biomass, fertility and histopathological changes) were 
significantly better, and vermiremediation caused a significant decrease in the level of 
elements in the following order: Pb (56%) > Cr (46%) > Cu (42%) and Cd (27%). 

3.2. Alone Organic Vermiremediation  
Regarding vermiremediation for organic xenobiotics, it was found that many species 

were used only for one contaminant; instead, E. fetida, Amynthas robustus and the 
combination of Drawida modesta + Lampito mauritii have been tested for different types of 
pollutants (Figure 3).  

Six articles [99–104] of the seventeen deal with alone vermiremediation versus 
organic contaminants and were not included in Figure 3 due to the absence of explicit 
reduction values; however, they are discussed below.  

 

Figure 3. Alone organic vermiremediation. Reduction percentages were averages of the same
contaminant and earthworm species collected from different articles (Number of articles: 11). The
reduction values reported for the NA series refer to the test in the absence of earthworms.

Six articles [99–104] of the seventeen deal with alone vermiremediation versus organic
contaminants and were not included in Figure 3 due to the absence of explicit reduction
values; however, they are discussed below.

Several authors examined the vermiremediation efficiency and the tolerance of differ-
ent earthworm species in substrates contaminated by TPHs.
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Nassar et al. [105] investigated the bioremediation of crude oil at two concentrations
(45.2 and 62.4 mg kg−1) using Allopophora caliginosa, a common species found in Egypt.
These endogeic organisms consume large quantities of soil during burrowing; this feeding
way might increase the contact of soil particles with the worm gut and result in more
TPHs degradation. At the end of the study, the authors found that TPHs concentrations
followed a time- and dose-dependent pattern and significantly decreased by 54.9% and
71% in soil samples at 45.2 and 62.4 mg kg−1, respectively. The maximum reduction was
observed at the highest TPHs concentration, highlighting that A. caliginosa had a good
remedial capacity for these contaminants. Despite this, some changes in worms’ metabolic
and haematological parameters were observed.

In a recent study, Rubiyatno et al. [101] evaluated E. fetida’s tolerance to pyrene, a very
soil-persistent PAH. Authors have chosen this earthworm for its ability to survive in highly
contaminated soils; it is also known that E. fetida promotes the degradation of crude oil
in soils thanks to its ability to stimulate and synergise with other beneficial microorgan-
isms [64]. For this purpose, three different soil conditions were utilised to cultivate the
earthworms: sterilised, unsterilised and soil mixed with CD. The worst pyrene degradation
was recorded in sterilised soil (23.2%), while the best was in soil supplemented with CD
(31.2%). This information indicates that sterilised soil inhibited pyrene decomposition due
to the absence of indigenous pyrene-degrading microbes, emphasising the crucial symbiotic
relationships between soil biota and earthworm enzymes. Furthermore, the study demon-
strated that E. fetida is extremely resistant and can live and thrive in PAHs-contaminated
environments, although survival rates followed a dose- and time-dependent trend.

The PAHs soil restoration ability of E. fetida was also studied by Fawole et al. [106].
The contaminants used in this experiment were Acenaphthylene (AcPY), Benzo(e)pyrene
(BeP) and Benzo(ghi)perylene (BP), which differ in their structural configurations. The
data showed that the PAHs vermiremediation in soil was 100% efficient; the authors [106]
suggested that these contaminants were degraded into various metabolite states. In par-
ticular, E. fetida accelerates the successful removal of PAHs, leading to their removal and
disappearance [65]. Earthworms release soil-bound organic contaminants and prevent new
binding; in this way, PAHs are more easily available for degrading microorganisms [107].

Nobili et al. [108] experimented with vermiremediation using E. fetida and Amynthas
morrisi, alone or in combination in a precomposted matrix artificially contaminated with
TPHs; the incorporation of both species was performed to assess a synergistic effect. A.
morrisi is an epi-endogeic earthworm that lives on the soil–litter interface and produces
large amounts of cast, improving soil proprieties. The increment of TPHs degradation
was evident and significant in substrates with earthworms compared to the negative
control. More in detail, the treatment which implied the highest reduction is the one
with E. fetida (60.81%), followed by A. morrisi (46.74%) and, finally, the treatment with the
incorporation of the two species (45.2%). E. fetida seems to be the most effective species in
the vermiremediation process; furthermore, it is also more resistant, with higher survival
rates than A. morrisi.

