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Abstract: The present study evaluated the application of Ground Penetrating Radar and Electromag-
netic Induction geophysical tools combined with sedimentology for the description of the subsurface
of sites destined for the installation of ponds for an extensive freshwater fish farming system. Two
areas with similar topographic characteristics (flat land near bodies of water) were investigated in
the Amazon region of northern Brazil: Area 1—the future site of an aquaculture research center, and
Area 2—an established fish farming operation. These tools performed well in the evaluation of the
suitability of the terrain for the installation of aquaculture ponds. The application of these tools can,
thus, be recommended for aquaculture projects, given that it provides advanced knowledge on the
characteristics of the local soils, which is extremely important to guarantee the sustainability of any
aquaculture operation. These data can help minimize the environmental impacts of the process, while
maximizing the economic returns to the installation of an aquaculture operation.

Keywords: Ground Penetrating Radar; electrical conductivity meter; excavated nurseries; apparent
conductivity; groundwater

1. Introduction

Aquaculture, or fish farming, refers to the cultivation of fresh- or saltwater organisms
and is a well-developed economic activity that is accelerating rapidly throughout the
world [1,2]. Fish farming can contribute to the domestic output of fishery products, provide
an important source of income for many smallholders, other landowners and their local
communities, through their direct involvement in the value chain (production, processing,
and sale), as well as offering employment opportunities [3,4]. Aquaculture and fisheries
are the fastest-growing food production systems around the world and their importance
for food security and global nutrition in the twenty-first century is recognized increasingly
by authorities such as [5–7].

The installations required for the production of fish—either ponds or net enclosures—
represent the principal investment in any aquaculture operation. However, the costs of
the construction of ponds or the implantation of other structures may vary considerably
according to factors such as the characteristics of the site (climate, topography, type of soil,
vegetation cover, and drainage requirements), the configuration of the infrastructure, and
the methods employed to install the operation. These costs can, nevertheless, be minimized
through the adequate planning of the different stages of the installation process [8].

Before making any investments or making decisions on the installation of fish farm-
ing infrastructure, it is extremely important to carefully evaluate the site earmarked for
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development. In particular, the technical conditions of the site should be verified, in addi-
tion to the most adequate procedures to ensure the integrity of the local environment, in
line with the existing legislation. Many sites are totally inadequate for fish farming due
to factors that range from the high permeability of the soil, the risk of floods and other
environmental impacts, and an inadequate supply of water to a lack of access roads or
access to a power grid [9].

The selection of an appropriate site is fundamentally important here and adequate
site selection will reduce the possible environmental impacts of the operation and the
potential conflicts of this activity with the use of other resources and the sustainable
development of aquaculture activities [6,7,10]. This will also guarantee an increase in
economic returns [11–13].

1.1. Motivation

Aquaculture has grown considerably in Brazil over the past few decades, in line with
global trends, to become a valuable source of income and employment [2,14]. In 2022,
Brazil produced 860,355 tons of farmed fish, based on data from the Brazilian Pisciculture
Association. This represents an increase of 2.3% over the 841,005 tons produced in 2021.
Since 2014, in fact, the annual production of farmed fish in Brazil has increased by almost
half (281,555 tons or 48.6%) [15]. The majority of these fish are produced by smallholders
in ponds with an area of less than 2 ha, a pattern similar to that observed in a number of
prominent fish-farming countries in Asia [16].

In addition to the possibility of generating a profit from aquaculture, smallholders are
encouraged to invest in the production of aquatic organisms, such as fish, shrimp, frogs,
oysters, and algae, by the demand from local and regional markets, the availability of water,
land (including lakes, reservoirs, and coastal environments), and, in most Brazilian states,
the access to raw materials. The vast majority of these producers initiate their aquaculture
operations without any planning or preliminary survey, however, which has led many to
abandon or downsize their operations [11]. There are a number of other weak links in the
chain of production, such as the transfer of technology, technical support, the availability
of credit, government policy, and the regulation of the sector [16].

One other problem observed frequently in Brazil is the inadequate evaluation of the
subsoil of sites earmarked for the excavation and construction of fish-farming ponds. A lack
of adequate technology for the systematic assessment of the subsoil of sites earmarked for
fish ponds has led to the failure of some projects, due to the instability of the infrastructure.
Given the resources required to collect and analyze samples, and the delay in obtaining
the final results, the need for a detailed on-site assessment may limit the viability of fish
farming for many small- to medium-sized producers.

