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Abstract: The accurate analysis of multi-scale flame development plays a crucial role in improving
firefighting decisions and facilitating smart city establishment. However, flames’ non-rigid nature and
blurred edges present challenges in achieving accurate segmentation. Consequently, little attention is
paid to extracting further flame situation information through fire segmentation. To address this issue,
we propose Flame-SeaFormer, a multi-scale flame situation detection model based on the pixel-level
segmentation of visual images. Flame-SeaFormer comprises three key steps. Firstly, in the context
branch, squeeze-enhanced axial attention (SEA attention) is applied to squeeze fire feature maps,
capturing dependencies among flame pixels while reducing the computational complexity. Secondly,
the fusion block in the spatial branch integrates high-level semantic information from the contextual
branch with low-level spatial details, ensuring a global representation of flame features. Lastly, the
light segmentation head conducts pixel-level segmentation on the flame features. Based on the flame
segmentation results, static flame parameters (flame height, width, and area) and dynamic flame
parameters (change rates of flame height, width, and area) are gained, thereby enabling the real-time
perception of flame evolution behavior. Experimental results on two datasets demonstrate that
Flame-SeaFormer achieves the best trade-off between segmentation accuracy and speed, surpassing
existing fire segmentation methods. Flame-SeaFormer enables precise flame state acquisition and
evolution exploration, supporting intelligent fire protection systems in urban environments.

Keywords: axial attention mechanism; fire image segmentation; deep learning model;
multi-scale feature fusion; flame situation detection

1. Introduction

Fire is a pervasive and hazardous threat that poses significant risks to public safety and
social progress. For example, for high-rise buildings with dense populations, fires cause
incalculable damage to the personal and property safety of residents. Forest fires engender
substantial economic losses, air pollution, environmental degradation, and risks to both
humans and animals. As shown in Figure 1, typical fire incidents include the Australian
forest fires, the Notre Dame Cathedral fire, the parking shed fire in Shanghai, China, and the
industrial plant fire in Anyang, China. Australia experienced devastating wildfires lasting
for several months between July 2019 and February 2020, claiming the lives of 33 individuals
and resulting in the death or displacement of three billion animals. On 22 December 2022,
a sudden fire engulfed a parking shed in a residential area in Shanghai, resulting in the
destruction of numerous vehicles. In secure areas such as residential housing, flames
appear seconds after vehicle short circuits or malfunctions. Within approximately three
minutes, the flame temperature can escalate to 1200 ◦C. High-temperature toxic gases
rapidly permeate corridors and rooms, causing people to suffocate to death. Shockingly,
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a vehicle fire takes a person’s life in as little as 100 s. Therefore, efficient fire prevention and
control measures can effectively reduce casualties and property losses.

Figure 1. Process of dealing with fire incidents.

Fire situation information plays a crucial role in guiding fire rescue operations by
providing essential details such as the fire location, fire area, and fire intensity. As shown
by the flame temperature data captured by sensors [1], shown in the subsequent Figure 2a,
the evolution of a fire typically encompasses three distinct stages: the fire initiation stage,
violent burning stage, and decay extinguishing stage. During the stage of fire initiation,
the flame burns locally and erratically, accompanied by relatively low room temperatures.
This phase presents an opportune time to effectively put out the fire. In the violent burning
stage, the flame spreads throughout the entire room, burning steadily and causing the
room temperature to rapidly rise to approximately 1000 ◦C. Extinguishing the fire becomes
challenging during this stage. In the decay stage, combustible materials are consumed, and
fire suppression efforts take effect. However, it is crucial to note that the fire environment
undergoes rapid and dynamic changes during these stages. This renders traditional
sensor-based detectors inadequate, primarily due to limitations in detection distance and
susceptibility to false alarms triggered by factors such as light and dust. Moreover, these
detectors are incapable of providing a visual representation of the fire scene, hindering
comprehensive situational awareness.

Figure 2. Flame parameters trends during combustion. Based on two fire videos captured in the
experimental scenario, flame parameters for both fire processes were computed. Similar to the
sensor-based approach, flame parameters derived from visual data exhibit a three-stage combustion
pattern. It is evident that the vision-based fire detection method can be extended to respond rapidly
to real-world fire incidents.
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Fire detection technology based on visual images offers inherent advantages. On
the one hand, the portability and anti-interference of camera equipment enhance the
reliability of visual fire detection. On the other hand, fire situation parameters derived
from visual methods such as the flame height, width, and area are significant to fire
detection and control [2]. Figure 2 illustrates the acquisition of flame situation parameters
through visual fire detection technology. In the upper part of Figure 2, video_1 and
video_2 represent two fire video sequences obtained in the experimental scene, in which
the images were acquired through the acquisition device in Figure 3a. For the two fire
videos, 45 frames of images (including three processes of combustion) were selected from
each for flame parameter analysis. These image samples were subjected to the calculation
process described in Figure 3b to obtain the flame height, width, and area in each frame
of image, as well as the image contrast. The obtained flame parameter trends are shown
in the middle of Figure 2. Initially, the size of the fire region is small. As the flames
spread, the values of the flame parameters rapidly increase until they reach a stable state.
After complete combustion, the flames gradually diminish, resulting in a decrease in each
parameter value. Figure 2a shows the flame temperature data detected by Zhu et al. using
sensors at different locations in their experimental scenario [1]. They observed that the
fire process also exhibited three-stage characteristics. The five sub-figures show that the
vision-based fire detection method captures flame motion patterns similar to those obtained
through sensor-based methods. The visual fire detection method can be extended to
realistic fire scenes, such as the home fire scene in the lower part of Figure 2. With the rapid
development of computer vision technology and intelligent monitoring systems, vision-
based methods offer faster response times and lower misjudgment rates than traditional
sensors. The strength significantly contributes to accelerating the intelligent development
of fire safety in urban areas.

Figure 3. Schematic diagram of experimental setup and flame parameters.

In recent years, scholars have extensively explored fire detection methods from the
perspectives of image classification, object detection, and semantic segmentation. The
method based on image classification aims to determine whether smoke or flame is present
in an image. Zhong et al. optimized a convolutional neural network (CNN) model
and combined it with the RGB color space model to extract relevant fire features [3].
Dilshad et al. proposed a real-time fire detection framework called E-FireNet, specifically
designed for complex monitoring environments [4]. The object detection-based fire de-
tection method aims to annotate fire objects in images using rectangular bounding boxes.
Avazov et al. employed an enhanced YOLOv4 network capable of detecting fire areas by
adapting to diverse weather conditions [5]. Fang et al. accelerated the detection speed by
extracting key frames from a video and subsequently locating fires using superpixels [6].
The fire detection method based on semantic segmentation detects the fire objects’ contours
by determining whether each pixel in the fire image is a fire pixel. This approach has
potential to gain fine-grained parameter information (such as flame height, width, and area)
in complex fire scenarios. De et al. proposed a rule-based color model, which employed
the RGB and YCbCr color spaces to allow the simultaneous detection of multiple fires [7].
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Wang et al. introduced an attention-guided optical satellite video smoke segmentation
network that effectively suppresses the ground background and extracts the multi-scale
features of smoke [8]. Ghali et al. utilized two vision-based variants of Transformer
(TransUNet and MedT) to explore the potential of visible spectral images in forest fire seg-
mentation [9]. Many fire segmentation methods have achieved notable results. However,
flames exhibit variable shapes and sizes, and their edges are blurred, posing challenges to
accurate segmentation. Therefore, little attention is paid to further mining fire situation
information through fire segmentation.

