
Citation: Sun, D.; Zhang, L.; Jin, K.;

Ling, J.; Zheng, X. An Intrusion

Detection Method Based on Hybrid

Machine Learning and Neural

Network in the Industrial Control

Field. Appl. Sci. 2023, 13, 10455.

https://doi.org/10.3390/

app131810455

Academic Editor: Gianluigi Ferrari

Received: 5 September 2023

Revised: 13 September 2023

Accepted: 16 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Intrusion Detection Method Based on Hybrid Machine
Learning and Neural Network in the Industrial Control Field
Duo Sun, Lei Zhang *, Kai Jin, Jiasheng Ling and Xiaoyuan Zheng

School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300132, China;
202132803145@stu.hebut.edu.cn (D.S.); 202132803089@stu.hebut.edu.cn (K.J.);
202232804040@stu.hebut.edu.cn (J.L.); 2021019@hebut.edu.cn (X.Z.)
* Correspondence: zhanglei@hebut.edu.cn

Abstract: Aiming at the imbalance of industrial control system data and the poor detection effect of
industrial control intrusion detection systems on network attack traffic problems, we propose an ETM-
TBD model based on hybrid machine learning and neural network models. Aiming at the problem of
high dimensionality and imbalance in the amount of sample data in the massive data of industrial
control systems, this paper proposes an IG-based feature selection method and an oversampling
method for SMOTE. In the ETM-TBD model, we propose a hyperparameter optimization method
based on Bayesian optimization used to optimize the parameters of the four basic machine learners in
the model. By introducing a multi-head-attention mechanism, the Transformer module increases the
attention between local features and global features, enabling the discovery of the internal relationship
between features. Additionally, the BiGRU is used to preserve the temporal features of the dataset,
while the DNN is used to extract deeper features. Finally, the SoftMax classifier is used to classify the
output. By analyzing the results of the comparison and ablation experiments, it can be concluded
that the F1-score of the ETM-TBD model on a robotic arm dataset is 0.9665 and the model has very
low FNR and FPR scores of 0.0263 and 0.0081, respectively. It can be seen that the model in this paper
is better than the traditional single machine learning algorithm as well as the algorithm lacking any
of the modules.

Keywords: industrial control system; machine learning; neural networks; intrusion detection

1. Introduction
1.1. Research Background

With the rapid development of the internet, the in-depth integration of informati-
zation and industrialization has been promoted, leading to the birth of the industrial
internet platform. This integration has brought both opportunities and challenges. The
Industrial Control System (ICS) is a management and control system composed of various
programmable logic controllers (PLC) and real-time data collection systems [1]. As the
scope of application of industrial control systems continues to expand, they have been
applied to various important national infrastructures and people’s livelihood service facili-
ties [2]. For example, starting from 7 March 2019, a large-scale power outage occurred in
Venezuela that lasted for 6 days, setting a new record for the largest power outage in the
world so far. Among the 23 states in Venezuela, 20 states had a total power outage at one
point. The power outage caused the Caracas Metro to fail to operate, causing large-scale
traffic congestion. Schools, hospitals, factories, airports, etc. were seriously affected, and
mobile phones and the internet were also unable to work and be used normally. After the
Venezuelan power outage, through the relevant analysis of the industrial control network
system before and after the Venezuelan power outage, it was found that all data of the
industrial control network system changed significantly after the power outage. As a result,
it has been suggested that this was the result of an unspecified cyberattack. These cyberat-
tacks caused widespread damage to Venezuela’s electrical system by directly injecting an
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attack code. The large-scale power outage has brought heavy losses to Venezuela, and it
has also served as a serious warning to countries around the world, including China, that
there must be no slack in safeguarding the security of the country’s critical infrastructure.
The security of industrial control network systems has become the nerve center of critical
infrastructure and even the entire economic society. Major security incidents can lead
to the paralysis of energy, transportation, communication, finance and national defense
infrastructure, resulting in catastrophic consequences and seriously endangering national
security and public interests.

Intrusion detection, as the second line of defense in the defense in-depth strategy of
the industrial control system, is a necessary supplement to the firewall [3]. As an important
part of the industrial control system, intrusion detection can monitor network traffic and
system behavior, detect and prevent potential attacks in time, and ensure the security and
stable operation of industrial control systems [4]. The resulting network intrusion detection
technology recognizes and classifies network traffic, discovers malicious intrusion traffic
in time and reports it to users to remind users to take further measures to prevent major
security incidents. However, due to the continuous growth of the scale of the internet, the
network traffic has also shown explosive growth, and its dimensional characteristics have
become more and more complex. Therefore, improving the accuracy of detecting malicious
traffic and efficiently distinguishing different types of malicious traffic has become a top
priority [5,6].

1.2. Related Works

Machine learning and neural network models have achieved good research results
in the fields of natural language processing and image recognition. They are gradually
applied to intrusion detection in industrial control systems due to their ability to mine
high-dimensional and large-scale data [7–9].

