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Abstract: The security measures of IoT devices used in intelligent buildings are one of the ways by
which energy efficiency can be accomplished. IoT devices are very important for data collecting and
monitoring in intelligent buildings, but a lack of security could result in errors in energy consumption
decisions that result in energy waste. To ensure the success of the control systems used for energy
optimization, it is necessary to address the security of IoT devices in order to avoid illegal access, data
manipulation, and disruptions. This work proposes a research idea and scheme for energy-saving
optimization of intelligent buildings by assuring the security of IoT devices used in intelligent
buildings. First of all, we defined several parameters that are related to IoT devices’ security,
energy consumption, and occupant comfort in the intelligent building environment. Secondly,
we collected data for each of these parameters by utilizing IoT devices such as actuators, sensors,
and other control systems. The niche genetic algorithm (NGA) refers to a particular class of genetic
algorithms that is used to tackle problems involving many optimization objectives. We focused on
optimizing both energy consumption and occupants’ comfort; therefore, we used an NGA for the
preprocessed data with the goal of evaluating the data for the purpose of ensuring the comfort of
occupants and protection of the security of IoT devices, which eventually leads to energy optimization.
Finally, the results of the proposed approach are analyzed and carefully compared with earlier work,
demonstrating that our proposed approach is significantly more effective and energy-optimized than
earlier approaches. The results show that the total power consumption of the intelligent building
system after using our proposed model is generally reduced by more than 18% compared with that
before optimization, which shows that the intelligent building system-adaptive optimization control
model can effectively optimize the operating parameters of the energy-saving system and achieve the
security of IoT devices.

Keywords: IoT devices security; niche genetic algorithm; intelligent building; energy-saving optimization

1. Introduction

The term “intelligent buildings” was first used in the early 1970s and has only recently
come to mean more than a conceptual framework for the representation of structures
of the future. But as time goes on, intelligent buildings are quickly taking on a funda-
mental role in determining how future building rules will be developed [1]. Without a
doubt, cities are going to be significantly influenced by intelligent buildings in order to
support smart growth, sustainable development, and healthy ecosystems [2]. According
to various authors and researchers, the term “intelligent buildings” has many different
definitions, but the most comprehensive one is “one that offers an efficient and economical
atmosphere via the optimization of its four basic elements, including structures, systems,
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services, and management, and the interrelationships between them” [3]. The term “in-
telligent building” was first used to describe a building focused on sustainability rather
than cutting-edge technology, but more recently, both have been used. The Internet of
Things (IoT), artificial intelligence (AI), and information and communication technology
(ICT) serve as the foundations for intelligent buildings. With the use of these cutting-edge
technologies, smart building not only tries to provide ease but also minimize energy con-
sumption because more energy consumption is not only a waste of resources but also
causes environmental problems.

IoT is without a doubt the key component of intelligent buildings because it integrates
a variety of systems, sensors, and gadgets [4]. With the help of IoT, data collecting and
monitoring tasks are carried out in the context of intelligent buildings while also being
automated, which is crucial for sustainability and energy savings. Despite the countless
advantages of IoT in the context of intelligent buildings, there are certain difficulties
as well. Security and privacy issues are the most significant among all the difficulties
intelligent buildings face when implementing IoT [5]. The extensive security and privacy
features included in IoT devices used in smart buildings contribute to accurate data, reliable
functioning, and occupant confidence. In intelligent buildings, these components serve as
the cornerstone of successful energy optimization measures [6]. Building managers can
make wise choices that result in greater energy saving without affecting the safety of the
building’s occupants or the accuracy, security, and privacy of the data collected and used
for optimization.

Energy conservation has gained widespread attention and grown to be a crucial
issue in the evolution of the global environment as a result of the increasingly serious
environmental issues and the sense of crisis caused by the declining energy. There is a
certain contradiction between building waste of resources and indoor thermal comfort
in the process of constructing energy-efficient buildings [7]. On one hand, the national
economy of China has been greatly harmed by the building waste of resources, which is one
of the most significant aspects of resource waste and is expanding overall in China every
year. Therefore, saving energy is a task that needs to be carried out immediately [8]. On the
other hand, people’s living conditions have significantly improved, and their demands for
indoor comfort have grown as a result of economic growth and rising living standards. In
order to create a better indoor thermal environment, homeowners are installing a rising
number of air conditioners in their homes, and as a result, these air conditioners are using
up an increasing amount of energy, which lowers the rate at which buildings conserve
energy. Major concerns regarding livelihood are raised by the improvement in the living
environment, and saving energy and reducing emissions is a significant national strategy.
The guiding idea behind developing energy-efficient designs is to take both into account [9].

In order to fully address global concerns, it is crucial to incorporate energy sustainabil-
ity into the context of the Sustainable Development Goals (SDGs) of the United Nations.
In order to meet present requirements while preserving the ability of future generations
to meet their own, energy sustainability refers to the wise and effective use of energy
resources. This idea reflects the connection of environmental, social, and economic sustain-
ability and has an unbreakable connection to multiple SDGs [10]. The SDGs are a series of
17 global goals that were announced by the United Nations in 2015 to address a variety of
global concerns. Progress toward a number of these objectives depends critically on energy
sustainability. The following are some of the objectives for energy sustainability. The goal
of energy sustainability is to guarantee that everyone has access to modern, affordable,
dependable, and sustainable energy [11]. A crucial prerequisite for economic growth,
poverty reduction, and better living conditions is access to affordable, clean energy. In
order to combat climate change, energy sustainability is essential since it encourages the
use of renewable and low-carbon energy sources. To do this, it is necessary to switch to
sustainable energy sources, cut greenhouse gas emissions, and lessen the effects of global
warming. Technology and infrastructure innovation are fueled by sustainable energy. It
encourages the development of resilient infrastructure, promotes innovation in renewable
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energy technology, and enables the creation of cleaner, more effective industrial processes,
all of which promote economic growth and job creation [12].