To solve the issue, we propose a flame situation detection method called Flame-
SeaFormer, which utilizes the pixel-level segmentation results of images to obtain flame
parameters. By analyzing these flame parameters, valuable insights into fire propagation
behavior are derived, offering crucial references for firefighting decision making and
enabling the development of intelligent fire safety systems. The main contributions of this
paper are as follows.

• In the context branch, squeeze-enhanced axial attention (SEA attention) squeezes the
fire feature map into compact column/row information and computes self-attention to
acquire the dependencies between flame pixels. In the spatial branch, the fusion block
fuses low-level spatial information and high-level semantic information to obtain
a more comprehensive flame feature.

• The light segmentation head maps the flame features to the pixel-level flame seg-
mentation results using a lightweight convolution operation. Based on the flame
segmentation mask, flame parameters (flame height, width, area, rate of change of
flame height, and so on) are calculated to analyze the flame situation.

• The experimental results on both private and public datasets show that
Flame-SeaFormer outperforms existing fire segmentation models. It extracts reli-
able and valid flame state information and mines flame development dynamics to
support intelligent firefighting.

The rest of the paper is organized as follows. In Section 2, the related work on fire
segmentation techniques is reviewed. Section 3 provides a detailed description Flame-
SeaFormer. In Section 4, experiments are described to demonstrate the effectiveness of
Flame-SeaFormer. Finally, conclusions are drawn in Section 5.

2. Related Work

Fire segmentation detects fire pixels in fire images by separating the foreground of
smoke or flame from the background. It avoids using bounding boxes and focuses on
delineating distinct boundaries. There are two categories of fire segmentation methods,
feature analysis-based methods and deep learning-based methods, as shown in Figure 4.

Figure 4. Overview of relevant research on fire segmentation.

Feature analysis-based methods: Fire objects exhibit rich visual characteristics, en-
compassing both static features like color, texture, and shape, and dynamic features such



Appl. Sci. 2023, 13, 11088 5 of 24

as diffusion, displacement, and flicker [10]. Researchers have employed distinct methods
to extract these features and construct comprehensive feature representations to enable
effective recognition. Celik et al. employed the YCbCr color space instead of RGB to
construct a universal chromaticity model for flame pixel classification [11]. Yang et al.
fused two-dimensional Otst and HSI color gamut growth to handle reflections and smoke
areas, efficiently segmenting suspected fire regions [12]. Ajith et al. combined optical
flow, scatter, and intensity features in infrared fire images for discriminative segmentation
features [13]. Chen et al. presented a fire recognition method based on enhanced color
segmentation and multi-feature description [14]. The approach employs the area coefficient
of variation, centroid dispersion, and circularity of images as statistics to determine the
optimal threshold in fine fire segmentation. Malbog et al. compared the Sobel and Canny
edge detection techniques, finding that Canny edge detection suppresses noisy edges better,
achieving higher accuracy and facilitating fire growth detection [15].

Deep learning-based methods: Deep learning methods have gained prominence in
computer vision across various application domains [16]. These methods utilize deep
neural networks to automatically learn feature representations through end-to-end su-
pervised training. Researchers have made substantial progress by improving classi-
cal CNN for fire segmentation. Yuan et al. proposed a CNN-based smoke segmen-
tation method that fuses information from two paths to generate a smoke mask [17].
Zhou et al. employed Mask RCNN to identify and segment indoor combustible ob-
jects and predict the fire load [18]. Harkat et al. applied the Deeplab v3+ framework
to segment flame areas in limited aerial images [19]. Perrolas et al. introduced a multi-
resolution iterative tree search algorithm for flame and smoke region segmentation [20].
Wang et al. selected four classical semantic segmentation models (Unet, Deeplab v3+,
FCN, and PSPNet) with two backbones (VGG16 and ResNet50) to analyze forest fires [21].
They found the Unet model with the ResNet50 backbone to have the highest accuracy.
Frizzi et al. introduced a novel CNN-based network for smoke and flame detection in
forests [22]. The network generates accurate flame and smoke masks in RGB images, reduc-
ing false alarms caused by clouds or haze. Attention mechanisms have also been employed,
such as in ATT Squeeze Unet and Smoke-Unet, to focus on salient fire features [23,24].
Wang et al. introduced Smoke-Unet, an improved Unet model that combines an attention
mechanism and residual blocks for smoke segmentation [24]. It utilizes high-sensitivity
bands and remote sensing indices in multiple bands to detect forest fire smoke early.
CNN-based models are effective for fire detection and segmentation, but they struggle in
capturing global image information. Transformer-based models, with their self-attention
mechanism, excel at capturing global features. Chali et al. employed two Transformer-
based models (TransUnet and TransFire) and a CNN-based model (EfficientSeg) to identify
precise fire regions in wildfires [25].

Existing fire segmentation algorithms are proficient in identifying flame pixels in
video images, but accurately perceiving intricate contour semantics of flames presents
a challenge, limiting the exploration of fire situation information. To address the problem,
this paper employs SEA attention to capture long-range dependencies between flame pixel
semantics and a fusion block to fuse low-level spatial and high-level semantic information.
This refined representation of the flame’s contour enables a more detailed exploration and
analysis of fire situation information.

3. Method

In the following sections, the flame situation detection task is defined. Then, the Flame-
SeaFormer model is described in detail. Specifically, the general semantic segmentation
model SeaFormer is introduced as an integral part of the Flame-SeaFormer framework.
Moreover, a computational procedure is described to gain several static and dynamic
flame parameters.
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3.1. Task Definition

The flame situation detection method based on visual pixel-level segmentation aims
to identify flame contours to extract flame information by determining whether each pixel
in the fire image corresponds to a flame pixel.

The input of the task is a fire image captured from the original video, denoted as
I ∈ RHI×WI×CI , where HI , WI , and CI represent the height, width, and number of channels
of the image, respectively.

The output of the flame segmentation method SeaFormer is a mask image
Mask ∈ {0, 1}HI×WI , where 0 corresponds to background and 1 denotes flame. From
the segmentation mask, the set of contour points of the flame objects C f lame is obtained.
These points serve as the basis in calculating various flame parameters. The static flame
parameters include the flame height, width, and area, while the dynamic flame parameters
encompass the rates of change in the flame height, width, and area. These parameters serve
as outputs provided by the Flame-SeaFormer model.

