
SUPPLEMENTARY DESCRIPTION

The supplemental materials include the definition of
attribute-hiding, the zero-knowledge proof and correctness
analysis of ABCT and ABCB scheme, the correctness analy-
sis and security analysis of TIPFE scheme, and the correct-
ness definition, zero-knowledge proof and security analysis
of PriSign scheme.

A. ATTRIBUTE-HIDING

Attribute-Hiding. The attribute-hiding [29] is defined by
experiment Expath−b in Fig.1. The IPFE scheme satis-
fies attribute-hiding, if for any probability polynomial-time
(PPT) adversary A, there is a negligible function ε(λ) such
that:

Advath =

∣∣∣∣Pr
[
Expath−1(A, λ) = 1

]
− 1

2

∣∣∣∣ 6 ε(λ)

Expath−b(A, λ):
1. (sk, pk)← IPFE.Setup(1λ);
2. (M0,M1, ~u, st)← A(pk) and ~u ∈ Σ;
3. A requests policy keys for any characteristic vec-
tors ~vi: dk~vi ← IPFE.Extract(sk,~vi), 〈~u,~vi〉 6= 0,
where i ∈ [1, N ];
4. C IPFE.Enc(pk, ~u,Mb);
5. b∗ ← A(st, C, {dk~vi}i∈[1,N ])
6. If b = b∗, return 1;
7. Return 0.

Fig. 1: Attribute-Hiding

B. ABCT
In this section, we present the details of ZKSoK and the
correctness analysis of the ABCT scheme.

B.1 Zero-Knowledge Signature of Knowledge
B.1.1 Details of Π1.
The proof of Π1 = ZKSoK{usk : upk = gusk ∧ utk = g̃usk}
is presented as below.

Prove: choose z R←−− Z∗p, compute R = gz, R̃ = g̃z , c =

HASH(upk, utk,R, R̃), s = z − usk · c, and output Π1 =
(c, s).

Verify: if c = HASH(upk, utk, gs · upkc, g̃s · utkc), output
1, 0 otherwise.

B.1.2 Details of Π2.
The proof of Π2 = ZKSoK{(usk, r2, {mj}j∈[1,q]/D) : µ =

σ′usk1 ∧ ν = σ′r21 ∧ κ = X̃
∏
j∈[1,q]/D Ỹ

mj

j g̃r2}(CTX) is
presented as below.

Prove: choose (zk, z2, {tj}j∈[1,q]/D)
R←−− Z∗p, compute

R1 = σ′zk1 , R2 = σ′z21 , R3 =
∏
j∈[1,q]/D Ỹ

tj
j g̃z2 , c =

HASH(σ′1, X̃, {Ỹj}j∈[1,q]/D, R1, R2, R3,CTX), sk = zk − c ·
usk, s2 = z2−c ·r2, {smj = tj−c ·mj}j∈[1,q]/D, and output
Π2 = (c, sk, s2, {smj}j∈[1,q]/D)

Verify: if c = HASH(σ′1, X̃, {Ỹj}j∈[1,q]/D, σ
′sk
1 µc, σ′s21 νc,∏

j∈[1,q]/D Ỹ
smj

j g̃s2(κ/X̃)c,CTX), output 1, 0 otherwise.

B.2 Correctness Analysis

An ABCT scheme is correct if it satisfies: (1) the credential
issued by the issuer can be verified by the user; (2) an
honest user’s credential presentations can be verified by the
verifier; (3) the real identities of the users who computed
credential presentations can be traced by the issuer.

For the first property, the equation e(σ2, g̃) =
e(σ1, X̃Ỹ

usk
0

∏q
j=1 Ỹ

mj

j ) holds, since we have:

e(σ2, g̃) = e((upk)r·y0gr·(x+
∑q

j=1mjyj), g̃)

= e(gr(x+usk·y0+
∑q

j=1mjyj), g̃)

= e(gr, g̃x+usk·y0+
∑q

j=1mjyj )

= e(σ1, X̃Ỹ
usk
0

q∏
j=1

Ỹ
mj

j )

(1)

For the second property, the equation e(σ′2ν, g̃) =
e(σ′1, κ

∏
j∈D Ỹ

mj

j )e(µ, Ỹ0) holds, since we have:

e(σ′1, κ
∏
j∈D

Ỹ
mj

j )e(µ, Ỹ0)

= e(σ′1, X̃
∏

j∈[1,q]/D

Ỹ
mj

j g̃r2
∏
j∈D

Ỹ
mj

j )e(σ′usk1 , Ỹ0)