Another study [109] explored the ability of two earthworm species used together, D.
modesta (epigeic) and L. mauritii (anecic), to restore a soil polluted by PAHs and TPHs.
The species selected by the authors are commonly isolated from fields and are widely
known for their ability to detoxify heavy metals in industrially contaminated substrates;
however, they are underutilised in studies with crude oil contaminations. Authors found
that co-inoculating these worms can alter the contamination level till the intermediate dose
(7.5 mL), with a PAHs and TPHs reduction of 68.6% and 34.3%, respectively. This capacity
undergoes a substantial breakdown at higher doses of oil contamination (10 mL), indicating
suffering in both earthworms associated with low activity and histopathological damage
observed on cross sections under a compound microscope such as degradation of cells,
irregular surface epidermis or detected cellular debris.

Vermiremediation is also suitable for matrices contaminated by pesticides: a pilot
study [110] was conducted to vermiremediate soil contaminated by organophosphate
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insecticide dichlorvos, using L. terrestris and E. eugeniae alone and in combination. As
shown in Figure 3, the best results were obtained by E. eugeniae, with an average reduction
percentage of 72.29%, followed by the co-inoculated treatment (66.27%) and L. terrestris
(54.23%). Njoku et al. [110] concluded that E. eugeniae is the better remediator agent in this
research case.

Owagboriaye et al. [103] evaluated in their study three different species of earthworms,
including E. eugeniae, Alma millsoni and Libyodrilus violaceus, against the glyphosate-based
herbicides (GBHs).

At the end of the experiment, all organisms significantly reduced the GBHs concentra-
tion in soil; however, the bioaccumulation factor (ratio between xenobiotic concentration in
earthworm tissue and substrate) demonstrated that E. eugeniae (1.11) and L. violaceus (1.15)
are better accumulators than A. millsoni (0.40). Moreover, the enzymatic analyses showed
that E. eugeniae and L. violaceus responded to the exposure with physiological and biochem-
ical adjustments, activating antioxidant defence mechanisms as a compensatory response.

Other authors who worked with glyphosate were Lescano et al. [99], who tested the
capacity of E. fetida in a biobed system. They studied different biomixtures in the presence
or absence of earthworms, concluding that E. fetida leads to a 90% reduction of the pesticide
compared to the test without worms (80%). This earthworm species can tolerate elevated
glyphosate levels without altering its life characteristics.

Also, Delgado-Moreno et al. [111] set up a vermiremediation test in a biobed system
contaminated with four different pesticides: Diuron, Imidacloprid, Tebuconazole and
Oxyfluorfern. As can be seen in Figure 3, E. fetida successfully reduced the amount of Diuron
(100%) and Oxyfluorfern (70.25%). At the same time, the other two pesticides were not
significantly reduced compared to uninoculated controls, maybe due to the high levels of
pesticides and the composition of the biomixtures, which could limit the vermiremediation.

The same epigeic earthworm versus the endogeic A. robustus was evaluated against
atrazine, a triazine herbicide used worldwide at low cost for agricultural production.
Lin et al. [112] found that both species coupled with soil microbes can decrease atrazine
contamination, performing trials with sterilised and non-sterilised soil.

The presence of earthworms and soil microorganisms resulted in a statistically higher
reduction rate (94.9% and 95.7%) than sterilised treatments with earthworms alone (52.3%
and 60.3%). A. robustus showed significantly higher atrazine accumulation in tissues than
E. fetida.

Antibiotics are still used worldwide for bacterial infection treatments; because of
the poor absorption rate in the intestines of animals and humans, these substances are
discharged through excretions and can enter into water or soil ecosystems [113,114].

A group of harmful antibiotics widely and globally consumed is represented by
Tetracyclines (TCs) [115]. These substances are widely used because of their broad-spectrum
activity and low cost [116]. In Europe, from 2010 to 2020, despite their consumption in
the community sector having decreased (while in the hospital sector, it has remained
unchanged), attention is still high on the dangers of TCs, above all due to antimicrobial
resistance [117].

The study conducted by Lin et al. [118] investigated the effects of two earthworms with
different behaviours and ecological functions (E. fetida and A. robustus) on TCs degradation
in sterilised and natural soil. The authors demonstrated that indigenous soil microbes have
weak power to mineralise TCs; no significant differences were found between treatments
with sterilised and natural soil alone. On the contrary, earthworms in sterile treatment
showed a good remedial capacity, which significantly increased in association with soil
bacteria. Looking at Figure 3, on average, slightly higher reduction rates were observed for
A. robustus (61.9%) than for E. fetida (57%).

Also, Liu et al. [100] tested the efficacy of E. fetida versus TCs, obtaining statistically
different results compared to the treatment alone at the higher dose applied (100 mg kg−1).