3.2. The Framework of Flame-SeaFormer

Squeeze-Enhanced Axial Transformer (SeaFormer) [26] is a lightweight semantic segmen-
tation algorithm for general domains. This model incorporates a new attention mechanism
characterized by the squeeze axial and detail enhancement features, making it suitable for craft-
ing cost-effective semantic segmentation architectures. In the context of flame segmentation,
SeaFormer establishes self-adaptive global dependencies among flame pixels in the horizontal
and vertical directions. This capability enables the accurate determination of flame pixels’
presence within their respective neighborhoods. This paper introduces Flame-SeaFormer,
a flame situation detection model based on the pixel-level segmentation of visual images. It
modifies specific parameters (such as the number of segmentation categories) of the SeaFormer
model to suit the research task. The difference between Flame-SeaFormer and SeaFormer is
shown in Table 1. SeaFormer focuses on the design of a semantic segmentation model, while
Flame-SeaFormer places a greater emphasis on the further application of the model to analyze
flame situations and explore flame combustion patterns. The overall framework of Flame-
SeaFormer is illustrated in Figure 5. Firstly, for input fire video sequences containing complete
combustion processes (top-left of Figure 5), the SeaFormer model (middle-left of Figure 5)
extracts prominent fire features from the images and outputs pixel-level segmentation results
for each image (bottom-left of Figure 5). Secondly, following the calculation of the flame
parameters, static and dynamic flame parameters at different time points are obtained. Finally,
based on the predicted flame parameters, flame parameter trend curves are plotted (right
side of Figure 5; for spatial constraints, only static flame parameters are displayed). Then,
a flame situation analysis is conducted. It consists of three main parts: the flame segmentation
model SeaFormer, the inversion of static flame parameters, and the inversion of dynamic
flame parameters. Subsequently, three parts of the model are introduced.

Table 1. The differences between Flame-SeaFormer and SeaFormer.

Item SeaFormer Flame-SeaFormer (Ours)

Application domain General domain Fire domain

Trend analysis - Flame situation analysis

Static flame
parameter

mining

Flame height - X
Flame width - X
Flame area - X

Dynamic
flame

parameter
mining

Flame height
change rate - X

Flame width
change rate - X

Flame area
change rate - X
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Table 1. Cont.

Item SeaFormer Flame-SeaFormer (Ours)

Purpose Static segmentation
Static flame segmentation

and dynamic flame
situation detection

Point of interest

Focusing on the internal
design of the model to

achieve the best trade-off
between segmentation
accuracy and latency

Focusing on applying the
model to specific real-world

scenarios and conducting
result analysis to explore

potential patterns

Figure 5. The framework of multi-scale flame situation detection model Flame-SeaFormer. For
input fire images, the SeaFormer model produces pixel-level segmentation results. Based on the
segmentation results of fire video sequences, the flame parameter inversion section calculates static
and dynamic flame parameters and then analyzes the development trends of the flames. Due to
space limitations, only the trends of the flame static parameters of the five combustion processes are
shown here.

3.2.1. Flame Segmentation Model: SeaFormer

As shown in Figure 5, SeaFormer consists of four modules: the shared fire feature
extractor, context branch, spatial branch, and light segmentation head. Firstly, the shared
fire feature extractor is employed to extract low-level fire feature maps. Secondly, both the
context branch and spatial branch share the feature maps. The context branch captures
global context information through axial attention, modeling features using axial attention
mechanisms to obtain long-range semantic information dependencies. The spatial branch
fuses low-level spatial information with high-level semantic information through the
fusion block to achieve more accurate fire features. Finally, the light segmentation head
employs lightweight convolution operations to map the fused features to the pixel-level
fire segmentation results. The following sections will provide detailed descriptions of these
four modules.
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(1) Shared fire feature extractor: SeaFormer adopts MobileNetV2 as the feature extrac-
tion network, leveraging its high efficiency and accuracy while operating within
limited computing resources. The shared fire feature extractor consists of a regular
convolution with a step size of 2 and four MobileNet blocks. Given an input image

I, the extractor extracts fire features and produces a feature map xs ∈ R
HI
r ×

WI
r ×C′ ,

where r is the scaling factor of the feature map and C′ is the number of channels. The
operation of the fire feature extraction process is expressed as

xs = FE(I) (1)

where FE denotes the fire feature extraction operation.
(2) Context branch: The context branch is designed to capture more global and fine-

grained context information from the feature map xs, as shown in the red branch of
Figure 5. To achieve a good trade-off between segmentation accuracy and inference
speed, the SeaFormer layer is introduced in the last two stages of the context branch. It
consists of a squeeze-enhanced axial attention block (SEA attention) and feed-forward
network (FFN), as shown in Figure 6a.

Figure 6. Illustration of the three major modules in SeaFormer. (a) SeaFormer layer consists of SEA
attention and an FFN. (b) Fusion block is utilized to fuse high-resolution fire feature maps in the
spatial branch and low-resolution fire feature maps in the context branch. (c) Light segmentation
head consists of two convolution layers.

As depicted in Figure 7, SEA attention employs concise squeeze axial attention for
global semantic extraction, while using an efficient detail enhancement kernel based on
convolution to supplement local details. Squeeze axial attention and the detail enhancement
kernel are described separately.

Figure 7. Schematic illustration of SEA attention. SEA attention includes detail enhancement kernel
and squeeze axial attention. The symbol ⊕ indicates an element-wise addition operation. Mul
means multiplication.
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Squeeze axial attention: For the feature maps x ∈ RH×W×C obtained in the previous
step for each SeaFormer layer, matrix transformation is applied to derive the query, key,
and value, which is expressed as

(Qs, Ks, Vs) = (Ws
q , Ws

k , Ws
v)x (2)

where Qs ∈ RH×W×Cqk , Ks ∈ RH×W×Cqk , and Vs ∈ RH×W×Cv represent the query, key,
and value, respectively. Ws

q ∈ RCqk×C, Ws
k ∈ RCqk×C, and Ws

v ∈ RCv×C are learnable
weight matrices. Firstly, the query matrices are horizontally and vertically compressed
by averaging:

Qs
h =

1
W

(
Qs→(Cqk ,H,W)1W

)→(H,Cqk)
(3)

Qs
v =

1
H

(
Qs→(Cqk ,W,H)1H

)→(W,Cqk)
(4)

where z → (·) denotes element-wise multiplication, and 1m ∈ Rm is a vector with all
elements equal to 1. The compression operation on Q is also performed on K and V,
obtaining Qs

h ∈ RH×Cqk , Ks
h ∈ RH×Cqk , Vs

h ∈ RH×Cv , Qs
v ∈ RW×Cqk , Ks

v ∈ RW×Cqk ,
and Vs

v ∈ RW×Cv . Secondly, a multi-head attention mechanism is employed to self-
adaptively obtain the dependency relationships between horizontal and vertical flame
pixels. Additionally, pixel-level addition is utilized to fuse the horizontal and vertical fire
feature information to obtain a global fire feature. The feature value f s(i, j) at position (i, j)
within this feature map is expressed as follows:

f s(i, j) =
H

∑
p=1

softmaxp

(
(Qs

h(i) + rq
h(i))

T(Ks
h(p) + rk

h(p))
)

Vs
h(p)

+
W

∑
p=1

softmaxp

(
(Qs

v(j) + rq
v(j))

T(Ks
v(j) + rk

v(j))
)

Vs
v(j)

(5)

where position embedding rq
h, rk

h ∈ RH×Cqk are introduced to make Qs
h and Ks

h perceive their
positions in the compressed axial feature. These position embeddings are obtained through
linear interpolation from the learnable parameters Bq

h, Bk
h ∈ RL×Cqk , where L is a constant. In

the same way, rq
v, rk

v ∈ RW×Cqk is applied to Qs
v, Ks

v. Finally, a 1× 1 convolution operation is
employed to linearly transform and adjust the input feature map in the channel dimension.