Few rural landowners in the northern Brazilian state of Pará—in particular in the geo-
graphic region of Bragança—are aware of the technology available to survey the subsoil of
terrains earmarked for fish farming ponds and this lack of an adequate database has caused
the failure of many projects. The reasons for failure range from inappropriate decision
making on the types of terrain and aquaculture system to be used to the construction of
inadequate installations. While reliable data on the structure of the subsoil are essential
for the success of any aquaculture project, the high costs of obtaining and analyzing these
data, as well as the time required to obtain the results, may represent a major limitation in
many cases.

1.2. Contributions

Until recently, the selection of sites has tended to be driven primarily by the suitability
of the local environment for the target species and by historical inertia in areas where
aquaculture is well-established [17].

Over the past three decades, a number of studies have described the use of different
types of geotechnology, such as Geographic Information Systems (GIS), Remote Sensing
(RS), Global Navigation Satellite System (GNSS), and digital cartography, for the selection
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of sites for aquaculture ponds [18]. Remote Sensing (RS) and GIS are considered to be
important tools for the evaluation of areas destined for aquaculture (e.g., [19–21]).

Geophysical tools are one other valuable option for the description of the quality of
soils. This technology is non-invasive, non-destructive, and has excellent spatio-temporal
resolution (e.g., [22–24]), and can provide valuable information on the characteristics of
the subsoil, including its lithology, stratigraphy, bedrock, water table, and the presence of
depressions, faults, and fractures (e.g., [25–38]).

Electrical and electromagnetic methods are the techniques used most frequently
(e.g., [22,23,39–41]). The most important of these methods in the context of the present
study are Ground Penetrating Radar (GPR) and Electromagnetic Induction (EMI), which
have been employed successfully in studies of soils to determine their properties and
spatial-temporal variability [42].

In the present study, the application of two geophysical tools (GPR and EMI) permitted
the systematic evaluation of the subsoil of sites earmarked for the installation of aquaculture
ponds. The acquisition and operation of the GPR and EMI do not demand an excessive
investment and are cost-effective, given their durability and low maintenance costs, while
also contributing to the preservation of the environment. The surveys can be conducted by
teaching institutions, local administrations, government agencies that provide technical
support in rural areas, and even farming cooperatives and associations. We combined these
geophysical tools with the sedimentological analysis (rapid field tests) of the study terrains
and present an important alternative approach for the verification of the viability of sites
earmarked for the installation of fish farming ponds.

1.3. Organization

The present study was based on an approach that integrated direct and indirect
methods of investigation. The indirect, electromagnetic methods used here were Ground
Penetrating Radar (GPR) and Electromagnetic Induction (EM34-3), which were combined
with two direct methods—sedimentological analyses and the Standard Penetration Test
(SPT)—for the diagnosis of the characteristics of the subsoil of two potential aquaculture
sites in the geographic region of Bragança, in northern Brazil.

The results of these analyses demonstrate that these analytical tools can be used
successfully in an integrated approach for the evaluation of sites earmarked for aquaculture
installations. These tools permit the systematic description of the terrain. The study
provided essential data for the effective selection of terrains for fish-farming operations.

2. Materials and Methods
2.1. Study Area

The aquaculture sites evaluated in the present study (Figure 1) are located in the
geographic region of Bragança, in northern Brazil [43]. Two areas with similar topographic
characteristics (flat land near bodies of water) were investigated: Area 1 is a site at which
the Northeastern Pará Aquaculture Center (CEANPA) is currently under construction in
the municipality of Bragança (1◦02′41.07′′ S, 46◦42′15.81′′ W), approximately 8 km from
Bragança town center, and Area 2, which is a privately-owned, small-scale fish farm located
in the municipality of Tracuateua (0◦56′27.34′′ S, 46◦53′37.23′′ W).

The study area is located within the Bragança–Viseu basin, which has a tectonic trench
delimited by normal (NW–SE) faults [44]. The thickness of the principal Cenozoic deposits
found in this area was determined by its paleorelief, in combination with tectonic processes
(e.g., [45–47]). The Cenozoic units found within this region are represented by the Pirabas
Formation, the Barreiras and Post-Barreiras groups, and by modern sediments.

The local climatic cycle alternates between a rainy season, typically between December
and May, and a dry (or less rainy) season, typically between June and November [48].
These values may vary considerably, however, in particular when influenced by long-term
climate events, such as El Niño or La Niña [49].