According to Yin et al. [119], using Metaphire guillelmi in soil vermiremediation ex-
periments is a more suitable choice as it is commonly isolated in farmland and is more
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sensitive to some contaminants than E. fetida [120]. M. guillelmi significantly accelerated
the TCs degradation, with an average value of 83.17% compared to soil without earth-
worms (63.55%). At the same time, the enzyme activity established no oxidative damage
due to TCs, demonstrating the efficient detoxification ability of the antioxidant system in
this species.

Microcosm experiments were conducted by Zhang et al. [121] to study the effects of
Pheretima guillelmi on the fate of Sulfamethoxazole (SMX), an antibiotic commonly detected
in almost all environmental compartments. The authors found that the P. guillelmi activities
significantly reduced the SMX concentration in soil (99.55%) compared to the treatments
without them due to their gut detoxification and stimulation of soil indigenous microbes.

Polychlorinated biphenyls (PCBs) are a group of organic chemicals comprising carbon,
hydrogen and chlorine atoms of anthropogenic origin, belonging to chlorinated hydro-
carbons. These compounds are a source of concern because they are globally distributed,
highly persistent and toxic [122,123].

Zenteno-Rojas et al. [102] studied the E. fetida removal ability of decachlorobiphenyl
(DCB) in the vermicomposting process. Data in Figure 3 showed that earthworms and
their symbiotic bacteria could significantly reduce high DCB concentrations, with a value
of 65.24%.

Among all the research articles (53) analysed in this review, only two experiments
used a product of earthworms, the vermicompost, as an alternative method to the earth-
worms’ presence.

Luo et al. [124] used E. fetida’s casts to accelerate the atrazine biodegradation pathway,
testing combinations of sterilised and unsterilised soils and casts. The contribution of
vermicompost both in physical (sterilised cast 44.23%) and biological (unsterilised 60.77%)
terms was decisive for reducing the contaminant compared to sterilised soil alone. How-
ever, the synergistic relationship between soil and cast microorganisms led to the highest
reduction percentage of 93.97%. In conclusion, the vermicast enhanced the soil’s physical
properties and provided extra nutrients, promoting the chemical hydrolysis of atrazine and
the activity of indigenous soil microorganisms.

Also, Mohammadi-Moghadam et al. [104] evaluated the vermicompost capacity for
bioremediation. The experimental soil was artificially contaminated with phenanthrene
(PHE) and pyrene (PYR) at three doses (100, 200, 300 mg kg−1). These compounds provided
a good source of carbon and energy for the microorganisms, which compensated for their
toxic effects up to the intermediate dose. In fact, this treatment showed a greater removal
efficiency; balance tended towards toxicity at the highest dose tested. Treatments with PYR
manifested more variation in the microbiota, but in general, microbes adapted to the toxic
conditions and began their decomposition activities.

3.3. Combined Vermiremediation for Inorganic Pollution

Recently, the scientific community’s attention has grown on combining different
bioremediation techniques to obtain better restoration results.

Phytoremediation is a technique widely used in soil restoration from PTEs; however,
it has limitations, such as low biomass of accumulator plants and poor bioavailability of
these contaminants in soil [125]. The co-application of other biological techniques, such as
vermiremediation, can enhance the efficacy of phytoremediation.

Due to their life activity and ingestion processes, earthworms improve the soil’s
physical, chemical and biological fertility, creating an ideal environment for plant fitness
and enhancing its phytoremediation power [126,127]. Moreover, earthworms augment the
bioavailability of metals in the soil and influence pH and dissolved organic carbon [128].

Nine articles were discussed regarding the use of vermiremediation together with
other bioremediation techniques with respect to inorganic contaminants, four of which
were reworked, as shown in Figure 4.

In a microcosm experiment, Tibihenda et al. [129] evaluated the influence of two
species of earthworms (E. fetida and Amynthas aspergillum) on the growth and metal accu-



Appl. Sci. 2023, 13, 10239 11 of 25

mulation of Brassica campestris. The substrate consists of an agricultural topsoil artificially
contaminated with three different Pb concentrations (100, 500 and 1000 mg kg−1).

Different ecological earthworm species may have dissimilar effects on the cycle of
PTEs and soil proprieties. Indeed, this study showed that E. fetida had a superior impact on
cation exchange capacity, tissue accumulation and availability of Pb, while A. aspergillum
affects more soil C and N contents. At the end of the trial, soil bioavailable Pb was generally
higher in the treatments with earthworms, independently from the species used. Although
the presence of E. fetida and A. aspergillum increases the bioavailable Pb and, therefore, its
potential toxicity towards plants, they improve the physicochemical properties of the soil,
bypassing the adverse effects. In fact, B. campestris subjected at the higher Pb level with the
presence of earthworms, significantly increasing some parameters such as aboveground
fresh biomass, leaf area and chlorophyll concentration.