Fs = Conv( f s) (6)

where Conv means the convolution operation.
Detail enhancement kernel: To compensate for the loss of local details caused by the

compression operation, an auxiliary kernel based on convolution is introduced to enhance
the spatial details. As shown in Figure 5, another query, key, and value set is obtained from
the feature map x.

(Qe, Ke, Ve) = (We
q , We

k , We
v)x (7)

where We
q ∈ RCqk×C, We

k ∈ RCqk×C, and We
v ∈ RCv×C are learnable weight matrices. Firstly,

the three matrices are concatenated in the channel dimension.

f e = Concat(Qe, Ke, Ve) (8)

where Concat represents the concatenation operation. Then, the concatenated feature
matrix is processed through a block composed of a 3× 3 deep convolutional layer and
a batch normalization (BN) layer. This step enables the aggregation of local details from
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Qe, Ke, Ve. Finally, a linear projection is employed to reduce the channel from (2Cqk + Cv)
to C, generating the detail enhancement weight. The last two steps are shown as follows:

Fe = Conv(ReLU(Conv( f e))) (9)

where ReLU represents the activation function, and each convolution operation here is
followed by a BN operation.

The squeeze-enhanced feature map is obtained through the multiplication of the global
semantic features Fs extracted from squeeze axial attention and the detail enhancement
features Fe derived from the detail enhancement kernel:

Fse = Mul(Fs, Fe) (10)

where Mul means the bit-wise multiplication operation. The SeaFormer layer feeds Fse

into the FFN to produce the output Fl , enhancing the non-linear modeling capability of the
model. To preserve important aspects of the original feature information and facilitate the
transfer and fusion of fire feature information, residual connections are employed after the
SEA attention and the FFN operations. This connection combines the learned features with
the original features, ensuring the incorporation of valuable contextual information. The
above operations can be summarized as follows:

Fl = Residual(x, Fse, FFN(Fse)) (11)

where Residual means the residual connection, and FFN represents the feed-forward
neural network.

(3) Spatial branch: The spatial branch is designed to obtain high-resolution spatial in-
formation. Similar to the context branch, the spatial branch also operates on the
feature map xs. However, early convolutional layers tend to contain abundant spatial
information but lack higher-level semantic information. To address this, the fusion
block integrates features from the context branch with the spatial branch, combining
high-level fire semantic and low-level fire spatial information. As shown in the blue
branch of Figure 5, the spatial branch module mainly consists of two fusion blocks.
The fusion block is shown in detail in Figure 6b. In the first fusion block, the low-level
feature xs undergoes a 1× 1 convolutional layer and a BN layer to generate a feature
to be fused.

x′ = Conv(xs). (12)

Then, the high-level feature map derived from the context branch undergoes a se-
quence of operations, comprising a 1 × 1 convolutional layer, a BN layer, and a
sigmoid layer. The processed feature map is upsampled to match the high resolution
via bilinear interpolation, producing a semantic weight.

xc = Up
[
Sigmoid

(
Conv(Fl)

)]
(13)

where Up is the upsampling operation and Sigmoid is the activation function. Fi-
nally, the semantic weight from context branch is element-wise multiplied with the
feature from the spatial branch to obtain the fire feature that contains rich spatial and
semantic information.

Fcs = x′ · xc. (14)

The fusion block enables low-level spatial features to acquire high-level semantic
information, thereby improving the accuracy of flame segmentation.

(4) Light segmentation head: The output feature from the last fusion block is directly
fed into the light segmentation head, as illustrated in Figure 6c. To achieve efficient
inference, the segmentation head consists of two convolutional layers, each preceded
by a BN layer. The feature from the first BN layer undergoes an activation layer.
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Subsequently, the feature is further processed by another convolutional layer, which
maps the feature to the original dimensions of the input image. This process generates
a semantically rich flame feature.

Flames = Conv(ReLu(Conv(Fcs
2 ))) (15)

where Fcs
2 is the output of the second fusion block. Finally, a fully connected layer is

utilized to assign a category label ŷij for each pixel.

ŷij = FC(Flames) (16)

where FC denotes the fully connected operation. By aggregating the category la-
bels of all pixels across the entire image, the flame semantic segmentation result
Mask ∈ {0, 1}HI×WI is generated.

3.2.2. Static Flame Parameter Inversion of Individual Combustion Image

Static parameter inversion focuses on deducing static flame parameters, including
the flame height, width, and area, by analyzing flame edge information based on image
segmentation results. Image contrast is omitted from this analysis due to its susceptibility
to external factors such as lighting and shadows.

Firstly, the coordinates of all non-zero elements are obtained from the binary mask image:

S f lame = {(ai, bi) | Mask(ai, bi) = 1} (17)

where (ai, bi) is the position of the i-th non-zero element in the mask. Then, the coordinates
are sorted in ascending order, with priority given to vertical coordinates. In the case of the
same vertical coordinates, ascending order is applied to horizontal coordinates:

S′f lame = sort(S f lame). (18)

The sorted sequence of flame pixels is then used to extract the flame contour. Starting
with the first point (x1, y1) in S′f lame, it is considered the initial point on the flame contour
and subsequently removed from the sequence. The remaining points are searched, and any
point (xj, yj) with xj = x1 or yj = y1 is added to the contour coordinate set and removed
from the sequence. This process continues until the sequence is empty. The extraction of
contour points is expressed as

C′f lame = contour(S′f lame, (x1, y1)) (19)

where contour represents the method of extracting contour points. C′f lame denotes the initial
flame contour coordinate set, which serves as the basis for the calculation of the subsequent
flame width, height, and area.

The contour C′f lame from the fire segmentation results may not accurately fit the real
contour of the flame. To address this, a fusion process is employed to enhance the accuracy
of the flame height, width, and area values. Firstly, Canny edge detection is performed on
the input image I to obtain the set of edge E f lame:

E f lame = Canny(I). (20)

For every pixel p in E f lame, if it is near the pixels in C′f lame, it is added to C f lame. The pro-
cess is iterated continuously until the fused contour C f lame = {(x1, y1), (x2, y2), . . . , (xn, yn)}
is obtained, where n is the number of contour points.
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Based on C f lame, the flame height, width, and area can be calculated. The height of
a flame object is defined as the difference between the maximum and minimum values of
the y-coordinates in the sequence of coordinate points along the flame’s contour:

H f lame = max(Y)−min(Y) (21)

where Y represents the set of y-coordinates of the flame contour points, max means to
take the maximum value, and min means to take the minimum value. The width of
a flame object is defined as the difference between the maximum and minimum values of
the x-coordinates:

W f lame = max(X)−min(X) (22)

where X means the set of x-coordinates of the flame contour points. Finally, the polygon
area method is employed to obtain the flame area A f lame:

A f lame =
1
2

n

∑
i=1

[(xi × yi+1 − xi+1 × yi)]. (23)

Through the fusion operation described above, more accurate static flame parameters
are obtained.