= e(σ′1, X̃
∏

j∈[1,q]

Ỹ
mj

j g̃r2)e(σ′1, Ỹ
usk
0 )

= e(σ′1, X̃Ỹ
usk
0

∏
j∈[1,q]

Ỹ
mj

j )e(σ′1, g̃
r2)

= e(σ′2, g̃)e(ν, g̃)

= e(σ′2ν, g̃)

(2)

For the third property, the tracing is correct because we
have:

e(µ, g̃) = e(σ′usk1 , g̃) = e(σ′1, utk) (3)

Eqs. 1, Eqs. 2 and Eqs. 3 are used to show the correctness
of the ABCT scheme.

C. ABCB

In this section, we present the details of ZKSoK and the
correctness analysis of the ABCB scheme.

C.1 Zero-Knowledge Signature of Knowledge

C.1.1 Details of Π3.

The proof of Π3 = ZKSoK{(d, r1, · · · , rl′ ,m1, · · · ,ml′) :
D = gd, Cj = (grj , Drjhmj ) ∀j ∈ [1, l′]} is presented as
below.

Prove: choose (zd, z1, · · · , zl′ , t1, · · · , tl′)
R←−− Z∗p, com-

pute Rd = gzd , {Rj,0 = gzj , Rj,1 = Dzjhtj}j∈[1,l′],
c = HASH(D,h, {Cj,0, Cj,1}j∈[1,l′], Dd, {Rj,0, Rj,1}j∈[1,l′]),
sd = zd − c · d, {srj = zj − c · rj , smj = tj − c ·mj}j∈[1,l′],
and output Π3 = (c, sd, {srj , smj}j∈[1,l′]).

Verify: if c = HASH(D,h, {Cj,0, Cj,1}j∈[1,l′], gsdDc,
{gsrjCcj,0, DsrjhsmjCcj,1}j∈[1,l′]), output 1, 0 otherwise.



C.1.2 Details of Π4.
The proof of Π4 = ZKSoK{(r2, {mj}j∈[1,l]/D) : ν′ = τ ′r21 ∧
κ′ = Ã

∏
j∈[1,l]/D B̃

mj

j g̃r2} is presented as below.

Prove: choose (z2, {tj}j∈[1,l]/D)
R←−− Z∗p, com-

pute R2 = τ ′z21 , R3 =
∏
j∈[1,l]/D B̃

tj
j g̃

z2 , c =

HASH(τ ′1, Ã, {B̃j}j∈[1,q]/D, R2, R3), s2 = z2− c · r2, {smj =
tj − c ·mj}j∈[1,l]/D, and output Π4 = (c, s2, {smj}j∈[1,l]/D)

Verify: if c = HASH(τ ′1, Ã, {B̃j}j∈[1,l]/D, τ
′s2
1 ν′c,∏

j∈[1,l]/D B̃
smj

j g̃s2(κ′/Ã)c), output 1, 0 otherwise.

C.2 Correctness Analysis
An ABCB scheme is correct if it satisfies: 1) the credential
issued by the issuer can be verified by the user; 2) an
honest user’s credential presentations can be verified by the
verifier.

For the first property, the equation e(τ2, g̃) =
e(τ1, Ã

∏l
j=1 B̃

mj

j ) holds, since we have:

e(τ2, g̃)

= e(τ ′1τ
′−d
2 , g̃)

= e(ha
l′∏
j=1

C
bj
j,1 · h

∑l
j=l′+1

bjmj (
l′∏
j=1

C
bj
j,0)−d, g̃)

= e((ha
l′∏
j=1

(Drjhmj )bjh
∑l

j=l′+1
bjmj (

l′∏
j=1

grjbj )−d, g̃)

= e(ha
l∏

j=1

hmjbj

l′∏
j=1

Drjbj

l′∏
j=1

grjbj(−d), g̃)

= e(ha
l∏

j=1

hmjbj , g̃)

= e(h, g̃a+
∑l

j=1mjbj )

= e(τ1, Ã
l∏

j=1

B̃
mj

j )

(4)

For the second property, the equation e(τ ′2ν
′, g̃) =

e(τ ′1, κ
′∏

j∈D B̃
mj

j ) holds, since we have:

e(τ ′1, κ
′
∏
j∈D

B̃
mj

j )

= e(τ ′1, Ã
∏

j∈[1,l]/D

B̃
mj

j g̃r2
∏
j∈D

B̃
mj

j )

= e(τ ′1, Ã
∏
j∈[1,l]

B̃
mj

j g̃r2)

= e(τ ′1, Ã
∏
j∈[1,l]

B̃
mj

j )e(τ ′1, g̃
r2)

= e(τ ′2, g̃)e(ν′, g̃)

= e(τ ′2ν
′, g̃)

(5)

Eqs. 4 and Eqs. 5 are used to show the correctness of the
ABCB scheme.

