SUPPLEMENTARY DESCRIPTION

The supplemental materials include the definition of
attribute-hiding, the zero-knowledge proof and correctness
analysis of ABCT and ABCB scheme, the correctness analy-
sis and security analysis of TIPFE scheme, and the correct-
ness definition, zero-knowledge proof and security analysis
of PriSign scheme.

A. ATTRIBUTE-HIDING

Attribute-Hiding. The attribute-hiding [29] is defined by
experiment Exp®h=b in Fig.1. The IPFE scheme satis-
fies attribute-hiding, if for any probability polynomial-time
(PPT) adversary A, there is a negligible function €(\) such
that:

Adv ath __

Prphmﬂh1@4A)_1}—2'<eQ)

E.I?path_b(.A,)\)

1. (sk,pk) + IPFE.Setup(1*);

2. (Mo, My, 1, st) + A(pk) and @ € 3;

3. A requests policy keys for any characteristic vec-
tors U;: dks, <« |PFE.Extract(sk,d;), (4,v;) # O,
where i € [1, NJ;

4. C IPFE.Enc(pk, i, My);

5. b* + A(st,C, {dkﬁ},}ie[l,ND

6. Ifb=b* return1;

7. Return 0.

Fig. 1: Attribute-Hiding

B. ABCT

In this section, we present the details of ZKSoK and the
correctness analysis of the ABCT scheme.

B.1 Zero-Knowledge Signature of Knowledge
B.1.1 Details of I1;.
The proof of II; = ZKSoK{usk : upk = g“** A utk = g“s*}
is presented as below.

Prove: choose z i Z;, compute R = gz,]TZ =g c=
HASH(upk, utk, R, R), s = z — usk - ¢, and output II; =

(¢, 8).
Verify: if ¢ = HASH(upk, utk, g° - upk®, g° - utk®), output
1, 0 otherwise.

B.1.2 Details of I15.

The proof of II; = ZKSOK{(usk ra, {m;}jen,q/m) * B =
gAY = 0P Ak = XHJE 1q/DYm'~ 2}(CTX) is

presented as below.

Prove: choose (zx, 22, {t;j}je[1,q/D) &Lz, compute
R, = O'/fi, Rz = 0'/122,R3 = Hje[l,q]/D 57jj§22, c =
HASH(O'Il,X, {ifj}je[l,q]/Dv Rl, RQ, Rg, CTX), S = 2 — C-
usk, sy = zp —c-r2,{sm; =t; —c-m;};cn,q,/p, and output
Iy = (¢, sk, S2, {smj}je[l,q]/g) -

Verify: if ¢ = HASH(o?, X, {Y]};ep, gD 01, a2l
[LicpqgmY Ysm] s2(1/X)*, CTX), output 1, 0 otherwise.

B.2 Correctness Analysis

An ABCT scheme is correct if it satisfies: (1) the credential
issued by the issuer can be verified by the user; (2) an
honest user’s credential presentations can be verified by the
verifier; (3) the real identities of the users who computed
credential presentations can be traced by the issuer.

For the first Aproperty, the equation e(og,g9) =
e(oy, XYk [Tj=, Y¥;") holds, since we have:

e(02.7) = e<(upk>r'y°g"'<“+2?:1 maw), g
_ e(gr(w-ﬁ-usk‘yo-i-zl}:l ’fﬂjyj)’ g)

= e(g", g vt Eim i) @)

q
— B(Ul,X}/OuSk H }/JmJ)
Jj=1

For the second property, the equation e(oyv,g) =
e(o, kllep Y; Y™)e(u, Yo) holds, since we have:

Ul,KHY

j€D
=e(0, X [Y32 [[Y™)e
J€,ql/D JjeD
=c(0}, X] ¥/"5)e(o1, Y5")
j€l.q]
= (o1, XY™ T ¥7")e(01.57)
j€ll.ql
= e(03,9)e(v, 9)
= ¢(03v,9)

:uaYO

(1. 50)

@)

For the third property, the tracing is correct because we
have:

e(p,§) = e(01"*,) = (o}, utk) ®)

Egs. 1, Egs. 2 and Egs. 3 are used to show the correctness
of the ABCT scheme.

C. ABCB

In this section, we present the details of ZKSoK and the
correctness analysis of the ABCB scheme.

C.1 Zero-Knowledge Signature of Knowledge
C.1.1 Details of I13.
The proof of II3 = ZKSoK{(d,r,- -

RN L0 P aml’) :

D = g% C; = (¢",D"h™i) Vj € [1,I']} is presented as
below.