It is worth noting that in cases where the flame object in the image is fragmented or
dispersed, multiple contour sequences may exist. In such a scenario, the calculation of their
static parameters is carried out as follows:

H f lame =
d

max
i=1

(Hi
f lame) (24)

W f lame =
d

∑
i=1

(Wi
f lame) (25)

A f lame =
d

∑
i=1

(Ai
f lame) (26)

where sum means summation, and d is the number of flame objects, which is equivalent to
the number of contours.

3.2.3. Dynamic Flame Parameter Inversion of Time-Series Combustion Images

The dynamic flame parameter inversion of time-series combustion images involves
calculating the flame height, width, and area change rates based on a sequence of consecu-
tive images denoted as Iseq = {I1, I2, . . . , Inum}, where num is length of the image sequence.
For each image Ii within this sequence, the flame contour Ci

f lame is extracted using the

previously described method. Here, Ci
f lame(t) represents the set of contour points of the

flame object in the i-th image at time t.
For consecutive time points t1 and t2, the change amounts of the flame’s height, width,

and area are expressed as
∆H = H f lame(t2)− H f lame(t1) (27)

∆W = W f lame(t2)−W f lame(t1) (28)

∆A = A f lame(t2)− A f lame(t1) (29)
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where H f lame(t), W f lame(t), and A f lame(t) denote the height, width, and area of the flame
object in fire images at time t, respectively. Then, the dynamic flame parameters are
obtained as follows:

d
dt

H f lame(t) = lim
∆t→0

H f lame(t + ∆t)− H f lame(t)
∆t

≈ ∆H
t2 − t1

(30)

d
dt

W f lame(t) = lim
∆t→0

W f lame(t + ∆t)−W f lame(t)
∆t

≈ ∆W
t2 − t1

(31)

d
dt

A f lame(t) = lim
∆t→0

A f lame(t + ∆t)− A f lame(t)
∆t

≈ ∆A
t2 − t1

(32)

where d
dt H f lame(t), d

dt W f lame(t), d
dt A f lame(t) are the change rates of the flame height, width,

and area at time t, respectively. lim∆t→0 indicates the limit at which the time interval ∆t
approaches 0.

Therefore, the dynamic flame parameters are approximated by computing the dif-
ferences and proportions of the flame’s height, width, and area between two adjacent
frames. According to these parameters, the dynamic behavior of the flame is analyzed
within a sequence of successive images.

4. Experiments

In this section, a series of experiments are described to demonstrate the effectiveness
of the Flame-SeaFormer model in flame situation detection. The model’s performance is
evaluated on two datasets: Our_flame_smoke (a private dataset) and FLAME (a public
dataset). Widely used image segmentation models from the general domain, including
FCN, Unet, Deeplab v3+, SegFormer, and GMMSeg, are chosen as comparative models.
In comparison to these five methods, Flame-SeaFormer achieves superior performance in
accurately detecting the state of flames.

4.1. Datasets

Our_flame_smoke and FLAME are applied to compare the segmentation performance
of Flame-SeaFormer with that of other methods. The training, validation, and testing sets
of the two datasets are divided at the ratio of 8:1:1, as shown in Table 2.

• Our_flame_smoke: This dataset comprises 4392 fire images acquired by self-designed
fire experiments, each with a resolution of 1920 × 1080. The experimental apparatus
is depicted in Figure 3a. All the images in this dataset depict indoor fire scenarios,
providing a comprehensive representation of the entire burning process of flames. The
dataset exhibits variations in flame scale and shape, offering a diverse range of flame
instances for evaluation.

• FLAME (https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-
burn-detection-using-drones-uavs, accessed on 24 March 2023): This dataset consists
of fire images collected by drones during a pileup debris burn in an Arizona pine forest.
The dataset includes 2003 flame images, each having a resolution of 3840 × 2160 pixels.
Several images of the dataset are shown in the first row of Figure 8. It is worth noting
that the scale of the flame objects in this dataset is relatively small as all the images
were captured from an overhead view using drones.

Table 2. Details of two datasets.

Dataset Training Set Validation Set Testing Set Total

Our_flame_smoke 3512 440 440 4392
FLAME 1601 201 201 2003

https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
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Figure 8. Several images in FLAME dataset along with their corresponding segmentation results.
The first row displays the original images, while the second row shows the segmentation results.
Flame pixels are highlighted in green, while background pixels remain uncolored, consistent with the
original image.

4.2. Evaluation Metrics

The performance of the fire pixel-level segmentation models is evaluated in three as-
pects: segmentation accuracy, model complexity, and inference speed. Segmentation
accuracy is quantified using metrics such as mean accuracy (mAcc), mean F1-score (mF1),
and mean intersection over union (mIoU). Model complexity analysis aims to assess the
memory requirements, which are represented by the number of learnable parameters, de-
noted as Param. Inference speed refers to the number of image frames per second that the
model detects, which is measured by frames per second (FPS). The calculation processes
for each metric are detailed below.

mAcc represents the average ratio of the number of correctly predicted pixels for each
category to the number of true pixels in that category. It is calculated as follows:

mAcc =
1
c

c

∑
i=1

TPi
TPi + FPi + TNi + FNi

(33)

where c is the number of categories. TPi (true positive) represents the number of pixels
correctly classified by the model as category i out of the pixels belonging to category i. FPi
(false positive) is the number of pixels incorrectly classified by the model as category i
out of the pixels not belonging to category i. TNi (true negative) indicates the number of
pixels correctly classified by the model as not belonging to category i out of the pixels not
belonging to category i. FNi (false negative) is the number of pixels incorrectly classified
by the model as not belonging to category i out of the pixels belonging to category i.

mF1 calculates the average F1-score for each category, as a measure of the classification
or segmentation model performance. The F1-score is the harmonic mean of precision and
recall. mF1 is computed by the formula

mF1 =
1
c

c

∑
i=1

F1i =
1
c

c

∑
i=1

2× preci × reci
preci + reci

(34)

where preci and reci denote the precision and recall of class i, respectively. They are defined,
respectively, as

preci =
TPi

TPi + FPi
(35)

reci =
TPi

TPi + FNi
. (36)

The intersection over union (IoU) is a commonly employed evaluation metric for im-
age segmentation tasks.It measures the ratio of the intersection area between the predicted
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and labeled regions to the total area covered by both regions. IoU is expressed by the
following equation:

IoU =
|PT ∩ GT|
|PT ∪ GT| (37)

where PT is the set of pixel locations within the predicted region, and GT represents a set
of pixel locations within the true labeled region. In the case of multiple classifications, the
above equation is extended to mIoU by averaging the IoU values for each category:

mIoU =
1
c

c

∑
i=1

IoUi =
1
c

c

∑
i=1

TPi
TPi + FPi + FNi

(38)

where IoUi is the intersection ratio of category i. The task of flame segmentation is a binary
classification problem, and the pixels in the flame image are divided into two classes: flame
and background. Therefore, for the above three metrics, c = 2.