Energy-saving techniques and improved occupant comfort have become crucial in
the goal of sustainable and effective building design. Using cutting-edge techniques,
architects, engineers, and designers are developing intelligent structures that support these
goals. These structures aim to maximize energy consumption while offering residents
a higher standard of living by utilizing the power of state-of-the-art techniques such
as AI, data analysis, IoT, and evolutionary algorithms. A genetic algorithm (GA) is a
kind of evolutionary algorithm that mimics some of the qualities of natural species such
as evaluation and heredity. The GA always tries to find one global optimum solution;
hence, it cannot be used for solving multi-modal function optimization problems. Keeping
in mind the weakness of the conventional GA, researchers proposed a modified and
advanced version of it called the niche genetic algorithm [13]. A niche genetic algorithm is
a random global search and optimization method developed by imitating the biological
evolution mechanism in nature [14]. In each generation of genetic algorithms, individuals
are selected according to the fitness value of individuals in the problem domain, and the
reconstruction method is borrowed from natural genetics to produce a new approximate
solution. This process leads to the evolution of individuals in the population, and the
new individuals are more adaptable to the environment than the original individuals, just
like the transformation in nature [15]. In order to solve a multi-objective optimization
problem and find the best solutions that simultaneously optimize many goals, such as
energy conservation by ensuring the security of IoT devices and user comfort, this study
uses the niche genetic algorithm. There are a lot of other optimization algorithms that
specifically suit energy optimization for intelligent buildings. Some of the well-known
algorithms, in this case, are simulated annealing, Tabu search, and other natural-inspired
algorithms. However, we utilized NGA for our problem because we focused on energy
optimization, IoT security, and occupant comfort in general. The other listed algorithms
are suitable for some objectives but not for others. For example, the simulated annealing
technique can be employed specifically for energy optimization by taking temperature,
cooling schedule, etc. into account but it cannot give us a tradeoff line between occupant
comfort, IoT security, and energy saving.

The basic structure of the niche genetic algorithm for the energy-saving optimization
of intelligent buildings is similar to that of a genetic algorithm for single-objective optimiza-
tion [16]. On the other hand, when using niche genetic algorithms to solve multi-objective
optimization problems, it is necessary to consider how to evaluate the optimal solution and
how to design the selection operator, crossover operator, mutation operator, etc., which are
suitable for the energy-saving optimization problems of intelligent buildings. Therefore,
the algorithm has its own unique features in implementation. In the implementation of
the algorithm, the individual selection operation can be carried out on the basis of the
optimization relationship among the sub-objective functions. The independent selection
operation can also be performed for each sub-objective function; the niche technique can
also be utilized. We can combine the original multi-objective optimization problem-solving
method with the niche genetic algorithm to form a hybrid niche genetic algorithm. This
paper contributes to the literature in the following ways.

After examining the problems with energy-saving optimal control technology and
IoT security of intelligent buildings, this study discovered an optimal solution for the
problem of resource waste in intelligent buildings. We proposed a state-of-the-art technique
by utilizing the niche genetic algorithm to enhance life comfortability inside intelligent
buildings by consuming the minimum energy possible. We presented a novel method that
makes a tradeoff between energy saving by ensuring the security of the IoT devices utilized
by the intelligent building and the comfort level of its occupant. In this paper, the problems
of energy-saving optimal control technology of intelligent buildings by considering the
security of IoT devices are studied, and the framework is as follows:
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Section 1 is the introduction. This part mainly expounds on the research background
and significance of intelligent building energy-saving optimization and puts forward
the technical methods, advantages, and innovations adopted in this paper. Section 2 is
a summary of relevant literature, summarizing its advantages and disadvantages, and
putting forward the research ideas of this paper. Section 3 is the method part, focusing
on the method of intelligent building energy-saving optimization control technology on
the basis of a niche genetic algorithm. Section 4 is the experimental analysis. In this part,
experiments are carried out on data sets to analyze the performance of the model. Section 5
is the conclusion and prospects. This part mainly reviews the main contents and results
of this research, summarizes the research conclusions, and points out the direction of
further research.

2. Related Works

Intelligent building energy saving is an important part of green and sustainable
buildings. Building energy-saving design with the purpose of reducing wasting of resources
is one of the core contents of green building design, but it faces three challenges: uncertainty,
multi-objective, and trial and error. Intelligent building energy-saving optimization design
is a new design idea and method to deal with these three challenges, and it is one of
the research hotspots in the current international architecture field. Performance-based
architectural design and its optimization methods have gradually become a research
priority at home and abroad, and have played an important role in promoting green, low-
carbon, and energy-saving intelligent architectural design. Wasting resources is the most
important, most common, and most concerned kind of building performance. Therefore,
building energy-saving optimization design has become the main research direction of
performance-based building design and its optimization methods.