The proposed method includes the following steps (Figure 2):
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2.2. Ground Penetrating Radar (GPR)

Ground Penetrating Radar is a non-destructive geophysical tool that uses high-
frequency electromagnetic (EM) waves in the 10–1000 MHz range to survey subsurface
structures. The propagation of an EMI signal depends on the frequency of the transmit-
ted signal and the electrical properties (electrical conductivity, dielectric permittivity, and
magnetic permeability) of the substrate.

A GPR survey provides an image of the subsoil along the study profile [29]. This tool
can be applied in both natural and urban environments and can generate high-resolution
images of features such as shallow soils and geological structures, as well as detecting
buried and underground cavities, the water table, and archaeological artefacts. This type of
radar emits short pulses at frequencies of between 10 and 1000 MHz, which are transmitted
into the subsoil, where the propagation velocity (v) is controlled by the relative permittivity
(dielectric constant, ε′r) and conductivity (σ) of the substrate (see, e.g., [29,30,37,50]).

For low-loss geological materials, the electromagnetic field is propagated at a phase
velocity of

v =
C√
ε′r

(1)

where c = the propagation velocity of electromagnetic waves in a vacuum (c ∼= 0.3 m/ns)
and ε′r = the dielectric constant of the substrate [38].

The most important determinants of the propagation of the electromagnetic wave
through a given medium are its velocity and attenuation. When these waves travel through
conductive material, the electromagnetic energy is lost in the form of heat through the
electric current. This loss of energy is the attenuation that provokes a reduction in the depth
of the penetration of the radar waves.

In rocks of high resistivity (> 102 ohm.m), the propagation velocity of the pulse is
controlled primarily by ε′r. Water has a dielectric constant of 80, while most dry geological
materials have a dielectric constant of 4–8. Given this, the water content of the material has
a strong influence on the propagation of a radar pulse [37,38].

The wavelength, λ (m), is given by

λ =
c

f
√

ε′r
(2)

where f = the central frequency of the antennas.
The attenuation constant (α) is normally expressed as

α = 1.636× 103 σ√
ε′r

(3)

in dB/m, where σ = the electrical conductivity (mS.m−1) [38].

2.3. Electromagnetic Induction (EMI)

Electromagnetic surveys are based on the measurement of electrical conductivity
and the magnetic permeability derived from the materials found in the subsurface using
electromagnetic fields that are induced naturally or artificially in the study terrain. One
interesting feature of the electromagnetic method is that it does not require direct contact
with the ground being surveyed [29,37]. The EMI method is rapid, non-invasive, and cost-
effective, and is implemented using transmission (Tx) and receptor (Tr) coils, as described
in detail by [22,39,51,52].

An alternating electrical current, which is produced by the transmission unit at a set
frequency, passes through the transmission coil (Tx) to produce a primary, alternating mag-
netic field (Hp), which induces secondary electrical currents in the subsurface that generate
a secondary magnetic field (Hs). Part of this magnetic field is captured by the receptor coil
(Tr), which also receives part of the primary magnetic field through a reference cable. The
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differences detected in the intensity, direction, and phase between these electromagnetic
fields can be used to detect the presence of conductive bodies [51,53].

In general, the secondary magnetic field depends on the spacing of the coils (S), the
operating frequency (ω), and the conductivity of the terrain (σ). However, when operating
at low induction numbers, where the product ωσS2 is less than 1000, the following equation
can be employed [51]. These restrictions are incorporated into the EM 34-3 conductivity
meter, in which the secondary magnetic field is defined by

HS
Hp

=
iωµ0σS2

4
(4)

where Hs = the secondary magnetic field, Hp = the primary magnetic field, ω = 2π f
(angular frequency), i =

√
−1, µ0 = magnetic permeability of free space, σ = ground

conductivity
(
mho.m−1), and S = intercoil spacing (m).

The electrical conductivity varies according to the type of soil or rock, porosity, perme-
ability, the degree of saturation, and the electrochemical properties of the liquids found in
the pores, which is the most important factor in many cases [51].