The count of parameters in a model encompasses all trainable elements, including
convolutional kernel weights, weights in fully connected layers, and others. For example,
for a CNN model with n convolutional layers, the size of the weight matrix of each
convolutional layer is wi and the bias vector size is bi; the total number of parameters of
the model is calculated as follows:

Param =
n

∑
i=1

(wi × bi). (39)

Generally, models with a smaller number of parameters tend to be lighter and exhibit
faster inference speeds.

FPS is the number of image frames processed by a model within a second. To re-
duce random errors, multiple images are typically averaged during actual testing. The
calculation formula for FPS is as follows:

FPS =
N

∑N
i=1 t f

i

(40)

where N denotes the number of image samples; t f
i denotes the time required for the model

to process the i-th image. In this paper, N = 200.

4.3. Baselines

This paper incorporates five comparative methods to evaluate the flame segmentation
performance. There are three CNN-based methods (FCN, Unet, and Deeplab v3+) and
two Transformer-based methods (SegFormer and GMMSeg). These semantic segmentation
methods are migrated from the generic domain to the flame segmentation domain. The
baseline methods are described as follows.

• FCN (CVPR 2015) [27]: FCN (Fully Convolutional Network) is a CNN-based semantic
segmentation model. It replaces fully connected layers with convolutional layers,
allowing for end-to-end pixel-level classification across the entire image.

• Unet (MICCAI 2015) [28]: Unet is a segmentation method initially designed for medical
images, employing an encoder–decoder architecture. It utilizes a skip connection to
establish connections between the encoder and decoder layers, enabling the extraction
of information from feature maps at different scales.

• Deeplab v3+ (ECCV 2018) [29]: Deeplab v3+ is an image semantic segmentation model
that utilizes dilated convolution and multi-scale feature fusion. It employs dilated
convolutions to expand the receptive field and incorporates the ASPP (Atrous Spatial
Pyramid Pooling) module to fuse multi-scale features.

• SegFormer (NeuIPS 2021) [30]: SegFormer is a Transformer-based image segmentation
model. It captures global information through a self-attention mechanism and handles
features at different scales through hierarchical feature fusion.
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• GMMSeg (NeuIPS 2022) [31]: GMMSeg is an image semantic segmentation model that
incorporates a Gaussian mixture model and adaptive clustering. It adopts a separate
mixture of Gaussians to model the data distribution of each class in the feature space.
The model is trained using the adaptive clustering algorithm.

4.4. Experimental Setup

The experiments in this paper are deployed on a computer equipped with an NVIDIA
GeForce RTX 3090 GPU (Nvidia Corporation, Santa Clara, CA, USA).The Pytorch deep
learning framework is employed for model training, leveraging the CUDA, Cudnn, and
OpenCV libraries to facilitate the training and testing of the flame segmentation model. The
network is optimized using the Adam optimizer. The initial learning rate is 0.0002 and the
weight decay is 0.01. In the two datasets, a batch size of 6 is employed during the training
process. The training images are randomly scaled and then cropped to the fixed size
of 512 × 512.

4.5. Experimental Result and Analysis

This subsection presents a comprehensive performance analysis of Flame-SeaFormer,
encompassing both quantitative and qualitative evaluations. Firstly, the segmentation
results of Flame-SeaFormer and the baselines are shown from the global and local perspec-
tives of flame burning. The results reveal that Flame-SeaFormer exhibits superior suitability
for the pixel-level flame segmentation task. Secondly, the case study section clearly shows
the visualization results of the Flame-SeaFormer model on multi-scale, small-scale, and
negative samples. Then, the Flame-SeaFormer method is employed to estimate static flame
parameters, such as the flame height, width, and area, in individual fire images. Finally,
dynamic flame parameters, the change rates of the flame height, width, and area, are
analyzed based on the sequence of flame-burning images to achieve multi-scale flame
situation detection and analysis.

4.5.1. Visual Segmentation Results of the Global Flame-Burning Process

The comparative results of global visual segmentation between Flame-SeaFormer and
other methods on two datasets are shown in Tables 3 and 4, respectively. In particular,
the results of the FPS metric for each model are visualized in Figure 9. Through careful
observation, the following information is obtained.

Table 3. Comparation results on Our_flame_smoke (testing set).

Methods mAcc ↑ mF1 ↑ mIoU ↑ Param ↓ FPS ↑

FCN (2015) 96.77% 96.52% 93.33% 35.31 M 30.95
Unet (2015) 96.80% 96.70% 93.68% 43.93 M 25.53

Deeplab v3+ (2018) 95.23% 95.92% 92.26% 5.81 M 49.87
SegFormer (2021) 97.11% 96.76% 93.79% 44.6 M 37.1
GMMSeg (2022) 97.22% 97.10% 94.41% 84.65 M 19.63

Flame-SeaFormer (Ours)
96.75% 96.70% 93.68% 8.59 M 111.49

(−0.47%) (−0.40%) (−0.73%) (+2.78 M) (+61.62)
(−0.48%) (−0.41%) (−0.77%) (+47.85%) (+123.56%)

For the results under the metrics mAcc, mF1, mIou, and Param, the underlined values are the optimal values. For
the results under the metric FPS, the underlined value is the second-best value. Regarding the three rows of
numerical values in Flame-SeaFormer, the first row represents Flame-SeaFormer’s values under various metrics.
The second row represents the differences between Flame-SeaFormer’s values and those of the optimal or second-
best methods. The third row represents the proportional changes of Flame-SeaFormer’s values relative to those of
the optimal or second-best methods. Clearly, compared to the significant improvement in the FPS metric achieved
by Flame-SeaFormer, the losses in other metrics appear minor. In addition, for the arrows following each metric,
↑ indicates that higher value is desirable for that metric, while ↓ indicates that lower value is preferable.
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Table 4. Comparation results on FLAME (testing set).

Methods mAcc ↑ mF1 ↑ mIoU ↑ Param ↓ FPS ↑

FCN (2015) 88.28% 89.06% 81.99% 35.31 M 20.17
Unet (2015) 93.65% 94.11% 89.45% 43.93 M 8.38

Deeplab v3+ (2018) 91.00% 92.01% 86.19% 5.81 M 11.51
SegFormer (2021) 94.92% 95.10% 91.06% 44.6 M 22.01
GMMSeg (2022) 94.16% 93.10% 87.86% 84.65 M 14.57

Flame-SeaFormer (Ours)
94.80% 94.31% 89.77% 8.58 M 38.75

(−0.12%) (−0.79%) (−1.29%) (+2.77 M) (+16.74)
(−0.13%) (−0.83%) (−1.42%) (+47.68%) (+76.06%)

The explanation for this table is the same as for Table 3.

Figure 9. The FPS results on the two datasets.