The main goal of building control is to provide a comfortable, highly environmentally
friendly building environment. A multi-zone building model is created by segmenting
the entire structure into various zones in order to create an efficient energy management
system. For intelligent building control, Yang R et al. [17] proposed a multi-agent control
system paired with an intelligent optimizer. By increasing the multi-zone building’s
operational intelligence, particle swarm optimization (PSO) is used to optimize building
energy management. Xia Y et al. [18] combined the niche genetic algorithm with the theory
of pattern theorem, tested the algorithm in the optimization process, initially formed a
simplified workflow of the niche genetic algorithm, and finally obtained a conclusion that
is beneficial to the follow-up research work and has theoretical guiding significance. Work
on the smart home energy consumption system was carried out by Zhao, B. et al. [19].
They provided a brief description of the functional components and architecture of a smart
home energy management system (HEMS). Then, a complete analysis and study of the
cutting-edge HEMS infrastructures and home appliances in smart homes is conducted.
Additionally, a survey is conducted on the use of several building renewable energy
sources such as solar, wind, biomass, and geothermal energy in HEMS. Finally, several
home appliance scheduling techniques were examined in an effort to lower domestic
electricity costs and boost energy efficiency from power-producing utilities.

In a typical existing building, Douckas, H. et al. [20] presented an innovative intel-
ligent decision support model based on the systematic integration of building energy
management system (BEMS data (loads, demands, and user requirements) for the iden-
tification of the need for intervention and further evaluation of energy saving measures.
The model’s functioning provides assistance to the decision-makers charged with over-
seeing the building’s management and energy-efficient performance (energy auditors and
building administration). The goal of Yang, CH et al. [21] was to identify the critical vari-
ables that would enable decision-makers to choose among a wide range of IoT-focused
Intelligent Building Management System (IBMS) adoption strategies. An IoT-oriented
decision-making model uses the multiple-criteria decision-making (MCDM) method to
measure IoT characteristics for the evaluation and determination of management systems
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for intelligent buildings. They also incorporated an evaluation of Activity-Based Costing
and resource constraints into Zero-One Goal Programming in the process of choosing the
best portfolio. Via the identification of the relevant features and the use of Soft Computing
techniques to produce prediction models of energy consumption in buildings, Moreno,
M.V. et al. [22] offered an innovative approach to energy conservation in buildings. Such
models can be used to establish plans for reducing how much energy buildings use on a
daily basis. They used their method on a reference building for which we have contextual
data from a full year of monitoring in order to confirm the viability of this suggestion.

Researchers have looked into different aspects of resource waste and energy ineffi-
ciency in the field of optimizing building energy consumption rather than just one per-
spective. In order to monitor and manage energy use in intelligent buildings in real time,
Wei et al. [23] proposed a building energy monitoring and analysis system using the IoT.
The need for sophisticated building energy monitoring is among the challenges discussed
by the author. The results of the study highlighted the potential of their proposed system
to improve energy-saving capabilities. Ren H et al. [24] investigated the basic situation
of buildings, the waste of resources in single buildings, the total waste of resources of
residential buildings, and the coal consumption in heating areas, and compiled the sta-
tistical software of building waste of resources. Chi et al. [25] analyzed the wasting of
resources data of similar buildings, predicted the wasting of resources of similar buildings
more accurately, and summarized the development trend of wasting resources. Jun G
U et al. [26] analyzed the energy-saving potential of large public buildings and thought
that comprehensive utilization of various building energy-saving technologies could save
energy by 30~50%.

Metallidou et al. [27] proposed the effect of the Internet of Energy (IoE) on the power
sector of smart cities by integrating IoT technology for the purpose of energy efficiency,
waste reduction, and environment purification. Using IoT technology, a smart building
template is used to optimize technical systems for energy efficiency. The results demon-
strate the potential of IoE in furthering smart city goals and the efficiency improvements
possible with intelligent building management. The author, however, did not fully address
issues beyond energy efficiency or offer a thorough examination of potential restrictions.
Jagadeesan, S. et al. [28] made another very similar proposal and focused on the application
of a smart grid as an improved energy management system to optimize energy usage.
In order to effectively manage energy consumption in intelligent buildings, the author
concentrated on the application of optimization techniques, such as machine learning (ML)
and GA. Priority scheduling is used to maximize appliance utilization, while sensors from
IoT are used to collect information about the environment outside. The integration of ML
and IoT in the study helps to improve energy efficiency in smart buildings [29,30].

The conclusion we reached after carefully evaluating the work that was already
proposed in the context of energy optimization for intelligent buildings was that the
positive optimization algorithm is very important to the best design technology of building
energy saving, so it is very important to choose the right algorithm and set the algorithm
parameters sensibly. If the algorithm is not properly selected, it may reduce the design
efficiency, and the optimal design scheme cannot be found, and even lead to the failure
of the whole design process. Therefore, it is necessary to conduct in-depth research on
the optimization algorithm in building energy-saving optimization designs. However,
due to the barriers of professional knowledge and other reasons, the field of architecture
only stays at the stage of indiscriminately using common optimization algorithms for
energy-saving optimization design. Little is known about the efficiency of the algorithms,
and it is impossible to avoid costly optimization failures.