At the same plant biomass condition, a higher Pb concentration was observed in
treatments with A. aspergillum; however, E. fetida enhanced the aboveground biomass
production, leading to a higher accumulation of this metal in the plant. Earthworm activity
favours Pb accumulation and concentration; nevertheless, the translocation factor (ratio
between xenobiotic concentration in aboveground and root plant tissues) indicates that the
metal remains at the root level, so B. campestris is not a good hyperaccumulator.

The addition of organic amendments is suitable for bioremediation processes as it
improves the soil’s physical, chemical and biological properties by supplying nutrients
and organic matter; consequently, these increase the survival and growth performance of
the organisms involved in the restoration. Naseer et al. [130] tested the vermiremediation
(E. fetida) and phytoremediation (Spinacea oleracea), alone or combined, with or without
the addition of cow and buffalo dung. An artificial soil was prepared for the tests and
contaminated with Pb, Cd and Cr. Cow dung is known for extending the phytoremediation
potential of plant species by supplying the necessary plant nutrients [131]. Furthermore,
CD creates favourable habitats for earthworms, improving parameters such as growth
rate, body weight and reproduction compared to buffalo dung, which has a reduced
content of organic matter. In general, the presence of E. fetida in soil reduced or mitigated
the effect of PTEs on S. oleracea. In particular, the strong influence of earthworms was
observable in trials with Cr contamination where treatment with plant alone showed no
germination, while the combination of plant + amendment + earthworm enhanced the
plant growth and seed germination. It was observed that the E. fetida bioaccumulation
factor was higher when vermiremediation and phytoremediation were jointly applied; also,
the metals’ accumulation efficiency of the plant increased in the combined treatments.

Additionally, Guo et al. [132] explored the interactive effects of E. fetida and CD on the
uranium (U) phytoextraction efficiency of two plant species (Brassica juncea and Helianthus
annuus). The combined application of the amendment and E. fetida resulted in a major
and significant increase of 53% in sunflower shoot biomass. Statistically, earthworms
have increased the U solubility, thus making it more bioavailable for plant uptake and
accumulation. Indeed, the total metal accumulation increased by 68.5% for Indian mustard
and 85% for sunflowers compared to treatments with plants alone.

Soil microorganisms are used in bioremediation because they bind, immobilise, oxidise,
transform and volatilise inorganic contaminants [133].

There is a symbiotic relationship between soil microorganisms and earthworms, which,
thanks to their burrowing activities, mucus and cast production, positively impact soil mi-
crobial properties [134,135]. The gut microbiota represents a unique ecological niche [136],
and it is the origin of the restoration capacity of earthworms [137]. Consequently, several
authors have recently investigated the effectiveness of bioaugmentation combined with
vermiremediation. El-Hassanin et al. [138] investigated the remediation capacity of E. fetida
and fungal bio-accelerators (Trichoderma harzianum, viride and Phanerochaete chrysosporium),
alone or in combination; the substrate was composed of sewage sludge and rice straw in dif-
ferent percentages, contaminated with Cd, Ni and Pb. As can be seen from Figure 4, the use
of E. fetida, individually or in combination, gave promising results; the highest percentage
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reductions for all analysed contaminants were found in treatment where the sewage sludge
and rice straw ratio was 1:1 (S3 + E + M) where (Cd 72%, Ni 67%, Pb 62%). Furthermore,
authors found a primary role of earthworms in increasing the metals’ available fraction
compared to the concentrations measured in the treatments with microorganisms alone.

Xiao et al. [139] evaluated the influence of Bacillus megatherium on the remediation
process of earthworms in Cd removal from artificially contaminated soils. In this study, the
combined treatment (S + E + M) had a Cd content at the end of the experiment statistically
lower than the soil treated with earthworms alone (S + E) (Figure 4), contradicting what
was observed by El-Hassanin et al. [138]. Microorganisms can enhance the metals’ bioavail-
ability in soil by altering pH, oxidation/reduction reactions and chelator ions [140]. The
use of B. megatherium probably stimulated the accumulation of Cd in earthworms, making
it more assimilable as a food source and leading to a 23.6% increase in tissue content.

From the selection of research articles for this review, only one work mixed the three
main bioremediation techniques, i.e., phytoremediation, vermiremediation and bioaug-
mentation, on soil contaminated with PTEs. Wang et al. [141] investigated the separate
and combined effects of Rhizophagus irregularis (arbuscular mycorrhizal fungi, AMF) and E.
fetida on the Cd restoration ability of Solanum nigrum. The positive effect of earthworms
was influenced by the different levels of Cd contamination (15, 30, 60, 120 mg kg−1), as E.
fetida improved plant growth by enhancing phosphorus absorption at high Cd concentra-
tions compared to low ones. The shoot biomass yield was greater in the presence of both
AMF and E. fetida, maybe because earthworm activities mitigate metal damage to these
microorganisms. Interestingly, AMF alone caused an increase in plant tissues’ Cd content
only at low and moderate contamination levels, while earthworms increased it at moderate
and high levels. Lastly, the results of this study demonstrated that the treatment with the
most significant impact on the phytoremediation abilities of S. nigrum is the combined one,
followed by R. irregularis and earthworm inoculation.