Kanna, P.R. identifies attack patterns by detecting and analyzing signatures [10]. An
efficient hybrid IDS model is presented which is built using a MapReduce-based Black
Widow Optimized Convolutional-Long Short-Term Memory (BWO-CONV-LSTM) network.
The time complexity of the BWO-CONV-LSTM network in parameter optimization is too
large and the time cost is larger than the training cost of this paper’s model for machine
learning. Foley, J. proposes that anomaly-based recognition links consumer actions to
predetermined states to detect suspicious behaviors that may be intrusions, but this method
often has significant false positive scores [11]. Machine learning has been analyzed in the
literature only for cyberattacks on a single dataset, but he has the advantage of being able
to analyze for growing datasets, which is an incremental learning process. Vinayakumar,
R, based on hybrid detection technology, used multiple detection methods to improve the
performance of specific methods, which can reduce the false positive rate and provide
effective detection [12]. The literature explores a deep neural network-based model to
deal with unforeseen and unpredictable cyberattacks. However, our goal in this task is to
improve the detection rate against known attacks, so the deep learning model proposed in
the literature is slightly slower in terms of training speed. Peng, W. proposed an IDS based
on deep AE and ML methods, which was greatly improved in terms of accuracy and time
complexity compared with the algorithms at that time [13]. The literature does not go far
enough in feature extraction. Many redundant features are not avoided, which leads to
excessive complexity in model training as well as reduced accuracy. Othman, S.M. adopted
the fundamentals of AE to introduce a multiphase model, incorporating the ID convolution
operation and stacked layers. Two different AEs were trained and evaluated using normal
flow and attack flow [14]. The literature has mainly investigated performance for training
on large data, which is not quite in line with the goals of our task. This is because the
amount of data in the network traffic of industrial control systems is often not particularly
large. And when dealing with small sample data, the SVM classifier does not classify as
well as when dealing with large data. Lv, H. proposed a new data enhancement algorithm
for DDoS attacks [15]. The literature mainly addresses the problem of unbalanced datasets
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in the face of DDoS attack types. In dealing with unbalanced datasets, it is similar to
our task. In this paper, we also draw on SMOTE-based ideas to deal with unbalanced
datasets. Chen, C. proposed an SCV-GA-WELM intrusion detection model for the problem
of poor detection in unbalanced environments. They use SCV to ensure consistent data
distribution for all subsets to avoid the data imbalance problem [16]. Kilichev, D. has
conducted a comprehensive study on the hyperparameter optimization of 1DCNN models.
They used two well-established computational methods, GA and PSO, to optimize all nine
hyperparameters in the model and evaluated their performance on three different datasets.
They demonstrated the importance of hyperparameter optimization in training intrusion
detection models [17]. Yang, H. also makes an outstanding contribution to solving the
imbalance problem of sample classes. They proposed an SPE-ACGAN-based generative
adversarial network model to oversample the minority class samples and undersample the
majority class samples based on SPE [18].

In this paper, we propose an SMOTE-based oversampling method for unbalanced
data. This is the more mainstream way to deal with the data imbalance problem nowadays.
Further, we propose a hybrid machine learning and neural network model, which is a
newer approach in the field of network intrusion detection. In the next subsection, we will
show the main contribution points of this paper in detail.

1.3. Main Contributions

The contributions of this paper are mainly categorized into the following three points:

1. This paper proposes the IG-based feature selection method and SMOTE method,
which effectively reduces the dimensionality of massive data and solves the problem
of data imbalance [19–21];

2. We propose the ETM-TBD intrusion detection model to improve the efficiency and
accuracy of detecting potential security threats. We propose some neural network
models on top of the machine learning base model to further optimize the accuracy of
the model;

3. We propose a neural network model based on Transformer and BiGRU [22] mod-
els, which improves the attention between local and global features, preserves the
temporal features of the original data, and effectively improves the accuracy of the
model.

2. Materials and Methods
2.1. Dataset Introduction

The dataset in this paper is collected from an industrial robotic arm control laboratory
in March 2023. This dataset collects hundreds of thousands of samples, including data on
normal system operation, data on DDoS attacks, and scene data of other types of attacks.

In general, the dataset contains 78 columns and 1,048,575 rows (704,402 are scene
samples where the system is not under attack during normal operation, 4064 are scene
samples where the system is subjected to violent intrusion, 338,326 are scene samples where
the system is attacked by DDoS, 56 are scene samples where the system suffers from SQL
injection attacks and 1727 are scene samples where the system suffers from XSS attacks), as
shown in Table 1.

Table 1. Initial dataset details table.

Type Records Percentages

BENIGN 704,402 67.18%
Brute Force 4064 0.39%

DDoS 338,326 32.27%
Sql Injection 56 0.005%

XSS 1727 0.16%
More detailed data processing will be shown in Section 4.2.
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Firstly, the raw data is standardized and normalized into a dataset with a small range
of numerical fluctuations. In addition, because the labeled data of the dataset is string
type data, we need to character encode it into five numerical types such as 0, 1, 2, 3, 4, etc.,
and the numerical types correspond to the string type data, respectively. In addition, we
performed an IG-based feature selection process for 78 columns of data features, and finally
selected 20 columns of the most effective and basically nonredundant feature data. For less
sample data, we propose SMOTE-based methods to avoid class imbalance. Finally, the data
was divided into training and testing sets—80% of the data was used for training and 20%
for testing. The training set data was randomly shuffled to improve the effectiveness and
robustness of the training.