2.4. Standard Penetration Test (SPT)

The Standard Penetration Test (SPT) uses percussion drilling with circulating water
to determine the characteristics of the soil of a terrain earmarked for the construction of
buildings or other infrastructure. This test provides information on the compactness and
consistency of the underground layers that make up the substrate, and determines the
different types of subsoil and the depths at which they occur, the depth of the water table,
and the penetration resistance index (N) at each meter of depth [54,55], which is necessary
to determine the resistance of the soil.

The SPT is conducted in the field through the dynamic penetration of a standardized
sampler, which is inserted into the different soil layers using an iron hammer. The SPT
permits the collection of deformed samples of the subsoil to determine the local stratigraphy
through the visual-tactile analysis of its distinct layers as far down as the depth reached by
the probe.

2.5. Sampling and Data Acquisition
2.5.1. Acquisition of Data by GPR

The GPR data were acquired using a GSSI SIR 3000 GPR system (Salem, NH, USA),
with 200 MHz and 400 MHz antennas. The GPR sections were acquired within a time
window of 200 ns. The survey was georeferenced with a handheld GPS with Navigation
Sensors (GPSMAP 64SX), Garmin Ltd. (Olathe, Kansas, U.S.A.). The acquisition system of
the electromagnetic signals was bi-static, with a standard offset between the transmitter
and receiver antennas.

The GPR was calibrated in an area adjacent to each fish-farming site, where a hole
was excavated and a metal bar was inserted to a depth of approximately 50 cm to obtain a
test profile and determine the propagation velocity of the electromagnetic waves using the
hyperbole overlap method.

The GPR data were collected at this site (Area 1, Figure 3a) in March 2017. Four profiles
were surveyed: AB (240 m in length, with readings being taken at intervals of 10 m), BC
(60 m in length, 5 m intervals), CD (40 m in length, 5 m intervals), and EF (45 m in length,
5 m intervals).
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Figure 3. Area 1 (Bragança, Pará), on which an aquaculture research center (CEANPA) is under
construction, showing the geophysical profiles (a) and the location of the ponds (b) (modified
from [56]).

The privately-owned fish farm (Area 2, Figure 4) was also surveyed using GPR in
March 2017. Two profiles were surveyed: AB (400 m in length and readings taken at
intervals of 5 m) and CD (105 m in length, 5 m intervals). The terrain is flat.
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Figure 4. Area 2 (Tracuateua, Pará): a privately-owned aquaculture facility (modified from [56]).

2.5.2. EMI Data Acquisition

The EM34-3 electrical conductivity meter is a two-man portable instrument with
two dipole modes: the Horizontal Dipole (HD), in which the coil axes are arranged verti-
cally and the potential survey depth is approximately 0.75 times the distance between the
coils, and the Vertical Dipole (VD), in which the coil axes are arranged horizontally and
the survey depth is approximately 1.5 times the distance between the coils. As mentioned
above, the Tx-Rx coils may be arranged at intervals of 10 m, 20 m, or 40 m. Under ideal
conditions, these intervals permit the investigation of depths of approximately 7.5 m, 15 m,
and 30 m, respectively, in the HD mode, and 15 m, 30 m, or 60 m in the VD mode [51].

The EM34-3 electrical conductivity meter used in this study was an Electromagnetic
Frequency (EMF) system developed by Geonics Limited (Mississauga, ON, Canada) for
applications in Electromagnetic Induction. This apparatus is used as an alternative for
electrical surveys that employ galvanic techniques to measure apparent electrical resistivity.
The use of the EM34-3 permitted the rapid mapping of the conductivity of the subsurface
of the study terrain [51].

The EM data were collected in March 2017. The apparent conductivity data were
measured in mS.m−1. At one of the study sites (Area 2), the ponds had already been
excavated to a depth of 1–2 m. We evaluated the data collected by the Horizontal Dipole
(HD) with the coils spaced at 10 m intervals, which surveys depths of up to approximately
7.5 m [51]. The EMI surveys were run in the same directions as the GPR profiles (Figure 3).

2.5.3. Sedimentological Analyses of the Soil Samples

While the texture of the soil and its particle size can be analyzed by specialized
laboratories, the soil texture was determined in the present study using a rapid field test.
For this, 600 mL samples of soil were collected using an auger and 1 m deep trenches
(Figures 3 and 4). The samples were labeled prior to the analysis, which had three steps:

• Two subsamples of approximately 300 mL of the soil were placed in two transparent
2 L jars (Jar Sedimentation Method);
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• The samples were then ground up with a rod to eliminate the air trapped in the soil
and record the volume of the material in the container;

• A total of 1500 mL of water was added to each container to homogenize the soil and dis-
sociate all the particles present in the sample. After decanting for 24 h, the proportions
of gravel, sand, silt, and clay present in the soil were determined and measured.