Biochar is a carbon-rich material obtained from biomass pyrolysis at high temperatures
(200 to 700 ◦C) under limited oxygen conditions [142]. Biochar can bind PTEs through
precipitation, complexation and ion exchange mechanisms [143]. To obtain a high-quality
organic fertiliser, some authors add different amounts of this amendment to improve the
vermicomposting process, achieving a product with an acceptable PTEs concentration.

A recent study by Ameen and Al-Homaidan [144] investigated the combined effects
of biochar and E. fetida on some PTEs (Cd, Cr, Cu and Pb) removal from sewage sludge.
Different concentrations of biochar were evaluated (O1 2%, O2 4% and O3 6%); however,
the 4% biochar treatment with earthworms (S + E + O2) appeared to be the most efficient in
lowering the PTEs concentration, with a reduction of Cd 55%, Cr 28%, Cu 30% and Pb 21%
(Figure 4). The substrate with the highest percentage of biochar (S + E + O3) was adverse to
earthworm fitness and remediation efficiency despite this amendment being recognised as
a stabiliser and sequester [145]; furthermore, treatments with only biochar (S + O1) did not
improve the reduction processes. Consequently, this study demonstrated that earthworms
are the real protagonists in the bioremediation of these inorganic contaminants.

Also, Khan et al. [146] evaluated the effect of different types of biochar applied at 10%
in a vermicomposting process on a base matrix composed of sewage sludge and kitchen
waste. The biochar from the poplar plant residues (PPB) was the most effective since the
concentration of all the metals analysed (Cr, Cu, Pb, Zn) decreased significantly compared
to the treatment without biochar, except for Cd. E. fetida bioaccumulated these elements
within its tissues, bringing to that decrease.

Xiao et al. [139] instead used agricultural topsoil as substrate, artificially contaminated
with Cd, to evaluate co-remediation effectiveness with 2% biochar and E. fetida (S + E + O).
In this case, the removal rate in the combined treatment (34.4%) did not statistically differ
from the one with earthworm alone (30.5%), as reported in Figure 4. However, Cd accumu-
lation in earthworm tissue increased by 13.1% in S + E + O, probably due to the ingestion
of metal-bound biochar particles.
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In conclusion, from the papers examined, it emerges that biochar helps the earthworm
in the bioremediation activity; however, attention must be paid to the application rate
because a high dose of biochar could be toxic for these organisms. Badhwar et al. [147]
performed an experimental study using paper mill sludge (PMS) by adding cow dung (CD)
and tea waste (TW) at different combinations with E. fetida.

For the authors, the best mixture in PTEs removal was PMS:CD in equal ratio (S2 + E),
followed by S1 + E (PMS:CD ratio 1:2) and S2 + E + O1 (PMS: TW:CD ratio 1:1:1). In fact, as
observable from Figure 4, the S2 + E treatment showed the highest reduction percentage
for Cd (58.21%), Cu (79.83%), Ni (81.9%) and Pb (83.48%).
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et al., 2021 [139], Ameen et al., 2022 [144]; Kumar et al., 2022 [147]).

3.4. Combined Vermiremediation for Organic Pollution

In this chapter, ten articles were analysed, six of which were reworked, as shown in
Figure 5.

Ghavidel et al. [148] studied the efficiency of the co-application of E. fetida and Lolium
perenne in agriculture topsoil contaminated in a laboratory test with anthracene, a model
compound for PAHs. Earthworms alone reduced the amount of contamination by 40%,
while plants gave significantly higher results (81%, S + P). However, as seen in Figure 5,
earthworm-assisted phytoremediation gives the best results, decreasing 92% (S + E + P) of
the anthracene in the soil.
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This research article reported that ryegrass and E. fetida have a mutualistic relationship.
The plant presence was beneficial in contaminated treatments for the earthworm survival
rate, which was statistically more relevant than in the S + E treatment. The excavation
activity of these organisms raised soil porosity and aeration, favouring plant dry biomass
in general; specifically, the root extension demonstrated a significant increase with or
without contamination.