On the Our_flame_smoke dataset, GMMSeg achieves the highest segmentation ac-
curacy, surpassing Deeplab v3+ (the lowest performer) by 1.99%, 1.18%, and 2.15% in
terms of mAcc, mF1, and mIoU, respectively. However, GMMSeg relies on a Gaussian
distribution for pixel modeling, leading to the highest parameter count and the longest
inference time. Flame-SeaFormer ranks third in the segmentation accuracy metrics, with
the differences between GMMSeg and Flame-SeaFormer being relatively minor. Notably,
Flame-SeaFormer exhibits a significant advantage in terms of FPS, processing 111 frames
per second. Compared with GMMSeg, Flame-SeaFormer offers a tenfold increase in in-
ference speed with only a 10% reduction in parameter count, at the cost of a mere 0.73%
decrease in mIoU. When compared to SegFormer, the second highest ranked model, Flame-
SeaFormer achieves a nearly three times faster inference speed while losing only 0.11%
mIoU. In scenarios requiring a swift response to fire incidents, the model’s response speed
is the most critical metric, which needs to be balanced with the inference performance.
Overall, Flame-SeaFormer provides the best choice for multi-scale fire segmentation tasks,
striking the best balance between accuracy and speed.

Regarding the FLAME dataset, SegFormer emerges as the top performer in segmen-
tation accuracy, attaining an mIoU of 91.06%. Flame-SeaFormer secures second place in
terms of mAcc, mF1, and mIoU, trailing SegFormer by merely 0.12% in the mAcc metric. In
comparison to the worst-performing model, FCN, Flame-SeaFormer improves by 6.52%,
5.25%, and 7.78% across the three segmentation accuracy metrics. In terms of inference
speed, Flame-SeaFormer still maintains its dominance, exhibiting twice the inference speed
and one fifth of the model complexity when compared to SegFormer, at the expense of
only a 0.12% decrease in mAcc. Collectively, when dealing with small-scale flame images,
Flame-SeaFormer still exhibits excellent and fast segmentation performance.

In summary, Flame-SeaFormer demonstrates superior overall performance compared
to the baselines across the two datasets. Meanwhile, its inference accuracy and speed
align with the requirements of real-time fire information perception. This achievement is
attributed to the SEA attention, which integrates crucial spatial information, facilitating
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the enhancement of local details and effective fusion of global contextual information.
Moreover, the comparative analysis of the model’s performance on two datasets reveals
challenges in accurately segmenting flames within the FLAME dataset. These challenges
stem from the concealed, diminutive nature of small-sized flame targets and their dispersed
distribution across multiple points.

4.5.2. Visual Segmentation Results of the Local Flame-Burning Stage

As described in the Introduction, this paper divides the flame combustion process
into three stages: the initial fire, the violent burning, and the decaying extinguishing stages.
The images on the FLAME dataset were captured from a top-down perspective using
a drone, and it is difficult to distinguish the corresponding flame-burning stage of each
image. Consequently, a local analysis of FLAME is omitted from this study. Instead, the
focus is on evaluating the performance of Flame-SeaFormer and other methods on the
Our_flame_smoke dataset, specifically concerning the visual segmentation results at each
stage. The segmentation accuracy metric mIoU is selected as the evaluation criterion. The
results are presented in Table 5, with the stages conveniently labeled as early, midterm, and
later. Furthermore, the mIoU metric for each stage is visualized in a histogram shown in
Figure 10. Through observation, the following information is obtained.

Table 5. Segmentation results of the three stages of flame combustion on Our_flame_smoke.

Methods
mIoU

Early Midterm Later

FCN (2015) 89.81% 95.04% 89.32%
Unet (2015) 91.60% 95.59% 90.68%

Deeplab v3+ (2018) 89.81% 94.91% 88.69%
SegFormer (2021) 90.89% 95.61% 90.55%
GMMSeg (2022) 91.68% 96.08% 91.05%

Flame-SeaFormer (Ours) 92.51% 96.08% 91.64%

Flame-SeaFormer exhibits superior segmentation performance across the three distinct
stages of flame combustion. Compared to Unet, which is considered the top-performing
model in the CNN architecture category, Flame-SeaFormer achieves significant improve-
ments of 0.91%, 0.49%, and 0.96% in mIoU for the respective stages. In comparison to
GMMSeg, the top-performing Transformer-based model, Flame-SeaFormer showcases
comparable performance during the intense flame-burning phase, while outperforming
GMMSeg by 0.83% and 0.59% in mIoU for the fire initiation and decay extinction phases,
respectively. The analysis of the flame-burning stages reveals distinct characteristics. Dur-
ing the initial stage, there is an observable increase in the scale of the flames, while, in
the intense combustion phase, the flames spread slowly and remain stable, reaching their
maximum scale. In the flame extinction stage, the flames gradually diminish, resulting in
a reduction in scale. There exist flame objects of varying shapes and scales during the com-
bustion process. Flame-SeaFormer has excellent segmentation quality for multi-scale flame
targets. Apparently, the SEA attention and fusion block enable the model to adaptively
capture low-level spatial and high-level semantic features in flames of different scales. This
capability allows the model to perceive flame edge details and enhance the accuracy of
flame parameter estimation.
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Figure 10. The mIoU results of the three stages of flame combustion. (a) FCN vs Flame-SeaFormer.
(b) Unet vs Flame-SeaFormer. (c) Deeplab v3+ vs Flame-SeaFormer. (d) SegFormer vs Flame-
SeaFormer. (e) GMMSeg vs Flame-SeaFormer.

4.5.3. Case Analysis

To demonstrate the superiority of the Flame-SeaFormer model, some images from
each of the two datasets are selected for inference to visualize the quantitative segmentation
results. The images from the FLAME dataset are all UAV overhead shots where the flame
targets are hidden and small, making it difficult to distinguish the corresponding flame-
burning stages. Therefore, small-scale flame segmentation result analysis is performed
on this dataset. The images in Our_flame_smoke are derived from multiple fire videos
that contain the complete burning process, and thus the analysis of the multi-scale flame
segmentation results is performed on the Our_flame_smoke dataset. Further, several
negative samples (i.e., images without flame targets) are chosen from the two datasets
to evaluate the interference resistance capabilities of Flame-SeaFormer. In the following,
small-scale flame segmentation analysis, multi-scale flame segmentation analysis, and
negative sample segmentation analysis are described in detail.

Four original images containing different numbers of fire targets are selected from the
FLAME dataset for small-scale flame segmentation analysis. Employing the trained model
weights for inference, the qualitative segmentation results of the four images are shown
in the second row of Figure 8. Through the analysis, it can be seen that Flame-SeaFormer
has superior performance in small target flame pixel segmentation. Meanwhile, Flame-
SeaFormer demonstrates a certain degree of flame recognition capability, even in cases of
occluded flames.

Several fire images representing three combustion stages in the Our_flame_smoke
dataset are selected for inference. The segmentation results are visually presented in
Figure 11, from which several key observations can be drawn. During the initial and
decaying stages, where weak flame targets exist and the number of flame pixels is rela-
tively low, Flame-SeaFormer exhibits exceptional sensitivity and recognition accuracy in
detecting subtle flame regions. In the intense flame-burning phase, characterized by visible
and large-scale flames, the model accurately identifies flame regions by leveraging the
global interdependence among multiple pixel points, enabling precise mapping between
fine-grained pixels and flame semantics. Furthermore, Flame-SeaFormer effectively avoids
misclassifying light shadows refracted by the flame as flames, demonstrating its ability to
automatically filter interference features and utilize valid flame information. In summary,
consistent with the quantitative results in Table 5, Flame-SeaFormer identifies and distin-
guishes flame regions of diverse scales throughout the entire flame-burning process. The
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finding validates the model’s potential in quantifying flame development and supports its
application in improving urban fire safety.