Prove: choose (24,21, , 21, t1,+ "+ ,trr) i Z;, com-
pute Ry = d,{Rj70 = gzj,RjJ = D?%hb } €L,

¢ = HASH(D, h,{Cj0,Cj1}jen, Das {Rjo, Bjn}jepn)
sqa=z4—c-d{srj =z —c-rjsm;=t;—c- mj}je[l,l’]f
and output II3 = (c, 84, {575, 5Mm; }jen,i1))-

Verify: if ¢ = HASH(D,h, {CLO,Cj71}j€[1’l/],gsch,
{g°" Cs o, DT R C;’l}je[l,l/]), output 1, 0 otherwise.

C.1.2 Details of 114.
The proof of I1, = ZKSOK{(rg, {m;}iepnmp) VvV =1 A
K =A Iicnum B 792} is presented as below.
Prove: (22, {tj}jern/p) L Zy,
pute Ry = 772 R3 H]eu l]/’DB 72, ¢ =
HASH(Tl,A {B }jé[l q]/’D,RQ,Rd) S9 = 29 —C-T2, {sm]
tj —c-m;j} ey p, and output Iy = (c S, {sm]}je[l l /D)
Verlfy if ¢ = HASH(ThA {B }]e[l l]/D7T1 ‘
ien o Bsm] %2 (k '/A)), output 1, 0 otherwise.

choose com-

C.2 Correctness Analysis

An ABCB scheme is correct if it satisfies: 1) the credential
issued by the issuer can be verified by the user; 2) an
honest user’s credential presentations can be verified by the
verifier.

For the first property, the equation e(72,9) =
e(r, A Hé‘:1 B;") holds, since we have:

6(7—27 g)
- 6(7-{7_2/ da g)
l/
a b, Lo, im; bj\—d ~
=e(h H Cih - h22g=t41 b (H o) 49)
L ot
v l v
— (b T[(Drsnms oo nSimratams ([g72%) =,)
J=1 Jj=1
l 14 4 (4)
_ e(h“ H mibi H Dribi H g"'jbj(_d)’g)
j=1 j=1 j=1
l
=e(h® [[n™%,9)
j=1

= e(h, §a+25=1 mibi)

!
el AT[B
j=1
For the second property, the equation e(7m5v/,q) =
e(r],k ’HJGD ") holds, since we have:

e(ri.«’ [T B")
JED
e(ri, A [B3~ [[B")

]E[ll/’D jED

(11, Bm7~r2
bl ©)
JEL,1]
I B)e(r1.3™)
JeLl
= e(73,9)e(V',9)
=e(m3v',q)
Egs. 4 and Eqs. 5 are used to show the correctness of the
ABCB scheme.

)

= 6(7_{7

D. TIPFE

In this section, we present the details of correctness analysis
and formal proof of the TIPFE scheme.

D.1 Correctness Analysis

A TIPFE scheme is correct if it satisfies: (1) the key extracted
by each policymaker for verifiers is correct; (2) the aggrega-
tion of ¢ shares of policy key is correct; (3) the decryption
is correct if the attribute vector matches the policy i.e.
<u,v>=0.

For the first property, a received share of policy key
is dk;q.5:, and the verifier verifies it as e(g,dkiq5:) =
Pfid [T;-1 H; UJ . This equation holds, since we have:

e(g, gZJ 154,5v5F€i0 id)
k
H e(g,g*)"

_ Pezd H H”J

(gydkzd v, 1)

(6)

For the second property, a complete policy key should
j‘ 1 85V5 +eb

satisfy the equation dk;q 7 = gZ
holds since we have:

4 This equation

dkid,v - H dk?d 7,4

1€[1,¢]
— gzle 1,t] A7‘(2?:1 si,jvj+eibia) (7)
— gzxe 10 St Aisi g+ e, Nieibia
=g
For the third property, if < «,7 >= 0, decryption is
successful since:

S35y sjvjtebdia

k v
[=1C2) o
e(Cy, thiaw)
(H G)™ (H5 Gy - (HE G)™
e(g”, tkia,z)
G<TT>r(<5,7>)

Co - (

_ar.pr. 054
=M P) ®

ot

erf;
=M (G o(g, §)7(<5T>Febia)

=M

Egs. 6, Egs. 7 and Egs. 8 are used to show the correctness
of the TIPFE scheme.

D.2 Security Analysis

Theorem 4.1: Our TIPFE scheme satisfies attribute-hiding
under the BDDH assumption.