The successful implementation of fish-rearing ponds may depend on the quality of the
soil [57,58]. These authors recommend that the soil should be impermeable, with at least
20% clay, to minimize the loss of water by infiltration, for which clayey or loamy soils are
ideal. Reference [59] classified soils as being either sandy (0–16.0% clay), loamy (medium)
(16.1–32.0% clay), clayey (32.1–60.0% clay), or very clayey (>60.0% clay).

2.5.4. Standard Penetration Test

The SPT was conducted following [54], as recommended by the Brazilian norms
system (NBR). The test consisted of the dynamic penetration to 45 cm of a standard sampler
by hitting it successively with a hammer weighing 65 kgf, which was allowed to fall
freely from a height of 75 cm. The 45 cm of the insertion of the probe was divided into
three sectors of 15 cm, with the number of strikes of the hammer necessary for the probe
to penetrate each sector being counted. The penetration resistance index (N) is the sum
of the number of strikes necessary to insert the probe into the final 30 cm, that is, the last
two sectors of the probe.

The standardized sampler had an external diameter of 50.80 mm, internal diameter of
34.90 mm, and was inserted using lining tubes with an internal diameter of 66.50 mm and
steel rods with an internal diameter of 25 mm and weight of 3 kgf.mL−1. The perforation
and collection of the deformed subsoil samples from the different depths of study Area
1 (Figure 3) were conducted in July, 2015 by the PLLENO Architecture and Construction
Company [60].

2.6. Data Processing
2.6.1. GPR

The noise in the electromagnetic signals recorded using the GPR in the present study
was removed for analysis. The data were also edited, with spatial resampling and inter-
polation being applied to the traces. The data processing involved the following steps
(e.g., [25–37,61–64]): static correction of zero-time, gain, time filtering (1D), and spatial filter-
ing (2D), that is, background removal and moving average trace subtraction. The hyperbole
overlap method was used for the time-depth conversion, by obtaining a propagation
velocity of 0.092 m/ns.

2.6.2. EMI

The Golden Surfer software was used to process the EMI data and formulate the
maps of conductivity. This processing had six steps: (i) Edition of the data spreadsheets;
(ii) Importation of the data to the software; (iii) Interpolation of the data by triangula-
tion; (iv) Formulation of initial conductivity maps; (v) Application of the color filters;
(vi) Formulation of the final map of conductivity.

3. Results
3.1. Area 1

Two antennas (200 and 400 MHz) were tested in Area 1 (Bragança). The GPR prospec-
tion reached a depth of 8–9 m but with the occurrence of noise at depths of below approx-
imately 1 m (Figure 5c,d). The AB profile (Figure 5a) revealed an abrupt depression at a
depth of up to 4.5 m. A compact layer was also identified near the surface (0.25–0.5 m).
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The BC profile (Figure 5b) revealed the same depression as the AB profile, extending
to a depth of 3 m, and the same compacted layer (0.25–0.50 m). In the CD profile (Figure 5c),
an abrupt depression was identified at a depth of 2.7 m. This profile was surveyed near a
stream (Rio Grande), which runs perpendicularly to study Area 1 and is earmarked as the
future source of water for the 12 fish-farming ponds excavated at this site (Figure 3b). The
EF profile (Figure 5d) also identified an abrupt depression at a depth of up to 2.16 m. The
yellow shading in the profiles shown in Figure 5 indicates the zones of low reflection, in
which the electromagnetic wave has a low amplitude, due to the attenuation of the GPR
signal, while the other colors indicate the zones with high reflection and high amplitude.

The apparent conductivity recorded in Area 1 was low, with values ranging from 3.5
to 17 mS.m−1 (Figure 6). This indicates the possible presence of a clayey subsoil [38]. The
saturation of the substrate tends to increase its electrical conductivity, causing attenuation
of the electromagnetic signal. The soils of the study area, in the municipality of Bragança
(Pará), are yellow latosols which are derived from the clayey and sandy–clayey sedimentary
substrates of the Barreiras formation [65].
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In Area 1 (Bragança) organic matter was identified, which was derived from the
decomposition of vegetation at the site. The sedimentological analysis of the soil detected
the presence of three layers, one of clay (top), then silt, and finally sand (bottom). The soil
is clayey, with a 40–60% clay content.