2.2. Feature Engineering

Generally, we generate a high-quality and representative subdataset through data
preprocessing. Then, we can remove some redundant features from the dataset using
feature engineering works, which make the model training more accurate and efficient. The
model in this paper first proposes to remove irrelevant features after the preprocessing work
using an integrated feature engineering method consisting of Information Gain (IG) [23]
and Fast Correlation-Based Filter (FCBF) [24] to retain the important features.

(1) Information Gain (IG): The IG algorithm is a commonly used feature selection
method to select important features. IG indicates the amount of information obtained or
entropy change, which can be used to measure how much information a feature can bring
to the target variable. Moreover, the time complexity of the IG algorithm is O(n), and it can
quickly obtain the importance score of each feature, so we believe that the IG algorithm is
well suited to our preconceived ideas in the feature engineering phase. We can calculate
the importance score for each feature. This will help us to select some features that are
most relevant to the detection task. Assuming that T is the target variable, for each feature
represented by the random variable X, the IG value of the feature X is represented by (1):

IG(T | X) = H(T)− H(T | X) (1)

where H(T) is the entropy of the target variable T, and H(T|X) is the conditional entropy of
T|X.

(2) Fast Correlation-Based Filter (FCBF): Although the IG-based feature selection
method can remove some unimportant features while guaranteeing a low time complexity,
we can still find many redundant features that are not removed. Feature redundancy may
increase the time complexity and space complexity and also increase the probability that
the model will be misled by the redundant data. In that case, the performance of our
model may be degraded and may also increase the risk of overfitting. Therefore, we will
introduce the FCBF algorithm to solve the above problem. We remove the redundant
features by calculating the correlation of the input features, which can help to improve
the performance and efficiency of the model. In FCBF, the symmetric uncertainty (SU) is
calculated to measure the correlation between features by normalizing the IG value, as
shown in Formula (2):

SU(X, Y) = 2
IG(X | Y)

H(X) + H(Y)
(2)

SU(X,Y) is in the range [0,1]; a value of 1 means that the two features of X and Y
are completely correlated, and a value of 0 means that the two features are completely
independent. The FCBF algorithm searches for features in the feature space according to
the SU value of the feature space until the entire feature space is searched. We will consider
highly correlated features as redundant and keep only one of them. In the proposed
FCBF algorithm, the SU value of each pair of features is calculated as their correlation. The
correlation threshold α is optimized by BO-GP [25]. The BO-GP is a Gaussian Process-based
Bayesian Optimization algorithm for solving the global optimal solution of a black-box
function. The principle of BO-GP algorithm is to approach the global optimal solution step
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by step by continuously evaluating the objective function and adjusting the position of the
next evaluation according to the evaluation result. When the correlation value between
two features is greater than α, the feature with higher feature importance is retained, and
the feature with lower feature importance is discarded. Repeat the correlation calculation
and feature rejection process until every pair of features in the feature list is not highly
correlated (SU <= α). In this paper, the model combining the IG algorithm and the FCBF
algorithm is called IG-FCBF.

2.3. Machine Learning Tree

After the data preprocessing work and feature engineering work, we can obtain a
highly representative subdataset. An integrated machine learning tree model proposed
in this paper will train the obtained dataset to train a signature-based intrusion detection
model. In the proposed signature-based intrusion detection model, four tree-based machine
learning algorithms, Support Vector Machine (SVM), Random Forest (RF), Extra Tree (ET)
and Extreme Gradient Boosting (XGBoost), are selected as the basic learners [26–28].

The main idea of SVM is to divide the dataset into two classes by finding an optimal
hyperplane and finding a maximum interval between the two classes after division, which
makes the model more generalizable and robust. The RF algorithm is an ensemble learning
model that combines multiple decision tree classifiers using majority voting rules. The
ET algorithm, on the other hand, combines random collections of decision trees built on
different subsets of the dataset. The XGBoost is an algorithm based on gradient-boosting
decision trees, designed to improve speed and performance. Obviously, for RF, ET and
XGBoost the hyperparameters of DT are also their important hyperparameters. And they
all have a basic hyperparameter that needs to be adjusted, which is the number of basic
DTs built for each model—n estimator. These parameters have a very important impact on
the performance of the model. In addition, XGBoost has a hyperparameter called learning
rate, which determines the speed of convergence.

We set the number of instances to be n, the number of features to be f, and the number
of DTs in the integrated model to be t. Then, the time complexities of RF, ET and XGBoost
are O(n2

√
f t), O(n f t) and O(n f t), respectively. In the training phase, the time complexity

of SVM is usually O(n3), and in the testing phase, the time complexity of SVM depends
mainly on the number of support vectors, which is usually O(k f ), where k is the number
of support vectors.