Proof: Let (g“<,g“*, g%, g%, e(g,9)"2) be a BDDH
challenge in BL. A provides two distinct messages M, and
M, and an attribute vector @. The simulator & progresses
as follows:

— Sfinds a (k — 1) basis of subspace (i)*
fik—1). S chooses z; Z;, for

and denotes

the basis by (g1, pz2, - - -
el,k—1].

— Fori € [1,k], S computes v; = ayii + 30—} Aipts to
obtain the canonical basis (v, ,v;), where < v;, @ >=
; - ||i||%. Then, S computes o = Zle vioy = 1/||d]|? - @

— Ssets G = e(g,g"). Vi € [1,k], S computes H; =
e((gwa)aigZ;;ll Z2jAj ’ gwc) _ Gaari'z:?;f ZjA; . Note that s; =

k-1
ac; + 3521 2 A

— 8 chooses e <i Z;‘), computes P = G°, and sets
pk: = (G,P,Hl,HQ,--- 7I‘Ik).

— For a policy 7 = (vy,--- ,v;) € (&), S computes
Z?Zl 550 = Z?:l vjzjA;. To achieve the threshold key
distribution, S Chooses 2 polynomials of degree ¢ — 1:
fsv, fe, where fg,(0) = Z§=1 505, fe(0) = e, and Vi € [1, k]
computes sv; = fs, (i), e; = fe(i).

— For identity ¢«d and policy ¥, S computes ;4 =
HASH(id) and returns dk;q 5,; = g°vitei¥ia.

— In the challenge stage, for b € {0,1}, S
choose " € Z; and returns C* = (Cf,Ct,C35)
where Cf = Me(g™™ ,g%),Cf = g7, Ci; =
e(g,§)wze((g“’”/)z?;11 #% g)GUi i € [1,k], which im-
plicitly defines r =1’ - b.

If w, - wp - w. = 1w, then we can see that
(C§, Cr,C3) are identically distributed as in the TIPFE.Enc
algorithm, because Cj = MG",C7 = g¢",C3; =
e(gaﬁ)wze((gwb'rl)z?;ll %A = HI'G"i,i € [1,k]. Otherwise,
(C§,Cr,C3) are randoms for A. Since if A can break the
attribute-hiding with non-negligible probability, S can break
the BDDH problem with equal probability.

E. PRISIGN

In this section, we present the details of correctness defini-
tion, ZKSoK, and security analysis of the PriSign scheme.

E.1 Formal Correctness Definition

Correctness. A PriSign scheme is correct if it satisfies:

r PriSign.Setup(1*, ¢, n, t, k) —]
(pp, msk, mpk, L);
PriSign.IssuerKeyGen() —
(isk,ipk);
PriSign.IssuerReg(l(isk, ipk)

< CA(msk, mpk)) — icred,
PriSign.PolMakKeyGen(msk,
mpk) — ({pski, pvki}ie(1,n);

PriSign.Trace | {PriSign.IssPolKey (psk;, vid,

(msk, L, 77)_—_> thvid,v,i fie[1,4); o
pst) — uid PriSign.AggrPolKey(vid, 7,
Pr | PriSign.Verify {tkvid,ﬁ,iampki}ie[l,t]) - -1
(vid, tok thvid, 3
LR PriSign.UserKeyGen() — (usk,
tk’uid T .
g upk, utk);
mpk) =1 | priSign.UserReg(U(uid, usk,

upk, utk, {m;};cn,q) <+ CA(
msk, mpk, L)) — (ucred, L');
PriSign.ObtTkt(U(usk, upk,
ucred, {m;};en,q, D, CTX)
|(isk,ipk,icred)) — (pst,tkt,
dsid, V P);
PriSign.SignOn(tkt, dsid, V P,
a, U, mpk) — tok.

E.2 Details of II;.

The proof of II5 = ZKSoK{(a, b1, ,b;) : A
ghi, V1 <i< 1} is presented as below.

R
Prove: choose (24,21, " ,21) <+—

RCL = jzaﬁél,\/ = 5217"' 7Rl = §ZZ/ & =
HASH(A, By, ,Bi,Rqe, R1,- - ,Ry), Sa = 24 — C- @, 81

Z,, compute

21 —c-by,---,88 = 2z —c-b, and output II; =
(Cy8ay 8157+ 4 81)-

 Verify: if ¢ = HASH(A, By, -, B, g% - A%, g% -
B§,---, g% - Bf), output 1, 0 otherwise.

E.3 Security Analysis
E.3.1 Unforgeability of credentials

Theorem 4.3: Our PriSign scheme satisfies the unforgeability
of credentials if the SDL assumption holds and the PS
signature is unforgeable.