Also, Alves et al. [149] investigated the effect of joint application of bio-techniques,
using plant (Pennisetum clandestinum) and earthworm (E. andrei) versus hydrocarbon con-
tamination. The substrate employed was a compost obtained after six months of aerobic
composting process of hydrocarbon-contaminated waste food industry sludge and shred-
ded plant material. The bioassay results with plants and earthworms are reported in
Figure 5. In the S + P treatment, a significant TPH reduction of 9.3% was observed, which
becomes superior (15.2%) in the joint treatment (S + E + P). The reduction observed in the
combined treatment may be due to the transfer of TPHs in the earthworm body to the
plant’s rhizosphere, where these pollutants were degraded in the best way [150].

Another recent study conducted in Italy [151] used the earthworm–plant strategy
as a restoration technique. This combined process was tested on soil taken from the na-
tional priority site of Brescia-Caffaro, which is over-limit contaminated by polychlorinated
dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). The
study found that plants and earthworms had a weak bioremediation effect compared to
treatments with only soil; moreover, in this case, earthworms and plant interaction seems
to reduce the positive impact of each other alone. These negative results may be related to
the low bioavailability of PCDD/Fs and PCB, the insufficient experiment length and the
number of E. fetida individuals. Furthermore, due to their excavation activity, earthworms
may contribute to a higher contaminant concentration in percolated water; accordingly,
attention must be paid to the fate of these pollutants under field conditions.

The purpose of Ahmed et al. [152] was to investigate the effect of L. terrestris (at
5 and 10 earthworms kg−1 soil, E1 and E2, respectively in Figure 5) and a consortium
of three bacteria (Corynebacterium sp., Sphingobacterium gobiense and Kocuria flava) on the
percentage removal of chlorpyrifos insecticide from the soil. The bacteria consortium alone
(S + M) showed the highest effect on the reduction percentage (73.83%), followed by their
combination with a high density of earthworms (71.22%, S + E2 + M). The lowest rates of
bioremediation were recorded in treatments with L. terrestris alone, either at high or low
densities; however, both organisms employed gave promising results in the degradation
of chlorpyrifos.

Koolivand et al. [153] inoculated an immature compost with hydrocarbon-degrading
bacteria (S + M) and E. fetida (S + E), individually and in combination (S + E + M). The
matrix was artificially contaminated with different amounts of petroleum oily sludge to
obtain three levels of TPHs pollution (5, 10 and 20 g kg−1). As can be seen from Figure 5,
treatments with the microbial consortium were effective for all concentrations tested,
demonstrating high tolerance and resistance. Earthworms, instead, were more sensitive
to this contaminant and showed a dose-dependent mortality; the reduced removal rate is
statistically visible in S + E compared to S + M at 20 g kg−1. The constantly higher reduction
percentages (91.2%, 90.9%, 85.35%) in combined treatments proved the synergistic effect of
E. fetida and microorganisms.

The nanomaterials are defined as particles of 100 nm or less in at least one dimension and
represent an innovative strategy suitable for remediating either organic or inorganic contami-
nated sites [154,155]. A 28-day microcosm experiment [156] was conducted using the nano
zerovalent iron (nZVI) and earthworms to remediate an agricultural soil contaminated by a
mixture of three representative polychlorinated biphenyls (PCBs): 2,4,4′-Trichlorobiphenyl
(PCB28), 2,2′,5,5′-tetrachlorobiphenyl (PCB52) and 2,2′,4,5,5′-pentachlorobiphenyl (PCB101).
The bioaccumulation of PCBs in E. fetida reached equilibrium after 14 days of exposure;
the accumulation was rapid, and no mortality was recorded, indicating a high endurance
of earthworms to these compounds. The addition of nanomaterials to the substrate sig-
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nificantly increased the concentration of PCBs in E. fetida, reaching over 60 mg kg−1 in
tissues, compared with a maximum accumulation of 55.3 mg kg−1 in the absence of nZVI.
In conclusion, nanomaterials could be a good solution for enhancing earthworms’ vermire-
mediation potential.

The efficiency of vermiremediation is limited by the low bioavailability of PAHs and
their biotoxicity [157]. Therefore, surfactants could be a promising method to improve the
earthworms’ accessibility to these low-soluble and recalcitrant compounds [158]. Surfac-
tants are amphipathic substances capable of absorbing and altering the conditions of the
interfaces [159] and are widely used in remediation technologies. However, the role of these
helpers in vermiremediation has rarely been studied. Shi et al. [160] used Tween-80 (20,
100 mg kg−1) and rhamnolipid (25, 100 mg kg−1) surfactants in contaminated fluoranthene
soil (25, 50 mg kg−1). Both Tween-80 and rhamnolipid significantly increased the biocon-
centration of fluoranthene in E. fetida by 35–64.1% and 34.5–44.2%, respectively. These
results proved that surfactants promote the earthworms’ pollutant uptake, intensifying
fluoranthene bioavailability. Surfactants statistically reduced residual PAH in the soil in
all treatments; however, it emerged that this attitude is closely related to the surfactant
level, which should be added at an optimal concentration. For example, at 50 mg kg−1

of fluoranthene, the lowest dose of rhamnolipid gave better removal results than the
highest dose.