In this paper, we will first train these four base tree models and then further stack
them using integrated learning to improve the model performance. Stacking is a standard
ensemble learning technique. With stacking, information from four base learners can be
learned simultaneously, thereby reducing the error of a single learner and obtaining a more
reliable and robust metaclassifier. In this paper, we use the output labels of the four basic
learners (SVM, RF, ET and XGBoost) as the input features of the integrated model. Thereby,
we can train a more robust metalearner that can be used to further improve the recognition
accuracy.

2.4. Transformer Module

We know that the original model of the Transformer model includes both encoding
and decoding parts. But due to the intrusion detection, traffic is characterized by the length
of each datum which is of fixed length. Therefore, we have conducted it in our proposed
model mainly based on the encoding part of Transformer model and modified some of his
parameters [29]. This part includes a multihead attention mechanism and a feed-forward
neural network. The attention mechanism in dot product attention contains three inputs
which are query, key and value. The Transformer model computes the weight scores for
each feature using query and key, and then computes the weighted sum of the weights and
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values for each feature to obtain the output. Using point active attention can be operated in
parallel to reduce training time. Its calculation Formula (3) is as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (3)

In Formula (3), Q, K and V represent the three matrices of Query, Key and Value,
respectively, and dk is the dimension of Key. In this paper, in order to enrich the extracted
features, a multihead attention structure is used. The calculation Formulas (4)–(6) of
multihead attention are as follows:

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i , i = 1, . . . , n (4)

headi = Attention(Qi, Ki, Vi), i = 1, . . . , n (5)

MultiHead(Q, K, V) = Concat(head1, . . . , headn)WQ (6)

Since the GELU activation function involves an error function (erf), and the error
function is a nonlinear function, noise will be introduced. In some cases, introducing
output randomness can be beneficial, as it can help the neural network explore more
solutions and avoid overfitting. Therefore, using the Gaussian error linear unit activation
function GELU as the activation function increases randomness, as shown in Formula (7):

GELU(x) = 0.5x(1 + tanh(
√

2/Π(x + 0.0444715x3))) (7)

2.5. BiGRU-DNN Module

The Gated Recurrent Unit network (GRU) is a cyclic neural network RNN that solves
the loss of long-distance information [30–33]. It is mostly used to process timing information
and solve the problems of gradient explosion and gradient disappearance in the RNN
structure. The most important thing is that it can memorize the information effectively and
give up the memory of redundant information. The Bidirectional Gated Recurrent Unit
network (BiGRU) is composed of a forward GRU and a reverse GRU, which contains all the
information of the forward and backward directions, and its structure is shown in Figure 1.
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Firstly, the data is fed into the Forward Network and the Backward Network through
the Input Layer. After being processed by the Forward Network and the Backward Network,
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the data is spliced in the Output Layer. The results after the Forward Network and the
Backward Network processing will be used as inputs to the next layer of the proposed
model. In this paper, the output dimension of the BiGRU model will be set as two times
the input dimension. This can effectively reduce the complexity of the model. Its output is
shown in Formula (8):

hi = [
→
hi,
←
hi] (8)

The
→
hi,
←
hi in Formula (8) denote the results after processing of the Forward Network

and the Backward Network, respectively.
Deep neural network (DNN) model is an ordered combination of multiple perceptual

machines and is a commonly used deep learning network, which is also called Multilayer
perceptron. In this paper, the DNN model is used to fit the output of the previous layer.
In this model, DNN has two hidden layers and uses RELU as the activation function. The
general Formula (9) for DNN calculation is as follows:

f (x) = σ(WX + b) (9)

3. Proposed Model
3.1. Algorithm Overview

In the field of industrial control security, machine learning can effectively process a
large number of network data packets and analyze the massive data, which in turn can be
mined for potential correlations and patterns between network data. However, machine
learning also has obvious limitations that it requires a large amount of data for training
and optimization. If the amount of data is insufficient or the quality is not good, it may
lead to a decrease in the accuracy and generalization ability of the model. The Transformer
module and the introduced BiGRU and DNN models will solve the problem of the weak
generalization ability of machine learning when processing a small number of samples.
They can highlight the attention between different features and between local and global
features and tap into the intrinsic connections between features.

Therefore, this paper proposes a hybrid machine learning and neural network model
for an ETM-TBD intrusion detection model. In the following subsections, we will describe
the model in detail.

3.2. Model Structure and Algorithm Flow

In this paper, we propose an ETM-TBD intrusion detection model, shown in Figure 2.
The model mainly consists of four parts: an Ensemble Tree Models module, a Transformer
module, a BiGRU module and a DNN module. The Ensemble Tree Models module adopts
the integrated learning model that stacks four basic machine learning trees. In this paper,
four tree-based machine learners, namely SVM, RF, ET and XGBoost, are first trained and
the individual machine learners are optimized with the BO-GP method. Then, the outputs
of four basic machine learning trees for learning are integrated using a stacked integration
model, and the results are then optimized by the BO-GP method, and the stacked integrated
model is used as the first layer of the ETM-TBD model. We then input the results of the
integrated machine learning tree as new features into the processed data. The Transformer
module is trained on the newly constructed data to establish relationships between the
different features. Afterward, the BiGRU neural network is used in conjunction with the
Transformer model to obtain the connection between the front and rear features. The
proposed DNN model further extracts the features, and the last layer of the model uses a
SoftMax classifier to identify and classify the features to obtain the results.
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Figure 2. ETM-TBD model.