Proof: The PPT adversary A wins the experiment of
unforgeability of credentials if he forges a credential pre-
sentation of an honest user or an unregistered user in
PriSign.ObtTkt algorithm, therefore we distinguish two
types of adversary:

Type-1: A forges icred,;q-, where Juid € HU, and
uskyiq = uskyia-;

Type-2: A forges icredy;q~, where Vuid € HU UCU, and
uskyiq 7# uskyig~;

where usk,;q is the private key of user wid and icred,q
is the credential of user wid.

Lemma 1. If there is a type-1 adversary A that breaks
the unforgeability of credentials with the probability €, then
there is a simulator S that breaks the SDL assumption with
the probability &, where N is a bound on the number of
honest users.

Proof: Let (9,4,9",9") be a SDL challenge in BL.
S uses BL as the parameter, runs (pp, msk, mpk,L) <+
PriSign.Setup(1*, ¢, n, t, k), and send (pp, mpk) to A. Since
we are considering a type-1 adversary, there is an honest
user with the identity uid* that the adversary is trying to
emulate. S makes a guess on uid* € HU and answers the
oracles’ queries as follows:

OReg,, (uid, {m;}c(1,q): if uid # uid*, then S proceeds
as usual. Otherwise, it sets upk = ¢" and utk = g*, and
then S completes the remaining operations by simulating
ZKSoK I1;.

Ocory, (uid): if uid # wid*, then S proceeds as usual.
Otherwise, it returns L.

Oobt(uid, D, CTX): if uid # wid*, then S proceeds as
usual. Otherwise, it completes the remaining operations by
simulating ZKSoK II,.

OReg, s Oont;: S knows the secret keys of CA and the
ticket issuer, so it can perfectly simulate these oracles.

If S guesses the uid* successfully, then the simulations
of the oracles is perfect, and the probability of its occurrence
is +. In this case, if A successfully forges a credential pre-
sentation pst* of user uid*, then S can use the knowledge
extractor of Il to recover w, which is a valid solution to the
SDL assumption. The probability of success for S is .

Lemma 2. If there is a type-2 adversary A that breaks
the unforgeability of credentials with the probability ¢, then
there is a simulator S that breaks the unforgeability of the
PS signature with the same probability.

Proof: S runs the unforgeability game of the PS signature
and so receives a public parameters BL and public key pk =

()N(, Yo, - ,f/q). S sets mpk; = pk, uses BL as the param-
eter, runs (pp, msk, mpk, L) < PriSign.Setup(1*, ¢, n, ¢, k),
and sends (pp, mpk) to A. S can query the signature oracle
of PS, Opgs. Sign(-), and answer oracles queries as follows:

OReg,, (uid, {m;};c1,q): S generates (uskuid,upkuid,
utkyiq) for user uid, and submits (uskyiq, m1,- -+ ,mgq) to
the signature oracle Opg. gign(+). It then receives a PS signa-
ture o and sets ucred = o.

OReg,: S knows CA’s secret keys used to issue credential
for the ticket issuer, so it can perfectly simulate this oracle.

Ocory » Oobt; Oont, : S knows the secret keys of the ticket
issuer and all honest users, so it can perfectly simulate these
oracles.

S can simulate these oracles perfectly and never aborts.
Since we are considering a type-2 adversary, the ad-
versary outputs a valid credential presentation pst =
({m;}ien.q» 01, 0%, 1, v, K, o) with the probability € at the
end of the experiment; S can recover uskyiq- using the
extractor of Iy and Yuid € HU U CU, uskyiqx # uSkyig-
So S forges a valid PS signature (07,0%) on the message
(uskuia, {m;}jen q)) with the probability .

E.3.2 Unforgeability of tokens

Theorem 4.4: Our PriSign scheme satisfies the unforgeability
of tokens if the PS signature is unforgeable.

Proof: S runs the unforgeability game of the PS signature
and so receives the public parameters BL and public key
pk = (A, By, B1, By, B1). S uses BL as the parameter, runs
(pp, msk, mpk, L) < PriSign.Setup(1*, ¢, n, t, k), and sends
(pp, mpk) to A. § can query the signature oracle of PS
Ops.sign(+) and answer oracles queries as follows:

OReg, (): S sets the ticket issuer’s public key ipk = pk
and issues credential for the issuer.

Oovpt(uid, D, CTX): S generates dsid and V P for a ticket,
and submits (dsid, V P) to the signature oracle Opg. sign(-).
It then receives a PS signature o and sets the ticket 7 = o.