Three Standard Penetration Test (SPT) probes—SP 01 (01◦02.685′ S, 46◦42.231′ W), SP
02 (01◦02.679′ S, 46◦42.228′ W), and SP 03 (01◦02.669′ S, 46◦42.240′ W)—were implemented
in study Area 1 (Figure 3b). The depth limits of these probes were between 10.45 m (SP
01, SP 02) and 10.50 m (SP 03). The lithological profiles for each SPT probe are shown in
Tables 1 and 2.

Table 1. Lithological profile of the subsoil obtained by SPT probes SP 01 and SP 02, which was
implemented in study Area 1 (CEANPA, Bragança) [60].

Depth (m) SPT Probes SP 01 and SP 02

0–4.769 Sandy silt, yellow
4.77–9.299 Medium clay with pebbles
9.30–10.45 Coarse sand, reddish and yellow

Table 2. Lithological profile of the subsoil obtained by SPT probe SP 03, which was implemented in
study Area 1 (CEANPA, Bragança) [60].

Depth (m) SPT Probe SP 03

0–4.769 Sandy silt, yellow
4.77–9.299 Medium clay with pebbles
9.30–10.50 Coarse sand, reddish and yellow

Probes SP 01 and SP 02 identified three layers, containing sandy silt, clay with pebbles,
and coarse sand (Table 1). Similar lithological layers were identified by probe SP 03 (Table 2).

The AB profile (Figure 5a) was also used to calculate the propagation velocity and
the relative dielectric permittivity (dielectric constant), which were used to determine the
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lithology of the different layers of the subsoil in Area 1 (Table 3). The values obtained for
these parameters revealed a lithological profile that aligned closely with the findings of the
SPT probes in the same area.

Table 3. Dielectric permittivity (ε) and electromagnetic wave velocity (ν) measured from the different
layers of the subsoil in study Area 1 (CEANPA, Bragança).

Depth (m) Lithology [60] Wave Velocity (m/ns) Dielectric Permittivity (ε’
r)

0–4.769 Sandy silt, yellow 0.092 10.63

4.77–8.5 Medium clay
with pebbles 0.070 18.37

3.2. Area 2

The 200 and 400 MHz antennas were also used in Area 2 (Tracuateua), where the GPR
prospection reached a depth of 7.5–8.5 m but, once again, with high noise levels at depths
of below 1 m (Figure 7). Horizontal layers were identified near the surface, between 0
and 1 m (AB profile, Figure 7a). In this profile, a horizontal reflector was also identified at
6–6.5 m, which corresponds to the local water table, as confirmed by a well drilled on the
property, in which brackish water was found at a depth of 6.0 m.
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The CD profile (Figure 7b) had a number of features that were similar to those of the
AB profile (Figure 7a), including horizontal layers (0–1 m) and a water table at 5.5–6 m, as
well as hyperbole-shaped reflectors at depths of between 1.75 m and 5 m, which would
appear to indicate the presence of buried pipes.

These profiles (Figure 7) are color-coded as in those of Figure 5, where the yellow
shading indicates a zone of low amplitude due to the attenuation of the GPR signal. The
other colors represent zones of high amplitude or reflection.

The conductivity was higher in Area 1, with values ranging from 16 to 48 mS.m−1

(Figure 8). These values are also consistent with the presence of a clayey subsoil [38]. These
soils are of the yellow latosol type [65].

The soil samples collected from Area 2 (Tracuateua) have a very high clay fraction
(60–100%), in particular, at depths of below 1 m. The occurrence of organic matter was very
similar to that observed in Area 1.
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4. Discussion

In the present study, the soils were humid due to the effects of the local rainy season.
The saturation of soils with water increases their electrical conductivity and attenuates the
GPR signal. In general, the electrical conductivity of a soil is determined by its content of
different types of clay minerals [66]. Low-frequency (<200 MHz) antennas provide a lower
resolution and a greater penetration depth, while higher frequency (>200 MHz) antennas
obtain a higher resolution [29].

However, the penetration of the GPR signal into the terrain will depend on its conduc-
tivity and resistivity, irrespective of the frequency of the antenna used. In environments
with low conductivity (or high resistivity), such as dry, sandy soils, the radar signal may
reach depths of over 15 m, whereas in conductive environments, such as saturated clay
soils, the radar signal may be reduced to depths of less than 1 m [29].