3. Energy Optimization of Intelligent Building by Using Niche Genetic Algorithm

The model we proposed for intelligent building energy optimization by ensuring the
security of IoT devices uses a niche genetic algorithm is shown in Figure 1. We started
by defining control variables that directly relate to the energy efficiency and livability of
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intelligent buildings. The main components of these variables are new energy, which is
simply another way of saying renewable energy sources, energy delivery temperature,
which is the thermal energy distribution across the building for various purposes, and
water supply temperature, which is simply another way of saying the temperature of
the water provided for various purposes [31,32]. On the basis of these defined variables,
data is collected from various IoT devices, such as sensors, actuators, and control systems,
and it is ensured that the data collected is correct, reliable, and related to the building’s
energy usage. After the data collection, an objective function is created that computes
the energy consumption and IoT devices’ security risk of intelligent buildings based on
the control parameters. The objective function is built in a way that takes into account
the tradeoffs between various levels of energy consumption and lifestyle comfort. The
solution space is then expressed in a fashion that the genetic algorithm can work with. This
entails encoding the control parameters into a real-valued string that corresponds to the
appropriate chromosomal format. The initial population of potential solutions is created to
represent IoT devices’ security configuration and various sets of control parameter values,
such as the integration of renewable energy, optimization of thermal energy distribution,
control of water supply temperature, smart heating, ventilation, and air conditioning
(HVAC), temperature optimization of energy delivery, and energy monitoring and real-
time feedback. The fitness of each solution in the entire population is assessed on the basis
of the defined objective function. The fitness value, which simply indicates how well each
solution performs in terms of energy consumption reduction and security enhancement, is
the output of the fitness evaluation [33].
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The niche technique is employed to promote population variety. This assists in pre-
serving an equilibrium between the two activities and prevents solutions from converging
prematurely to local optima. Crossover and mutation operations are applied to the solu-
tions that are chosen as having a greater fitness value. Via the use of the objective function,
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the fitness of the recently produced offspring is assessed. This stage makes sure that the
energy consumption of the new solutions is accurately calculated. By keeping a specific
portion of the finest ideas from the previous generation, elitism is introduced. This makes
sure that effective solutions are kept and do not disappear during the process of evolu-
tion. The next generation of the population is generated by combining parent solutions,
offspring solutions, and elite solutions. Convergence criteria, such as a maximum number
of generations or a suitable amount of energy consumption drop are selected to stop the
algorithm on a satisfactory solution. The optimal option with the greatest potential for
energy savings is found by analyzing the final population of solutions [34].

3.1. Intelligent Building Control System

Among the control variables of an intelligent building control system, three control
parameters, namely new energy, energy delivery temperature, and water supply temper-
ature play a key role in the overall wasting of resources and operation characteristics of
the system, while other control variables have little influence on the wasting of resources
of the system [35]. Aiming at these three variables, an optimal control objective function
is established, and a niche genetic algorithm is used for optimization, so as to obtain the
optimal control variable value that minimizes the objective function and realizes the control
of the air-conditioning equipment system. The control goal of intelligent building system
optimization is to minimize the waste of resources of the system on the premise of ensuring
comfort. Comfort can be measured by building thermal comfort and air quality. Therefore,
the optimal control objective function of the system is

F =
∫ ∇

0
(αP + βMV + γY)dt (1)

where α, β, and γ are the control parameters of new energy, energy delivery temperature,
and water supply temperature, respectively. For buildings with different use properties, the
values of the three parameters are also different. When the building has higher requirements
for new energy and energy delivery temperature, the values of β and γ are greater than 1,
and the values of α are less than 1; when buildings have high requirements for wasting of
resources, the value of α is greater than 1, while the values of β and γ are less than 1.

In the same evolutionary environment, the improved niche genetic algorithm is not
affected by the population size and evolutionary algebra, and it can obtain the same optimal
solution, and its convergence will not change with the increase in evolutionary algebra.
Moreover, it takes the shortest time in the whole iterative evolution process, and the average
time of each generation in the same iterative evolution is also the shortest. Therefore, the
improved niche genetic algorithm has relatively good convergence performance and the
lowest running time complexity of the algorithm [36,37]. Its relatively stable convergence is
also an optimization of the traditional algorithm, and it is not easily influenced by some ex-
cellent individuals, which makes the evolutionary direction move in the opposite direction
or in a direction unfavorable to the population evolution, which leads to premature falling
into a certain local cycle, thus reducing the diversity of the new generation of individuals,
and even the whole population will be quickly covered by a large number of these excellent
individuals, resulting in a fast stable state, as shown in Figure 2.

Compared with the traditional genetic algorithm and differential evolution algorithm,
the improved niche genetic algorithm takes the shortest time in the whole evolution pro-
cess and obtains the optimal solution after iteration. The convergence performance is not
reduced by increasing the population size, and the same optimal solution can be obtained
after iteration [38]. The evolution algebra of the improved niche genetic algorithm is larger
than that of the genetic algorithm when it tends to a stable state, but its convergence
performance is improved. From the evolution data, the genetic algorithm quickly enters
a stable state in the early stage of evolution, while the difference algorithm is relatively
slow, but the final convergence performance is higher than that of the traditional genetic
algorithm. on the basis of the traditional algorithm, the improved niche genetic algorithm
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improves the evolution speed, avoids the limitation of premature local convergence of
the genetic algorithm, and the whole running process takes a relatively short time. This
Algorithm shows the overall process of the niche genetic algorithm for the energy optimiza-
tion of intelligent buildings. Specific issues related to each step of the algorithm and their
corresponding solution are discussed in the subsequent sections.
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3.2. Fitness of Niche Genetic Method