Zhen et al. [161] added biochar as a helper to vermicompost, contaminated with di-(2-
ethylhexyl) phthalate (DEHP), to verify its impact on the earthworm restoration process. In
the present study, biochar and E. fetida, either alone or combined, significantly enhanced the
DEHP degradation compared to treatment with only soil. The best results were obtained
by treatment with earthworm alone, followed by combined and biochar ones.

Also, Cuevas-Díaz [162] used an organic soil amendment, palm oil bagasse, to increase
the bioremediation activity of Pontoscolex corethrurus, in soil artificially contaminated by
TPH from heavy crude “Maya” oil. All biological-added treatments showed significant
percentages of TPH reduction compared to S (Figure 5). The higher removal was found
in the combined treatment (S + E + O) with a 39.6% value, followed by S + O (32.6%) and
finally S + E (29.7%). In the presence of the amendment, P. corethrurus final biomass was
2.7 times higher, probably due to the richest nutrients availability. However, attention must
be paid to the number of earthworms used since this species can lead to soil compaction,
producing large coalescent aggregates if present at high densities [163].

From 2018 to today, only one study has evaluated the synergistic effects of the three
main bioremediation techniques on soils contaminated by organic pollution. Rodriguez-
Campos et al. [164] performed an experiment to evaluate the TPHs and its components
(PAHs and alkanes) removal testing the earthworm P. corethrurus, a bacterial consortium
and the plant Panicum maximum, individually or combined. The S + E + M combination had
the highest TPHs reduction efficiency of 86.4%, followed by the S + E + P + M combination,
which removed 82.7% in 112 days (Figure 5). Microorganisms improved the effects of
earthworms and grass on hydrocarbons. Most alkanes and PAHs removal occurred within
28 days and then slowed down and generally followed the restoration trend observed
for TPHs. The total plant biomass resulted significantly superior (2.6 times) in the joint
application of bioremediation techniques compared to P. maximum grown on non-polluted
soil, demonstrating that soil organisms exert a solid, beneficial effect, even under contami-
nated conditions. Interestingly, the earthworms and plants used in this study were taken
directly from the contaminated site, showing original adaptability to TPHs; especially,
Hernández-Castellanos et al. [165] found that P. corethrurus is the dominant earthworm in
oil-contaminated sites, suggesting tolerance and potential in soil remediation.

Furthermore, the authors conducted a parallel experiment sterilising the soil; no
earthworms survived at the end of the experiment, showing the pivotal, mutual interactions
between soil microorganisms and earthworms.
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3.5. Combined Vermiremediation for Co-Contamination Pollution

Unfortunately, cross-contamination with inorganic and organic xenobiotics of several
environmental matrices is a widespread and dangerous condition that needs to be studied
in depth.

Urionabarrenetxea et al. [166] conducted an in-depth study on natural soil contami-
nated by PTEs (Cd, Cr, Pb and Ni) and organic compounds (Dieldrin and Benzo(α)pyrene).

Ecotoxicological tests were first conducted on this matrix to understand the appli-
cability of the proposed bioremediation techniques, which were then applied, i.e., ver-
miremediation (with earthworms E. fetida), phytoremediation (using Medicago sativa) and
bioaugmentation (Burkholderia xenovorans LB400 and Paenibacillus sp. Burkholderia xen-
ovorans LB400 strain). These techniques were applied individually and in all possible
combinations (double or triple) in situ.

From integrating the ecotoxicological endpoints and the chemical characterisation of
the substrate after the twelve-month treatment, the authors measured the better remedia-
tions in combined treatments and, above all, in the triple application (E + P + M) for all
the contaminants studied. More important reduction percentages were found for Dieldrin
(50–78%), followed by PTEs (maximum reduction for Cd, Cr, Pb and Ni of 35%, 39%, 33%
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and 37%, respectively) and, finally, to a lesser extent for the PAH Benzo(α)pyrene (maxi-
mum reduction of 28%). The E + P + M combination proved to be the winning strategy,
showing results with less variability.