The overall framework of the proposed ETM-TBD model is shown in Figure 3, and
the algorithm flow is as follows. The first step is the data preprocessing work, where the
partitioning of the training and test sets is performed. Next comes the training module,
which is in the lower left position in the figure. The detailed steps of the ETM module and
TBD module are shown in the upper right and lower right corners of the figure. The results
of the ETM model will be parameter optimized using the BO algorithm, and in the next
step, it will be trained with a mixture of TBD models. And the BO module in the top-right
corner of the figure is used to interpret the Bayesian Optimization model (BO) in the ETM
module.
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The modules in the flowchart will be described in detail next.
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(1) Z-score normalization: The range of values of the raw data collected through
the industrial control system is very large. We cannot directly process the raw data di-
rectly because it may trigger the problem of gradient explosion. Therefore, we will use
normalization to scale each feature dimension of the raw data to between −1 and 1.

(2) K-means: The K-means clustering algorithm is used for data sampling. In order
to improve the efficiency of model training, data sampling is a commonly used technique,
which can generate a subset of the original data. It will randomly select a portion of the
data in each category labeled data and then uniformly integrate it into a new subdataset.
The k-means algorithm can well reduce the time complexity of training.

(3) Feature selection: Obtaining an optimal feature list through proper feature engi-
neering can also improve the quality of the dataset. Then, we can remove some redundant
features from the dataset by appropriate feature engineering, which can make the model
training more accurate and efficient. In this paper, we propose the method based on
IG-FCBF to extract effective features.

(4) ETM module: After the data preprocessing work and feature engineering work,
we can obtain a highly representative subdataset. An integrated machine learning tree
model proposed in this paper will train the obtained dataset to train a signature-based
intrusion detection model which is called ETM model. Using the output labels of four basic
learners (SVM, RF, ET and XGBoost) as input features, a powerful metalearner is trained
for further prediction. Using stacking, the information of four base learners can be learned
simultaneously, thereby reducing the error of a single learner and obtaining a more reliable
and robust metaclassifier.

(5) BO module: Hyperparameter optimization (HPO) is the process of using an opti-
mization algorithm to build an optimized machine learning model for a specific problem or
dataset. Bayesian Optimization (BO) algorithms are a set of efficient HPO algorithms that
determine the next hyperparameter value based on previous evaluation results. Therefore,
in this step we optimize the parameters of each single module of the ETM model as well as
the integrated ETM model using the BO algorithm.

(6) Transformer module: The results of the ETM model are input into the processed
data as a new feature. The Transformer module is trained on the newly constructed data to
establish relationships between the different features.

(7) BiGRU-DNN module: We will propose a hybrid model called a TBD model, which
is an integration of the Transformer model, BiGRU model and DNN model. The BiGRU
neural network is used in conjunction with the Transformer model to obtain the connection
between the front and rear features. The proposed DNN model further extracts the features
and the last layer of the model uses a SoftMax classifier to identify and classify the features
to obtain the results.

4. Experiment
4.1. Experiment Settings

Experiments are coded based on the PyTorch framework. The platform used is
PyCharm 2022.1 × 64, the operating system is Windows 11, and the hardware device
used is NVIDIA GeForce RTX 3050.

4.2. Data Preprocessing

(1) Numerical processing: In this paper, the numerical processing of data uses the
currently more commonly used label encoding. Label encoding is an encoding method that
maps categorical variables to integer labels. Its basic idea is to assign a distinct integer label
to each distinct categorical variable, and these labels are usually continuous integers from
0 to n − 1, where n is the number of distinct values of the categorical variable.

(2) Data standardization: In this paper, we use Z-score standardization, which is the
process of dividing the difference between each raw value and the mean by the standard
deviation. This method can make the data distribution near the mean and at the same time
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unify the scale of the data for better comparison and analysis. And it prevents the raw data
from being too explosive. Its mathematical Formula (10) is as follows:

x′ =
x−mean

std
(10)

where mean represents the mean of the original data, and std represents the standard
deviation of the original data.

(3) Data sampling: Due to the large amount of data in the dataset, this paper uses the
K-means cluster sampling method to sample the dataset. The basic idea of K-means
sampling is to use the K-means algorithm to cluster the dataset, and then randomly select
a small number of samples from each cluster as representative samples, and the final
representative sample set is the sampling result. The K-means can reduce the size of
the dataset to reduce the amount of calculation and storage space and can remove some
redundant information and noise.