The theory of genetic algorithm optimization starts with a randomly generated pop-
ulation that represents the possible solution set of the problem, selects a relatively good
individual as the parent by adopting the strategy of “survival of the fittest”, and then
performs genetic operations among the parents to evolve the offspring population, as
shown in Figure 3.
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The primary operation of the niche genetic algorithm is to determine the objective
function, the variables involved in the function, and the implicit constraints. According
to different problem situations, the decision variables will also be subject to different con-
straints of the problem, and finally be treated as penalty functions to be considered together
in the problem. The niche inheritance method is mainly composed of genetic factors,
chromosomes, and population. Among them, genetic factors can be used as any decision
variable, and chromosomes are regarded as the main carrier of genetic material, which
is a collection of many genetic factors [27]. Therefore, the objective function of solving
the problem can be abstracted as a function about chromosomes, and the population is
defined as a set of chromosomes. The internal expression (i.e., genotype) of chromosomes
is a combination of certain genes, which plays a decisive role in the shape and external
expression of the individual, and is also the expression form of internal genotype. There-
fore, the phenotype is mapped to the genotype by coding. After the initial population is
generated, it evolves from generation to generation according to the “survival of the fittest”,
and finally some relatively good approximate solutions to the problems are produced. In
the process of evolution, individuals with larger fitness are searched via the differences
of fitness of different individuals in the problem domain. After the selection operation
is completed, crossover and mutation operations are carried out, and finally, a solution
set that can represent the new generation population is generated, so that the offspring
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population gradually adapts to the environment. The relatively optimal individual in the
final generation population will be decoded to obtain the solution of the problem, which is
the approximate optimal solution of the problem.

In the evolutionary search process of genetic algorithm, the selection operation only
takes Fitness as the only niche genetic basis, and basically does not use other external
information, and the search operation is performed by the fitness values of different
individuals in the population. Because of the niche genetic algorithm, it is very important
to select the appropriate fitness function for solving the problem, which may have a
direct impact on the final convergence speed, convergence effect, and whether the optimal
solution to the problem can be found.

The fitness function is to directly convert the objective function to be solved, then

Fit( f (x)) = − f (x) (2)

If the goal is to minimize the problem, then

Fit( f (x)) =
{

cmax− f (x), f (x) ≤ cmax
0,

(3)

Among them, cmax is the estimated maximum value of f (x), which is also an im-
provement on the basis of the direct transformation objective function method. It has some
problems, such as the maximum value is difficult to estimate and inaccurate.

If the goal is the minimization of the problem, then

Fit( f (x)) =
1

1 + c + f (x)
(4)

Among them, c ≥ 0, c + f (x) ≥ 0, c are conservative estimates of the boundary value
of the objective function.

3.3. Convergence Rate

The convergence rate is an important performance index of multi-objective optimiza-
tion algorithms. The single-objective optimization algorithm has two conflicting perfor-
mance indexes: speed and coverage. Similarly, the multi-objective optimization algorithm
has two conflicting performance indexes: convergence speed and diversity of Pareto’s
solution. If a multi-objective optimization algorithm converges too fast, it will cause the
algorithm to be unable to search the solution space in a wider range, and the diversity of
the Pareto solution finally obtained will be poor. On the contrary, if the multi-objective
optimization algorithm is to search for more solutions as much as possible, it will take a
longer time to search in a wider range of the feasible solution space, resulting in a slower
convergence speed of the algorithm and a longer running time of the whole optimization.
Therefore, when evaluating the efficiency of a multi-objective optimization algorithm, it
is necessary to evaluate not only the diversity of Pareto’s solution but also the speed of
convergence to the Pareto optimal set. Figure 4 shows the convergence rate of three differ-
ent optimization methods including Levenberg–Marquardt (LM), local search (LS), and
crowding strategy (CS) [39].

The convergence rate of a multi-objective optimization algorithm can be measured
by the number of objective function calculations used when the algorithm finds the best
solution on the Pareto frontier, which is represented by the symbol conv. The smaller the
Conv value, the faster the convergence rate of the algorithm.
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3.4. Diversity of Pareto’s Solution

The number of Pareto’s solutions obtained via the multi-objective optimization al-
gorithm is not infinite, so it is very important to ensure the diversity of solutions, which
can not only depict the true Pareto frontier as accurately as possible but also avoid losing
the potential better solutions to the greatest extent. Generally speaking, Pareto’s solution
with good diversity should be evenly distributed on the entire Pareto frontier as much as
possible. The scale of the Pareto optimal set refers to the number of solutions contained
in the Pareto optimal set. Ideally, if there are continuous optimization variables in an
optimization problem, the real Pareto optimal set should contain an infinite number of
Pareto’s solutions. However, finding all Pareto’s solutions is not feasible in the calculation,
and multi-objective optimization algorithms can only find a limited number of Pareto’s
solutions. At this time, the scale of the Pareto optimal set is very important because it
directly determines the number of candidate solutions that can be provided to architects.
In addition, it also reflects the ability of multi-objective optimization algorithms to find
non-dominated solutions. The larger the scale of the Pareto optimal set, the stronger the
ability of the algorithm to find non-dominated solutions.

In order to quantitatively evaluate the diversity of solutions on the Pareto frontier, the
standardized distance measurement method can be used to investigate the distribution of
solutions on the Pareto frontier. First, calculate the Euclidean distance di between any two
adjacent solutions on the Pareto frontier, then calculate the average value d of all Euclidean
distances, then calculate the average value DS of all the differences between di and d, and
finally divide DS by the sum of all Euclidean distances to obtain the standardized distance
measurement index SS. The detailed calculation formula is as follows:

di =

√
∑m

j=1

(
Fj

i − Fj
i+1

)2
(5)

In the above formula, di is the Euclidean distance between points Fj
i and Fj

i+1. Fj
i shows

the jth feature of feature i and Fj
i+1 is the jth feature of feature i + 1.

d =
∑n−1

i di
n− 1

(6)
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Here, d is the average distance of between individual points di, and n is the total
number of data points.