Another study that considers co-remediation techniques on soil always contaminated
by an organochlorine insecticide (lindane) and Cr is that of Lacalle et al. [167]. In this
work, several bioremediation approaches (vermiremediation with E. fetida, phytoreme-
diation with Brassica napus and Bioaugmentation with Streptomyces sp. M7, Streptomyces
sp. MC1, Streptomyces sp. A5 and Amycolatopsis tucumanensis strain) were tested alone or
in combination on two natural soils that differed mainly in organic matter content (OM):
1% (unamended soil; U) and 2.6% (amended soil; A). Regarding the organic contaminant,
it has been noted that this was generally less degraded in soil A, where it has been less
bioavailable for biodegradation due to its links with organic substances and probably
because the microorganisms prefer to consume the OM rather than the pesticide. On the
other hand, regardless of the concentrations tested (100 and 300 mg kg−1), OM decreased
the toxicity of hexavalent chromium, reducing it to Cr (III). The authors [167] observed how
combining E. fetida or B. napus with the consortium of actinomycetes gave better results
in reducing both studied xenobiotics. Still, the highest efficiency was found if the three
bioremediation techniques were combined.

The same soils (U and A) and contaminants (lindane and Cr) were employed by
Aparicio et al. [168] to evaluate the remediation capacity of nano remediation techniques
with nZVI alone or in aid of the combined previously discussed (E + P + M + nZVI).

Again, the tests confirmed how much organic matter (OM) affects the fate of contam-
inants in the soil, together with the intrinsic characteristics of the xenobiotics, favouring
the reduction of inorganic contaminant, while it disadvantages the biodegradation of the
insecticide beyond the tested concentrations.

Treatment with nZVI, either alone or applied in combination with other bioremediation
techniques, was found to be the most efficient in reducing Cr(VI) to its less toxic form
(Cr(III)), with protecting effects on plants and earthworms. The most efficient degradation
of lindane was obtained with combined bioremediation (E +P + M). Still, this efficiency
can mainly be attributed to the activity of the microbial consortium, considering that Cr
exerted toxicity on plants (i.e., 100% mortality in soil U) and earthworms (50 and 100% in
tests with Cr at 100 and 300 mg kg−1, respectively). The authors recommend the use of
the complete combination (E + P + M+ nZVI) in the case of high contamination of Cr and
lindane, while at moderate levels of chromium pollution, they suggest the application of
bioremediation techniques as more economically and environmentally sustainable.

A synergy of help between plants and their root exudates, earthworms and microor-
ganisms activities was assessed by the studies regarding the health status (i.e., biomass
and survival rate) of all the organisms. Earthworm fertility indices (i.e., the cocoons and
juveniles’ production and vitality) or root elongation and photosynthetic pigments mea-
surements in plants and specific microbial parameters such as functional diversity and
respiration were stimulated by their contemporary presence in E + P + M treatments.

4. Conclusions

To summarise considerations on the bioremediation efficiency and highlight critical
issues, a careful analysis of the literature dealing with vermiremediation was performed.

It was found that vermiremediation alone to remediate inorganic contamination is
conducted on sludge waste from industrial activities or waste management processes. Re-
garding remediation from organic contaminants (mostly TPHs, pesticides and antibiotics),
different species of earthworms were tested, often selected from among the autochthonous
ones. Noteworthy, only two papers used vermicast instead of the earthworm directly,
obtaining good results (improves soil fertility by promoting biodegradation of pollutants).
When the reviewed articles tested various combinations of bioremediation, the most used
earthworm species was E. fetida, regardless of the nature of the contaminant (inorganic
or organic).
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From the evaluation of the articles, the following main conclusions emerged:

- Vermiremediation alone should be considered, especially in conditions of limited
contamination, which allows the survival of earthworms regardless of the species and
type of contaminant.

- In the case of vermiremediation to restore PTEs pollution, the solutions in which ma-
nure is added to the substrate as an organic amendment gave better remediation results.

- When vermiremediation is applied for organic pollutants, the results are highly vari-
able and extremely dependent on the contaminant and the species studied.

- The combination of several strategies improves the effectiveness of remediation and
allows working with high contamination. Despite the contaminant, plants, earth-
worms and microbes stimulate each other and establish symbiotic relationships even
in decontamination processes.

To conclude, some gaps and prospects in this research area have emerged:

- The use of native species (earthworms, plants and microorganisms) adapted to the
contamination of the study site should be increased.

- To understand and identify the most promising combinations, experimental designs
should consider comparisons between different species and levels of contamination.

- Few works deal with substrates affected by simultaneous contamination of organic
and inorganic pollutants, a very frequent situation; therefore, implementing these
studies is hoped for.

- The addition of amendments as a nutrient supply must be carefully evaluated in the
case of contamination by organic xenobiotics, seeking the proper dosage to favour
earthworm activity but, at the same time, not affect the biodegradation capacity.
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