The GPR technique has been used to provide a reliable interpretation of features
such as near-surface structures, hydrological processes, and the depth of the water table
(e.g., [67–73]). Reference [74] used GPR to evaluate the conditions of a terrain earmarked
for aquaculture in the Montenegro zone of Bragança (Pará, Brazil). These authors identified
a sequence of normal faults with minor slips, a depression (35m in length at a depth of
2.8 m), and reflectors in the form of hyperboles of energy dispersal, which were assumed
to represent the pipes used to install the fish ponds. The amplitude of the electromagnetic
signal also varied considerably, with the GPR signature of the local rocky substrate, formed
by parallel and subparallel reflectors with a low reflection zone. A horizontal reflector
was identified at a depth of 4.48–4.62 m, which corresponds to the top of the water table,
according to the depth of the wells drilled at the site.

The authors of a number of previous studies have considered the electrical conductivity
as an important parameter for the evaluation of the quality of terrains earmarked for
aquaculture (e.g., [4,75,76]). Reference [4] analyzed several parameters of soil samples of
fish ponds of different ages (1–5 years and >5 years) in Noakhali, Bangladesh. The electrical
conductivity of the new ponds (334.8 mS.m−1) was much higher than that of the older
ponds (130.6 mS.m−1).

In a study of soil samples from the pond at Circuit House in Balochistan, Pakistan, [77]
recorded electrical conductivity of no more than 290 mS.m−1, which was still considered to
be favorable for aquaculture, although an overall mean value of 221 ± 143 mS.m−1 was
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recorded in this study. Reference [75] evaluated the conditions of terrains earmarked for
aquaculture in the divisions of Lahore, Gujranwala, Sahiwal, and Sargodha, in the Punjab
district of Pakistan. The results of the surveys (electrical conductivity, soil particle size, pH,
and salinity) indicated the presence of soils that were suitable for the construction of fish
ponds at most of the sites in Lahore, Sargodha, and Sahiwal.

In addition to the available geophysical tools, which have their own physical proper-
ties, a number of other potential methods based on geotechnology are available [11], which
have been integrated with other approaches (e.g., the AHP, ANP, and MCDM methods), to
identify the sites most appropriate for inland aquaculture [12,20,21,78–82]. An integrated
approach of this type was applied to select sites for fish farming in M’diq Bay in Morocco [6].
This study applied an integrated approach that involved the GIS-Spatial Multi-Criteria
Evaluation (SMCE) and Analytical Hierarchy Process (AHP) methods and the Weighted
Linear Combination (WLC) approach to select polygons suitable for fish farming, together
with the carrying capacity approach to define the most suitable number of fish farms.

The Multi-Criteria Evaluation (MCE) method was employed to optimize the selection
of sites appropriate for sturgeon farming on the southern coast of the Caspian Sea, in
Golestan, Iran. In this approach, the MCE was weighted using the Analytic Hierarchy
Process (AHP) and combined with the Weighted Linear Combination (WLC) approach [83].
Reference [84] also applied this method to the survey of areas for the development of
shellfish farming in Souahlia Bay, in Algeria.

A multi-criteria approach was used to identify sites that were adequate for fresh- and
brackish water fish farming on the coastal plains of the Indian states of Odisha and Tamil
Nadu. For this, they used large scale (1:10,000), high resolution maps of land cover and use,
with thematic layering and regulations [85]. Reference [86] successfully applied a combined
approach of Earth Observation (EO) and a dynamic energy budget (DEB) model for the
selection of the most appropriate sites for the cultivation of the Pacific oyster, Crassostrea
gigas, on the coast of South Africa.

The sedimentological analyses carried out in the present study provided confirmation
of the geophysical methods employed at the different study sites. The results of the SPT
technique (Tables 1 and 2) validated the findings of the EMI and GPR tools (Table 3) on the
lithological characteristics of the subsoil (Area 1). The relative dielectric constants and elec-
tromagnetic wave velocities of the geological substrates were determined as in Area 1 [38].
The lithological features identified in Area 1 were also corroborated using the Brazilian
Geological Service (BGS) database on the subterranean waters of the study area [87], which
correspond to the Barreiras Formation of the Neogene, in Area 1, formed by interlaced
sandy–clayey and clay soils with medium to coarse sands, and the Quaternary in Area 2,
with the intercalation of clayey and sandy–clayey soils, containing medium-grained sand.