DS =
∑n−1

i di− d
n− 1

(7)

Here, DS is the average deviation of individual distance, di is the individual distance,
and d is the mean distance, as calculated by Equation (6).

SS =
DS

(n− 1)d
(8)

Here, SS is the standard deviation of the average deviation DS, which is calculated in
Equation (7), n is the number of data points, and d is the average distance calculated by
Equation (6).

li = min
k∈100

√
∑m

j=1

(
Fj

i − Fj
k

)2

(9)

Here, the li represents the minimum Ecludian distance between point Fj
i and Fj

k. This

part ∑m
j=1

(
Fj

i − Fj
k

)
of the equation calculates the distance in general after the min

k∈100
is

applied, which look for the minimum values among 100 distances.

SGD =

√
∑n

i=1 l2

n
(10)

Here, the SGD is the standard deviation of the value in set i.
Among them, SS is the index to evaluate the diversity of Pareto’s solution; di is the

normalized Euclidean distance between two adjacent solutions i and i + 1 on the Pareto
front, of which, i = 1; d is the average of all di; DS is the average of all the differences
between di and d; n is the number of solutions on Pareto frontier; and m is the number of
optimization design goals. Fj

i and Fj
i+1 are the normalized values of two adjacent solutions

i and i + 1 on the Pareto frontier on the jth optimization design goal. The smaller the value
of SS, the more uniform the distribution of solutions on the Pareto frontier, and the better
the diversity of Pareto’s solution.

4. Experimental Setup and Result Analysis

In this section, we covered the implementation level details of the paper that cover
how all these experiments are conducted. This section also covered a thorough evaluation
of the method proposed in this paper.

4.1. Experimental Setup

The primary objective of this research work is to find out the optimal solution of energy
consumption and people satisfaction in the context of intelligent buildings. To do so, we
utilized the niche genetic algorithm that best suits our problem because we aim to tradeoff
between energy consumption and people’s satisfaction. We also focused on the security
improvement in IoT devices to ensure the correctness of data related to energy consumption
and occupant satisfaction. With the help of simulation, we predict the overall operating
characteristics of the system, and the optimal control variable values, i.e., fresh air volume,
supply air temperature, and supply water temperature, which minimize the objective
function and are obtained via the optimization calculation of niche genetic algorithm, which
is used as the set values of the lower computer controller. The niche genetic algorithm code
is written in MATLAB advanced language, which is best for the problem of visualization of
scientific data, modeling and simulation of linear dynamic systems, etc. This simulation is
conducted in a Windows environment, which is very convenient to use. MATLAB has a
built-in module that can be utilized for the implementation of niche genetic algorithms,
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which provides a wide variety of practical functions for genetic algorithm researchers, as
shown in Table 1.

Table 1. List of common functions of niche genetic algorithm.

Function Type Function

Create a population

Crtbase Create basis vector

Crtbp Create any discrete random population.

Crtrp Create a real-valued initial population

Fitness calculation

Rws Roulette wheel selection

Select Advanced selection process

Sus Random sampling

Select function

Recdis Discrete variation

Recint Linear recombination

Reclin Real value variation

4.2. Results and Discussion

Generally speaking, a single-objective optimization problem means that there is only
one optimization objective function, and when there are two or more optimization objective
functions, it becomes a multi-objective optimization problem. In this research, we deal
with multi-objective optimization problems because our objectives are to save energy and
provide life comfort in intelligent building scenarios. Figure 5 shows the result of the
proposed model for 30 iterations.
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Figure 5. Change in the mean value of objective function during 30 iterations.

As shown in Figure 5, the heat transfer coefficients of southeast, northwest, and facing
the exterior wall are 0.66, 0.8, 6.1, and 3.6, respectively. Therefore, it can provide a reference
for the selection of exterior wall insulation materials. At this time, the power consumption
is 9.2, the absolute value of the predicted average number of predicted mean vote (PMV)
is 1.9, and the cost of external wall insulation materials and windows is 452,600 yuan.
Because it is difficult to achieve the best state of building wasting resources, cost, and
thermal comfort in practical projects, a niche genetic algorithm is used to provide some
reference for intelligent building design so that the three can reach a relatively good state.
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Tables 2 and 3 summarize the heat transfer coefficient and various parameters related to
power consumption, respectively.

Table 2. Heat transfer coefficients for different exterior wall directions.

Exterior Wall Direction Heat Transfer Coefficient (k)

Southeast (k1) 0.66
Northwest (k2) 0.8

Facing Exterior (k3) 6.1
Facing Exterior (k4) 3.6

Table 3. Various parameters related to power consumption.

Parameters Values

Power Consumption 9.2

PMV Value 1.9 (absolute value)

Cost of Insulation Materials 452,600 yuan

From the simulation results in Figure 6, it can be seen that the multi-objective opti-
mization theory and the principle of genetic algorithm choose the heat transfer coefficient
of the building exterior wall and window as the optimization variables, so as to achieve the
goals of lower building waste of resources, enclosure cost, and better thermal comfort.

Figure 6. Heat transfer coefficients of exterior walls in the window.