(4) SMOTE method: There is a clear class imbalance in the collected dataset, which is
the over-representation of normal samples in the dataset. This can lead to biased results of
model training as well as reduced accuracy. In this paper, we propose the SMOTE method
to deal with the class imbalance problem which is called Synthetic Minority Oversampling
Technique. It creates new instances for a small number of classes to balance the dataset. The
principle of SMOTE is based on the concept of KNN to synthesize high-quality instances
and it does not simply replicate the instances as in random sampling which leads to
overfitting. For each instance, X in the minority class, assuming that Xi is a random sample
drawn from the k nearest neighbors of X; a new synthetic instance Xnew can be expressed
by Formula (11) as:

Xnew = X + rand(0, 1)× (Xi − X), i = 1, 2, . . . , k (11)

where rand(0,1) denotes a random number in the range (0,1), Xi is a randomly selected
sample from the k nearest neighbors of X and Xnew is a newly synthesized instance.

So far, we have carried out data preprocessing work as well as feature selection work
based on IG-FCBF. Finally we selected 22-dimensional feature data among the massive
dimensional data. In order to reduce the complexity of the intrusion detection model,
this paper adopts the Pearson correlation coefficient to analyze the influencing factors
of the flow of robotic arm system. The Pearson correlation coefficient is a measure of
the degree of linear correlation between two feature variables [34]. The exact principle is
obtained by calculating the ratio between the covariance and the standard deviation of
the two variables. If the correlation coefficient is closer to the value 1, it means that the
two variables are closer to being perfectly positively correlated. Conversely, the closer the
correlation is to a perfect negative correlation. If the correlation coefficient is 0, then there
is no correlation between the two variables. As shown in Figure 4, darker colors indicate
stronger correlations. We put the 22-dimensional feature data into the heat map display.
The last column in the figure is class features, i.e., labeled data. The numbers in the figure
illustrate the degree of association of each feature with the labeled data. For example, the
value of 0.63 in the 22 rows and 20 columns illustrates that the correlation value between
the Init_Win_bytes_backward feature and the class labeling data is 0.63, which means that
this feature has a strong correlation with the class labeling data. Therefore, we tend to
focus more on these feature dimensions with a strong correlation to train the model. We
can find that some core features have a high decision-making effect on the accuracy of
classification. These data features mainly include core features such as Bwd Packet Length
Min, Min Packet Length, PSH Flag Count, Down/Up Ratio, Init_Win_bytes_forward and
Init_Win_bytes_backward. Therefore, we will highlight the importance scores of these
features for the classification task. Also, other features can have an impact on the results,
and we will use all the features in the figure as inputs to the model.
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4.3. Performance Metrics

The purpose of this article is to detect various attacks and anomalies based on indus-
trial control data. To measure the performance of the architecture, we will focus on the
metrics of accuracy, recall, precision, F1-score, FNR and FPR.

The accuracy represents the proportion of the number of samples correctly predicted
by the classifier out of all samples:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)
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The recall rate indicates the proportion of the number of samples that the classifier
correctly predicts as positive examples to the number of samples of all true examples:

Recall =
TP

TP + FN
(13)

The precision represents the ratio of the number of samples that the classifier correctly
predicts as positive to the number of all samples that are predicted to be positive:

Precision =
TP

TP + FP
(14)

The F1 score represents the harmonic mean of precision and recall:

F1 =
2× Precision× Recall

Precision + Recall
(15)

The FNR represents the ratio of the number of positive samples that the classifier
incorrectly predicts as negative samples to the sum of the number of positive samples that
are correctly predicted as positive samples and the number of positive samples that are
incorrectly predicted as negative samples:

FNR =
FN

FN + TP
(16)

The FPR represents the proportion of the number of negative samples that the classifier
incorrectly predicts as positive samples to the sum of the number of negative samples that
are incorrectly predicted as positive samples and the number of negative samples that
correctly predict negative samples:

FPR =
FP

FP + TN
(17)

where TP is the number of positive samples correctly predicted as positive samples, FP
is the number of negative samples incorrectly predicted as positive samples, TN is the
number of negative samples correctly predicted as negative samples and FN is the number
of positive samples incorrectly predicted as negative samples.

4.4. Parameter Settings

In order to improve the effectiveness of the ETM-TBD model, this paper sets appropri-
ate hyperparameters. In the training process, the experiment uses the Adam optimizer to
optimize the model parameters. The specific parameters are shown in Table 2. Table 2 de-
scribes the detailed parameters of the Transformer model and BiGRU model. For example,
the BatchSize is set to 512, the Dropout is set to 0.5, the Input Dimension is set to 32, the
Embedding Layer Size is set to 32, the Number of Attention Heads is set to 4, the BiGRU
Hidden Layer is set to 64 and the DNN Input Dimension is also 64.

Table 2. Experimental hyperparameters.

Parameter Value

BatchSize 512
Dropout 0.5
EmbSize 32

InputDim 32
AttentionHeadNum 4
BiGRUHiddenSize 64

DNNInputSize 64
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4.5. Related Experiments

This article uses the application of common machine learning algorithms on industrial
control network traffic as comparative experiments, such as support vector machine (SVM),
extra tree (ET), random forest (RF) and extreme gradient boosting (XGBoost).

The evaluation indicators selected in this paper are accuracy, recall, precision, F1-score,
FNR and FPR mentioned in Section 4.3. This article first compares with the traditional
machine learning methods, and also compares the stacked tree of four machine learning
trees (stacking). It can be seen that the model in this paper has certain optimization
compared with the traditional machine learning method. The strength of this paper’s
model on a range of metrics is shown more specifically in Table 3. Among them, FNR and
FPR refer to the probability of false negatives and false positives in the training process.
The lower the index, the better it reflects the model classification.