Oissy s ORegy, s Ocory Osign: S knows the secret keys of
CA and all honest users, so it can perfectly simulate these
oracles.

S can simulate these oracles perfectly and never aborts.
At the end of the experiment, the adversary outputs a
forged-yet-valid token tok = (CM,CT) with the proba-
bility €; S can recover tok’ = ({dsid, V P}, 7{,74) using the
poly key of the verifier. Since tok’ ¢ Orok, S forges a valid
PS signature (71, 75) on the message (dsid,V P) with the
probability e.

E.3.3 Unlinkability of credentials

Theorem 4.5: Our PriSign scheme satisfies the unlinkability
of credentials if the DDH assumption holds in G;.

Proof: Let (g, g"", g"2,¢g"*) be a DDH challenge in G;.
S uses (Gq, g) as the parameter, runs (pp, msk, mpk, L)
PriSign.Setup(1*, ¢, n,t, k), and sends (pp, mpk) to A. In
the experiment, S makes a guess on wid® € HU that
the adversary is trying to break, and answers the oracles’
queries as follows:

OReg,, (uid, {m;} c(1,q): If uid # uid*, then S proceeds
as usual. Otherwise, it assigns upkyiq~ = ¢“'. Then, it
simulates the ZKSoK 117, chooses 1 i Z; and computes

o1 = g, 09 = gorig" @+ e, ™) We note that S

can use global variables Qr to trace user identities directly
without tracing keys.

Ocory, (uid): If uwid # wid*, then S proceeds as usual.
Otherwise, it returns L.

Oobt; Oopty,: If wid # wid*, then S proceeds as usual.
Otherwise, it simulates the ZKSoK I1,.

OReg, s Ocor;» Oissy : S knows the secret keys of CA, the
ticket issuer and all verifiers, so it can perfectly simulate
these oracles.

At some stage in the experiment, A outputs the identities
utdg and uid; of two honest users along with an attribute
disclosure policy D*. If wid, # uid*, then S aborts. Other-
wise, it proceeds as follows.

OUnICredb (u’ido, uidl, D, CTX): S
ry «— Zp, computes of = (¢“2)" 05 = 05° =
gwavor (ng)rl'(w+2je[1,q] mjyj), p= (g, v = 0/1T2’ K =
XTI jellal/D }7jmj g"2. Then, it simulates the ZKSoK II; and
completes the remaining operations.

If wy - we = ws, then we can see that (07, 0%, u, v, K) are
identically distributed as in the PriSign.ObtTkt algorithm.
Otherwise, w3 is random element, which means that ¢} is
random. Therefore, the behaviors of A can be used to solve
the DDH assumption in G, unless S aborts. The advantage
of § is at least ﬁ, where NN is a bound on the number of
honest users.

chooses

E.3.4 Unlinkability of tokens

Theorem 4.6: Our PriSign scheme satisfies the unlinkability
of tokens if the ABCB scheme satisfies the unlinkability.

Proof: S runs the unlinkability game of the ABCB
scheme and so receives the public parameters BL and public
key pk = (A, By, B1, By, B1). S uses BL as the parameter,
runs (pp, msk, mpk, L) + PriSign.Setup(1*, ¢, n, ¢, k), and
sends (pp, mpk) to A. S can query the oracles of ABCB and
answer oracles queries as follows:

Olssv , OCorV) ORegUa OCOFUa OObtUa OSign: S knows the
secret keys of CA and all users, so it can perfectly simulate
these oracles.

OReg, (): S sets the ticket issuer’s public key ipk = pk
and issues credential for the issuer.

Oopt(uid, D,CTX): S generates dsid and VP for a
ticket, and submits (dsid, V P) to the ABCB's issuing oracle
OnsoB.issue (). It then receives a credential o and sets the
ticket 7 = 0.

At some stage in the experiment, .4 outputs two honest
user uidy and wid; and a designated verifier vid with the
policy v.

Ounitiy, (wido, widy, i, vid, 7,CTX): If widy ¢ HU or
uidy ¢ HU, then S aborts. Otherwise, it submits uidy, uid;
to the challenge oracle Oagca.uni, (-), and then receives a
token tok;. It encrypts tok; with @ and returns the ciphertext
tOkb.

S can simulate these oracles perfectly and never aborts.
At the end of the experiment, the adversary outputs a guess
b* with the probability €. Because the adversary knows
the policy key, it can decrypts toky, then outputs tok; and
make a guess. So S can return A’s guess as its own, thus
turning A’s advantage in attacking PriSign system into an
advantage in attacking ABCB scheme.