Table 3 shows the cost and value of different parameters including general power
consumption, PMV value, and cost of insulation materials.

When a niche genetic algorithm is used to solve optimization problems, the algorithm
does not limit the number of identical individuals or similar individuals. However, when
niche technology is introduced into genetic algorithms, the number of them will be limited
in order to produce more kinds of different optimal solutions. For an individual, how many
kinds and how many similar individuals exist in its vicinity can be measured, and this
measurement is called a niche number.

Table 4 shows the evaluation data of different zonal areas within the intelligent build-
ing environment such as the living room, bedroom, bathroom, kitchen, and offices. We
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evaluated the security measures of IoT devices implemented in an intelligent building con-
text whose value can be high, medium, or low. The energy optimization score is evaluated
in terms of percentages ranging from 0 to 1. The occupant comfort rating is analyzed in the
range of 1 to 5.

Table 4. Intelligent building zonal areas analysis.

Building Zone IoT Security Level Energy
Optimization Score

Occupant Comfort
Rating

Living room High 0.85 4.2

Bedroom Medium 0.75 4.5

Kitchen Low 0.82 4

Office High 0.78 4.3

Bathroom Medium 0.77 4.4

Energy optimization of intelligent buildings is evaluated by utilizing the power of IoT
devices and niche genetic algorithms. The result of our proposed method is thoroughly
compared with very similar work found in the literature such as the work proposed by Xia
Y et al. [12] and Zhao X F et al. [13], as shown in Figure 7. It is clearly seen in the figure
that our proposed approach optimized the energy level in intelligent buildings context
more than already proposed approaches. The different zonal areas of the building are taken
into consideration for energy optimization by different researchers. They used different
approaches toward the energy optimization of these areas. The figure clearly states that our
proposed method optimized the resources of all mentioned areas of intelligent buildings at
a rate of higher than 80%.

Figure 7. Energy optimization score of intelligent buildings.

Figure 8 shows the occupant comfortability level in the intelligent buildings’ environ-
ment after the energy optimization. The basic aim of checking the occupant comfort level
is to check whether the energy optimization and security measure of IoT devices affects
their comfort or not. We compared our proposed work with very similar work proposed
by Xia Y et al. [12] and Zhao X F et al. [13]. We measure occupant comfortability on a scale
of 1 to 5, whereas previous studies measured it on a scale of 1 to 10. We adjusted our scale
to make comparisons easier. It can be seen from Figure 8 that in most of the zonal areas
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of intelligent buildings, we are the winner. However, in some areas, the score of the prior
work is higher. The occupant comfort level is evaluated in different areas of the building
including the bedroom, living room, kitchen, office, and washroom by different authors.
They utilized different optimization approaches for this and obtained quite satisfactory
results. It can be seen in Figure 8 that the level of comfortability of all authors’ proposed
methods had a rate greater than 4. However, none of them are clearly winning, as one
approach shows a higher comfortability level in one area, while the other in another area.

Figure 8. Occupant comfortability in the intelligent buildings.

The value of the fitness function over 90 generations is depicted in Figure 9 for the
niche genetic algorithm. In this study, we used a specialized evolutionary algorithm to
identify the best possible solution to the problem of energy consumption in intelligent
buildings. The lowest value in the range (zero), if the fitness function monitors energy
consumption that we want to reduce, would be considered the “best” value. In this
scenario, better performance or a more optimal solution is indicated by a lower fitness
rating. However, we also want to make sure that the occupants of intelligent buildings are
comfortable, so our goal is not just to reduce the energy consumption of these buildings.
Therefore, the midpoint between the maximum and minimum would be the optimal value.

Table 4 shows the results of the partial optimization calculation after using the adap-
tive optimization control model. After calculation and analysis, the electric power of the
optimized system is generally reduced by more than 8% compared with that before opti-
mization, which indicates that the adaptive optimization control model of the air intelligent
building system can effectively optimize the operation parameters of the energy-saving
system and achieve the purpose of energy saving, as shown in Table 5 below.

Figure 10 shows the power consumption rate before and after optimization. However,
it is still difficult to directly interpret how much energy is saved after the optimization.
Therefore, in Figure 11 we have shown the power reduction in percentage, which provides
ease of interpretation.



Appl. Sci. 2023, 13, 10717 17 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21 
 

proposed methods had a rate greater than 4. However, none of them are clearly winning, 
as one approach shows a higher comfortability level in one area, while the other in another 
area. 

 
Figure 8. Occupant comfortability in the intelligent buildings. 

The value of the fitness function over 90 generations is depicted in Figure 9 for the 
niche genetic algorithm. In this study, we used a specialized evolutionary algorithm to 
identify the best possible solution to the problem of energy consumption in intelligent 
buildings. The lowest value in the range (zero), if the fitness function monitors energy 
consumption that we want to reduce, would be considered the “best” value. In this sce-
nario, better performance or a more optimal solution is indicated by a lower fitness rating. 
However, we also want to make sure that the occupants of intelligent buildings are com-
fortable, so our goal is not just to reduce the energy consumption of these buildings. 
Therefore, the midpoint between the maximum and minimum would be the optimal 
value. 

 
Figure 9. The value of fitness function over 90 generations. 

0

1

2

3

4

5

6

Living room Bedroom Kitchen Office Bathroom

Our proposed Method Xia Y et al [12] Proposed Methods

Zhao X F et al. [13] Proposed method

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

Fi
tn

es
s 

Va
lu

e

Generation

Figure 9. The value of fitness function over 90 generations.