Table 3. Comparison of the results of the model in this paper and traditional machine learning methods.

Method Accuracy Precision Recall F1-score FNR FPR

XGBoost 0.9089 0.9156 0.9054 0.9104 0.0871 0.0217
RF 0.9173 0.9207 0.9103 0.9154 0.1053 0.0263

SVM 0.9099 0.9104 0.9015 0.9059 0.0907 0.0206
ET 0.9124 0.9083 0.9079 0.9081 0.0713 0.0178

Stacking 0.9507 0.9446 0.9472 0.9459 0.0408 0.0102
ETM-TBD 0.9724 0.9658 0.9672 0.9665 0.0263 0.0081

From the metrics in Table 3, it can be seen that the Acc, Pre, Rec and F1-score scores of
the stacking model are 0.9507, 0.9446, 0.9472 and 0.9459, respectively. These metrics are
all improved by 3.1–4.5% compared to the single machine learning model. Meanwhile,
the stacking model has lower FNR and FPR scores of 0.0408 and 0.0102, respectively. The
stacking model also performs a bit better in terms of false negatives and false positives.
Thus, we can conclude that a single common machine learning algorithm tends to be less
effective than multiple machine learning stacking integration models in handling intrusion
detection tasks. It can be proved that the stacked ensemble model (ETM) is reasonable as
the first layer of the model in this paper. The last column in Table 3 shows the performance
results of the ETM-TBD model in this paper. From the results of the six metrics, the metrics
results of the ETM-TBD model are improved by about 2.1% compared to the stacking
model. The F1-score of the ETM-TBD model can reach 0.9665. Thus, it can be proved that
the ETM-TBD model proposed in this paper is successful in the idea of hybrid machine
learning and neural network models. As we all know, the radar chart can display the
information of multiple variables at the same time, and it is convenient for comparison.
Therefore, in order to show the effect of the algorithms more intuitively, we decided to use
the radar chart to display the data, as shown in Figure 5.

At the same time, this paper also conducts comparative experiments with the following
neural network models or machine learning integration models.

(1) ETM model: The ETM model is the first layer of the ETM-TBD model, which retains
only the integrated machine learning module. We consider it as one of the comparison
experiments for demonstrating the advantages of hybrid machine learning and neural
network models.

(2) ETM-MBD model: Compared with the model in this paper, the ETM-MBD model re-
places the Transformer module with the multi-head-attention mechanism to prove whether
the skip connect in the Transformer module is more effective for classification.

(3) ETM-TD model: Compared with the model in this paper, the ETM-TD model lacks
the BiGRU module. It can be used to explore the advantages of the BiGRU module in the
case of retaining timing features and long-distance dependencies.



Appl. Sci. 2023, 13, 10455 14 of 18
Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 18 
 

 

Figure 5. Comparison experiment radar chart. 

As shown in Figure 6, different models also have different values for different labels. 

The labels in the figure are the string type labels of the original data encoded and pro-

cessed. Label 1 corresponds to BENIGN, label 2 corresponds to Brute Force, label 3 corre-

sponds to DDos, label 4 corresponds to Sql Injection and label 5 corresponds to XSS. It is 

not difficult to find that the model in this paper has a more significant effect than the com-

pared models. The F1-score for each label of the model in this paper is 0.9607, 0.9710, 

0.9667, 0.9580 and 0.9640, in that order. The single machine learning model ETM is obvi-

ously not as good as the results obtained by the model in this paper without the optimi-

zation of the neural network model. The average F1-score of the ETM-TBD model in this 

paper is 2.9% higher than that of the ETM model. The ETM-MBD model adds the multi-

head-attention mechanism and lacks the Transformer module compared with the model 

in this paper. From the resulting graph, the average f1 score of the ETM-TBD model in 

this paper is 1.2% higher than that of the ETM-MBD model. It can be seen that the help of 

the Transformer for multiclassification tasks is very obvious, and it can be proved that the 

skip connect in the Transformer is important for extracting features and classification ef-

fects. Moreover, the ETM-TD model obtained from this paper’s model after removing the 

Bidirectional Gated Recurrent Unit is compared with this paper’s model. The average f1 

score of the ETM-TBD model in this paper is 2.0% higher than that of the ETM-TD model. 

It can be proved that the preservation of time series features has more obvious advantages 

for multiclassification tasks. And the ETM-TD model often cannot optimize the results of 

the model according to the long-distance features of the context. 

As shown in Figure 7, the vertical axis y_true is the true label of the test set and the 

horizontal axis y_pred is the predicted label of the test set predicted by the ETM-TBD 

model. We can see the specific prediction rate of each label from the confusion matrix; that 

is, we can see that there is a clear detection rate regardless of the specific attack type. 