The sedimentological analysis of the soil samples confirmed that the substrates at the
two study sites are appropriate for the construction of fish ponds, based on the recommen-
dations of [57,58]. The results of these analyses were also consistent with the results of the
EM and GPR surveys.

The present study confirmed the good performance of the geophysical tools for the
diagnosis of terrains earmarked for fish farming. These tools identified favorable conditions
in the subsurface at CEANPA (Area 1). These results supported the excavation of fifteen
ponds (twelve for raising fish, two for the treatment of wastewater, and one reservoir)
at this site in February 2020 (Figure 9), although this process was interrupted due to the
COVID-19 pandemic and was only completed in December 2021 (Figure 3b). The initial
excavations confirmed the findings of the geophysical survey and the sedimentological
analyses. The maximum depth of these ponds is approximately 1.6 m (Figure 10).
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Ground Penetrating Radar (GPR) and Electromagnetic Induction (EMI) can be ex-
tremely valuable for the collection of spatial data that correlate with the soil types and
hydrological properties of a terrain (e.g., [88–92]). The geophysical survey techniques
employed in the present study have also been used to successfully investigate the phys-
ical properties of the soil and subsoil in research in scientific fields such as agronomy,
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archeology, hydrology, and wetland ecology (e.g., [23,37,88,93–106]). References [22,107]
predicted that the integration of geophysical tools (e.g., Electrical Resistivity Tomography
(ERT), EMI, and GPR) with remote sensing will contribute to the successful development
of precision agriculture.

5. Conclusions

The radargrams identified a depression in Area 1 (Bragança), which appears to have
been filled with material at some time in the past. A compacted layer was also detected
near the surface, although no evidence of a water table was found at this site.

In Area 2 (Tracuateua), the GPR prospection identified a horizontal reflector (6–6.5 m)
corresponding to the water table, which was confirmed by a well drilled on the property.
Two other features recorded at this site were a stack of horizontal layers approximately 1 m
thick and hyperbole-shaped reflectors that may represent the presence of buried pipes.

The EMI survey identified the soils in both study areas, at depths of up to 7.5 m. The
characteristics of the soils of both areas were found to be appropriate for fish farming. In
Area 1, the Horizontal Dipole (HD) with the antennas at 10 m intervals recorded low levels
of conductivity, between 3.5 and 17 mS.m−1, which indicate the presence of a clayey subsoil.
In Area 2, conductivity was between 16 and 48 mS.m−1, which also indicates the presence
of a clayey substrate.

The preliminary sedimentological analyses identified clayey soils (23–60% clay) in
Area 1 and very clayey soils (60–100% clay) in Area 2, which confirmed the lithology of the
subsoil identified using the EM34-3 electrical conductivity meter.

The dielectric characteristics and the propagation velocities of the electromagnetic
(EM) wave determined the lithology of the principal strata of Area 1, which were validated
by the SPT probes.

The combined (GPR + EMI) geophysical approach permitted the acquisition of valid,
complementary data on the subsurface that provide reliable information on the characteris-
tics of the soils of the study areas earmarked for the installation of aquaculture projects.

Based on these findings, we would recommend the integrated application of GPR and
EM34-3 tools, combined with sedimentological analyses and the SPT, for the diagnosis of
the characteristics of the subsoil of areas earmarked for aquaculture projects. This approach
will guarantee the data needed to evaluate the configuration of the subsoil, which may be
fundamental to ensure an adequate decision-making process during the development of
aquaculture projects, by both minimizing the environmental impacts and guaranteeing the
maximum economic returns of the operation. This type of approach can also be applied to
the evaluation of the sites of small dams, tailing pits, mud pits, water holding installations,
and even wildlife refuges. In the case of deeper geology, however, the use of Electrical
Resistivity Tomography (ERT) is recommendable. Even so, a more detailed analysis would
require the complementary use of lower-frequency GPR.

Ground Penetrating Radar can also be used to obtain bathymetric data and bottom
stratigraphic sediment profiles from natural freshwater environments, such as rivers and
lakes. This freshwater GPR technique cannot be used in salt or brackish water environ-
ments.

Future studies may benefit from the use of high dynamic range GPR with a built-in
GPS and integrated odometer, to minimize spatial distortions during data collection, which
ensures the quality of the data for processing.
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