Figure 11. Multi-scale flame segmentation results on Our_flame_smoke dataset. (a–c) represent the
original image sequences of three burning processes, respectively. The next line of each sequence
corresponds to the flame segmentation result. The flame pixels are highlighted in green, while the
background pixels are uncolored and consistent with the original image.

Two representative negative samples from each of the two datasets are selected
for inference, and the segmentation results are shown in Figure 12. For the two im-
ages from Our_flame_smoke, the color of the fire extinguisher in Figure 12a has similar-
ity with the flame in the color hierarchy, and the refracted light shadows on the tin in
Figure 12b are also confused with firelight. Nevertheless, Flame-SeaFormer demonstrates
the adaptive capability to effectively filter out interfering features associated with fire-
like objects. The images from the FLAME dataset feature diverse non-fire objects with
varying shapes. However, Flame-SeaFormer remains resilient to the complexities of the
environment. From the above analysis, it is evident that Flame-SeaFormer exhibits strong
anti-interference ability.

Figure 12. Segmentation results of negative samples. (a–d) are four negative samples selected from
two datasets, where (a,b) are from the Our_flame_smoke dataset. (c,d) are from the FLAME dataset.
(e–h) are their corresponding segmentation results.

4.5.4. Inversion Results of Static Flame Parameters

Based on the preceding analysis, Flame-SeaFormer is selected to invert the static
flame parameters: flame height, width, and area. Five combustion processes are chosen
for analysis, capturing one image frame every 1 s. The inversion results are depicted in
Figure 13. Due to variations in the duration of the different combustion processes, the
endpoint coordinates of the five curves differ.
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Figure 13. The static flame parameters of a flame in five videos.

Among the three subplots, the flame height exhibits the most distinct pattern. From
0–100 s, the flames in the five combustion experiments burned rapidly. The values of
the three static flame parameters reach peaks at around 100 s. Subsequently, each static
parameter remains stable or fluctuates slightly, indicating the vigorous combustion stage.
After 300 s, groups 1, 3, 4, and 5 entered the decay and extinction phase, with flames
gradually decreasing in intensity. The second experiment lasted longer, entering the third
stage of combustion at around 400 s. Flame-SeaFormer accurately calculates reasonable
flame parameters for all individual images at different combustion moments. A typical
study conducted by Mangs et al. investigated the upward spread of a flame on an FRNC
N2XCH cable using a thermocouple [32]. The burn length (i.e., flame height) was treated
as a function of time, with the curve shown in Figure 14. A comparison between the
image-based Flame-SeaFormer model’s results and the physical device’s measurements in
Figure 14 reveals a consistent flame development pattern. The consistency provides strong
evidence for the reliability and efficiency of the gained flame-burning parameters by the
model. In urgent fire scenarios, Flame-SeaFormer shows great promise for the real-time
sensing of multi-scale flame information and the analysis of flame propagation properties.

Figure 14. Flame height on an FRNC N2XCH cable pre-heated to T = 191 ◦C.

4.5.5. Inversion Results of Dynamic Flame Parameters

Utilizing the obtained values of the flame height, width, and area parameters from the
previous section, the dynamic flame parameters (rates of change in flame height, width, and
area) are calculated. The rates of change are computed at 1-s intervals and and visualized in
Figure 15. Positive rates of change indicate gradual increases in each static flame parameter,
signifying flame spread in the vertical and horizontal directions. A rate of change of
0 indicates relatively stable flame shapes and complete burning. Conversely, negative
values indicate a decrease in flame regions. According to Figure 15, some observations are
made as follows.
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Figure 15. The dynamic flame parameters of a flame in five videos.

During the initial stage of the fire, the flame spreads rapidly, with the spreading rate
gradually decreasing before reaching the violent burning stage. In the intense burning
stage, the rates of change remain close to 0 or stable. As the flame decays, the rate of change
becomes negative, resulting in the contraction of the flame height, width, and area. Chen
et al. studied the evolution of ammonia/air flame fronts and laminar flame parameters
influenced by buoyancy [33]. The red and blue curves in Figure 16 depict the rate of
increase for the flame in the height and width directions over time during the early and
midterm stages of flame propagation. After ignition, the flame exhibits vertical expansion,
with the flame generally growing at a higher rate in height than in width. After a certain
time, the flame reaches a smooth burning state. Although the figure does not display
the rates of change during the flame extinction phase, it is reasonable to infer that the
flame intensity gradually decreases during the later stages of combustion. These findings
further support the potential of Flame-SeaFormer in utilizing fire images to explore flame
development, specifically focusing on the analysis of evolving flame patterns. Clearly, the
flame parameters calculated from the Flame-SeaFormer model are reasonably plausible.

Figure 16. Variations in axial length under increasing velocity with time in ammonia/air mixture.

5. Conclusions

Flames in fire incidents pose challenges regarding precise segmentation and obtaining
reliable flame situation parameters due to their variable shapes and sizes. To address
this problem, this paper proposes the Flame-SeaFormer model for the pixel-level seg-
mentation of multi-scale flame images, enabling the analysis of the flame-burning state
and the extraction of static and dynamic flame parameters. Firstly, in the context branch,
SEA attention models the fire feature map along the horizontal and vertical directions,
facilitating self-attention mechanisms to capture long-range dependencies among flame
pixel semantics. Secondly, in the spatial branch, the fusion block fuses low-level spatial
information with high-level semantic information to refine the flame edges and enhance
the flame information. Finally, the light segmentation head segments the feature map
containing global fire information at the pixel level in a very short time. Leveraging the
flame segmentation results, the contours of flames are obtained, facilitating the extraction of
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both static flame parameters (flame height, width, and area) and dynamic flame parameters
(change rates of flame height, width, and area). The experimental results demonstrate that
Flame-SeaFormer achieves an excellent balance between inference accuracy and speed, out-
performing existing fire segmentation models. Its ability to provide dependable fire status
information and mine flame dynamics will help firefighters to make accurate decisions and
drive the development of smart cities.

From the experimental findings, our work still has limitations in two aspects. On
the one hand, although the Flame-SeaFormer model achieves the best balance between
segmentation accuracy and speed, there remains room for improvement in the segmentation
accuracy, particularly in enhancing its ability to delineate boundary flame pixels. On the
other hand, Flame-SeaFormer is only applied in self-constructed experimental scenarios and
forest fire scenarios. The exploration of flame parameter analysis within more realistic fire
scenarios, such as common urban building fires, remains an uncharted domain. Addressing
these limitations, future work will primarily focus on refining the model architecture and
broadening its application scope. In terms of model architecture design, the fire feature
extraction method could be optimized by combining counterfactual assumptions and
removing confounding elements in the data to further reduce the missed segmentation
of flames. Concerning the extension of the application scenarios, more fire images of real
scenarios could be collected and annotated, facilitating model training on diverse datasets
to enhance its generalization capacity.
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