Overall, the ETM-TBD model performs the best. Because compared to the ETM 

model, it has the ability to search for the connection between local and global features as 

well as the ability to search for the connection between features before and after the 

temporal sequence through the hybrid neural network model. It is obvious that the ETM-

MBD model, compared to the model in this paper, lacks the skip connect feature of the 

Transformer model. The skip connect can result in the problem of gradient vanishing and 

Figure 5. Comparison experiment radar chart.

As shown in Figure 6, different models also have different values for different labels.
The labels in the figure are the string type labels of the original data encoded and processed.
Label 1 corresponds to BENIGN, label 2 corresponds to Brute Force, label 3 corresponds
to DDos, label 4 corresponds to Sql Injection and label 5 corresponds to XSS. It is not
difficult to find that the model in this paper has a more significant effect than the compared
models. The F1-score for each label of the model in this paper is 0.9607, 0.9710, 0.9667,
0.9580 and 0.9640, in that order. The single machine learning model ETM is obviously not
as good as the results obtained by the model in this paper without the optimization of the
neural network model. The average F1-score of the ETM-TBD model in this paper is 2.9%
higher than that of the ETM model. The ETM-MBD model adds the multi-head-attention
mechanism and lacks the Transformer module compared with the model in this paper.
From the resulting graph, the average f1 score of the ETM-TBD model in this paper is 1.2%
higher than that of the ETM-MBD model. It can be seen that the help of the Transformer for
multiclassification tasks is very obvious, and it can be proved that the skip connect in the
Transformer is important for extracting features and classification effects. Moreover, the
ETM-TD model obtained from this paper’s model after removing the Bidirectional Gated
Recurrent Unit is compared with this paper’s model. The average f1 score of the ETM-TBD
model in this paper is 2.0% higher than that of the ETM-TD model. It can be proved that
the preservation of time series features has more obvious advantages for multiclassification
tasks. And the ETM-TD model often cannot optimize the results of the model according to
the long-distance features of the context.
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As shown in Figure 7, the vertical axis y_true is the true label of the test set and the
horizontal axis y_pred is the predicted label of the test set predicted by the ETM-TBD
model. We can see the specific prediction rate of each label from the confusion matrix; that
is, we can see that there is a clear detection rate regardless of the specific attack type.
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Overall, the ETM-TBD model performs the best. Because compared to the ETM model,
it has the ability to search for the connection between local and global features as well
as the ability to search for the connection between features before and after the temporal
sequence through the hybrid neural network model. It is obvious that the ETM-MBD model,
compared to the model in this paper, lacks the skip connect feature of the Transformer
model. The skip connect can result in the problem of gradient vanishing and the problem
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of weight matrix degradation. Therefore the ETM-MBD model will be slightly worse in
the results. The ETM-TD model is less considering the relationship of continuous features
on the time series, which affects the accuracy of the model training. Therefore, through
comparative experiments with the ETM model, ETM-MBD model and ETM-TD model, this
paper proves that the combination of machine learning and neural network models has
significant advantages in multiclassification tasks.

5. Conclusions

In order to ensure the security of industrial control networks and the accuracy of
detecting network traffic, this paper proposes a hybrid machine learning and neural
network model for a ETM-TBD intrusion detection model. First of all, the quality of
the dataset can be significantly improved through preprocessing and feature engineering,
which can be used for model training to make the results obtained after model training
more accurate. The machine learning stacking tree model proposed in this paper can better
complete the identification of intrusion attacks in industrial control networks. But the
stacking machine learning tree model has similar shortcomings compared with traditional
machine learning; that is, machine learning cannot adaptively learn features in data well
and cannot be better adapted to complex datasets and tasks. In this regard, the integrated
model of hybrid machine learning and neural network models is relatively better. It not
only adapts itself to more complex tasks but also represents the data in a distributed manner,
thus better handling high dimensional data. The Transformer module proposed in this
paper can better handle classification tasks by establishing the connection between different
features. And the BiGRU module can better capture the correlation and timing in the data
by learning context information when dealing with high dimensions. The BiGRU module
is very suitable for the situation, which can handle high dimensions. It is very suitable for
the situation where the data volume of the industrial control network is relatively large.
The DNN module adopted in the end supplements the first two modules to a certain extent.
By weighing and nonlinearly transforming each layer of the model, higher-level features
can be better learned, thereby achieving more accurate classification.

Through the performance evaluation of an industrial robotic arm control laboratory
dataset, the ETM-TBD intrusion detection model proposed in this paper can effectively
detect various known attack patterns. The detection accuracy rate of the dataset is 97.24%,
and the average F1 score is 0.9665. Therefore, the feasibility of this model in the industrial
control network is realized.

At the same time, the model in this paper has some drawbacks. For example, when
we extract the more important features, the method based on IG-FCBF is not the best.
Sometimes, some relatively unimportant features will be selected as well. In addition,
we cannot handle unknown network traffic attacks well. As of now, if we are attacked
by unknown types of attacks, we generally categorize them into the class of attack types
that are most similar to them. Therefore, in our future work, we will focus on these two
aspects, especially on the detection algorithm for open-set identification. We hope to mix
the algorithms of open-set recognition into our intrusion detection system to face a variety
of attacks in the industrial control field.
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