Figure 10 shows the total amount of power consumed before and after applying
the niche optimization in kilowatt hours. Here, the horizontal axis represents various
numbers of samples taken over different time periods of 8 to 8:30. Similarly, the vertical
axis represents the total amount of power consumed in each time period.

Figure 10. Total power consumption before and after optimization.

In order to effectively improve the efficiency of energy utilization and achieve the
goal of energy saving and emission reduction, a wind power generation system is set up
in the intelligent building. The energy generated during the operation of the system can
share 1% of the daily waste of resources. After the calculation of the system, it is found that
the system can provide 197,500 kilowatt hours of power supply for the equipment on the
sightseeing floor every year, which not only reduces the cost of electric energy but also,
as typical clean energy, the environmental impact of its energy production is very small.
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The intelligent building is partially integrated with renewable energy power generation
devices, which provides auxiliary support for meeting the power demand of intelligent
buildings. As the height of the intelligent building exceeds 600 m, the wind level is high.
After measurement, it is found that the daily average wind speed is as high as 9 m/s. In
order to make full use of the advantages of wind energy, it is proposed to install vertical
axis wind turbines. Because this floor can provide all-around wind energy without dead
angle, the advantage of 360◦ utilization of wind energy by vertical axis wind turbine can
be fully highlighted here. In a large number of practical experiences, the reliability and
stability of the equipment have been fully verified. As for the selection of specific models,
we chose the second-generation vertical axis wind turbine on the market, with a life cycle
of 7 years, low overall wasting of resources, and high power generation efficiency, which
can effectively meet the auxiliary power supply load demand of intelligent buildings as
shown in Figure 12.
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Table 5. Comparison and analysis of system wasting of resources calculation results before and after
algorithm optimization.

Number Sampling
Moment

Total Power before
Optimization

Optimized
Total Power

Total Power
Reduction Rate

1 8:00 358.77 346.12 4.52%

2 8:05 364.22 358.22 5.22%

3 8:10 359.47 334.12 4.23%

4 8:15 352.77 345.16 5.14%

5 8:20 364.52 359.41 10.45%

6 8:25 347.18 341.18 6.15%

7 8:30 358.45 352.68 5.77%

At the same time, the high-temperature flue gas generated by the startup genera-
tor set during its operation is purified, and then the waste heat boiler and Huankeng
refrigeration unit are used to meet various hot water needs of intelligent buildings. This
typical combined cooling, heating, and power supply system has greatly improved the
comprehensive utilization effect of resources, and its important role in energy saving and
emission reduction deserves our due recognition. In the specific application process, the
system generates electricity to supply the electricity demand of intelligent buildings and
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completes the waste heat recovery via the flue gas–water heat exchanger, thus providing
necessary energy support for the operation of the Huanhuakeng absorption refrigerator. In
the process of operation, the low-area energy center will provide hot steam for the low-area
energy-consuming units. At the same time, it is also responsible for chilled water supply
services. Two energy centers can provide power load during the power failure period and
provide a backup cold source for users in the form of a lease. In the normal operation
state, the generator set is merged into the mains network; however, after a fault occurs, the
standby power supply can be provided for the intelligent building by switching the line to
ensure the normal power supply of the intelligent building.

The experimental results show that the energy-saving optimization control of in-
telligent building via the niche genetic algorithm greatly improves the comprehensive
utilization effect of resources, the convergence speed of resources in intelligent building
is faster, the diversity of Pareto’s solution is higher, and the objective function reaches the
global maximum optimization value, which has a good energy-saving optimization effect
of intelligent building.

Figure 12. Total power utilization diagram.

5. Conclusions and Future Works

IoT is the primary technology that powers the data collection and intelligent control
systems in intelligent buildings. IoT devices have been integrated more and more recently
in almost every smart environment in general and intelligent building environments in
particular. The integration of these devices not only provides ease but also automates
the process and reduces human effort. However, it poses some serious issues concerning
security that directly affect energy optimization and user comfort. The energy optimization
of intelligent buildings is an important part of green and sustainable buildings. Therefore,
in this paper, we worked on the energy optimization of intelligent buildings by taking the
security of the IoT devices into account. We, first of all, defined various variables concerned
with the security of IoT devices and energy optimization of intelligent buildings. With the
help of IoT gadgets such as sensors and other IoT control systems, we collected data on
these variables. After that, we applied one of the multi-objective evolutionary algorithms
called the niche genetic algorithm for security insurance and energy optimization. This
paper not only focused on the security of IoT devices and energy optimization but also on
the comfort of occupants of intelligent buildings. We proposed a state-of-the-art technique
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to enhance life comfortability inside intelligent buildings by consuming the least amount of
energy possible. Our presented method makes a tradeoff between energy-saving optimal
control technology and IoT security of intelligent buildings, and this study discovered an
optimal solution for the problem of resource waste in intelligent buildings. Compared with
traditional energy-saving design methods, our proposed method significantly improves
the IoT devices’ security and tradeoff between energy consumption and residence com-
fortability. The proposed security solutions will need to be improved and expanded in the
future to keep up with the development of IoT threats and vulnerabilities in intelligent
buildings. Additionally, by investigating adaptive control techniques and using cutting-
edge technologies such as edge computing and 5G networks, researchers can go further
into optimizing energy use. As part of ongoing efforts, substantial real-world case studies
and pilots can be carried out to verify the viability of the suggested approaches in various
intelligent building situations and to gather useful information for broader application.
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