D. TIPFE
In this section, we present the details of correctness analysis
and formal proof of the TIPFE scheme.

D.1 Correctness Analysis
A TIPFE scheme is correct if it satisfies: (1) the key extracted
by each policymaker for verifiers is correct; (2) the aggrega-
tion of t shares of policy key is correct; (3) the decryption
is correct if the attribute vector matches the policy i.e.
< ~u,~v >= 0.

For the first property, a received share of policy key
is dkid,~v,i, and the verifier verifies it as e(g, dkid,~v,i) =

P θidi

∏k
j=1H

vj
i,j . This equation holds, since we have:

e(g, dkid,~v,i) = e(g, g̃
∑k

j=1 si,jvj+eiθid)

= e(g, g̃ei)θid
k∏
j=1

e(g, g̃si,j )vj

= P θidi

k∏
j=1

H
vj
i,j

(6)

For the second property, a complete policy key should
satisfy the equation dkid,~v = g̃

∑k
j=1 sjvj+eθid . This equation

holds since we have:

dkid,~v =
∏
i∈[1,t]

dkλi

id,~v,i

= g̃
∑

i∈[1,t] λi(
∑k

j=1 si,jvj+eiθid)

= g̃
∑

i∈[1,t]
∑k

j=1 λisi,jvj+
∑

i∈[1,t] λieiθid

= g̃
∑k

j=1 sjvj+eθid

(7)

For the third property, if < ~u,~v >= 0, decryption is
successful since:

C0 · (
∏k
j=1 C

vj
2,j

e(C1, tkid,~v)
)θ
−1
id

= M · P r · ( (Hr
1G

u1)v1(Hr
2G

u2)v2 · (Hr
kG

uk)vk

e(gr, tkid,~v)
)θ
−1
id

= M · (Ge·rθid G<~u,~v>Gr(<~s,~v>)

e(g, g̃)r(<~s,~v>+eθid)
)θ
−1
id

= M

(8)

Eqs. 6, Eqs. 7 and Eqs. 8 are used to show the correctness
of the TIPFE scheme.

D.2 Security Analysis
Theorem 4.1: Our TIPFE scheme satisfies attribute-hiding
under the BDDH assumption.

Proof: Let (gwa , gwb , g̃wa , g̃wc , e(g, g̃)wz ) be a BDDH
challenge in BL. A provides two distinct messages M0 and
M1, and an attribute vector ~u. The simulator S progresses
as follows:
− S finds a (k − 1) basis of subspace (~u)⊥ and denotes

the basis by (µ1, µ2, · · · , µk−1). S chooses zi
R←−− Z∗p for

i ∈ [1, k − 1].
− For i ∈ [1, k], S computes νi = αi~u +

∑k−1
i=1 λiµi to

obtain the canonical basis (ν1, · · · , νk), where < νi, ~u >=
αi · ||~u||2. Then, S computes α =

∑k
i=1 νiαi = 1/||~u||2 · ~u.

− S sets G = e(g, g̃wc). ∀i ∈ [1, k], S computes Hi =

e((gwa)αig
∑k−1

j=1 zjλj , g̃wc) = Gaαi+
∑k−1

j=1 zjλj . Note that si =
aαi +

∑k−1
j=1 zjλj .



− S chooses e R←−− Z∗p, computes P = Ge, and sets
pk = (G,P,H1, H2, · · · , Hk).
− For a policy ~v = (v1, · · · , vk) ∈ (~u)⊥, S computes∑k
j=1 sjvj =

∑k
j=1 vjzjλj . To achieve the threshold key

distribution, S Chooses 2 polynomials of degree t − 1:
fsv, fe, where fsv(0) =

∑k
j=1 sjvj , fe(0) = e, and ∀i ∈ [1, k]

computes svi = fsv(i), ei = fe(i).
− For identity id and policy ~v, S computes θid =

HASH(id) and returns dkid,~v,i = g̃svi+eiθid .
− In the challenge stage, for b ∈ {0, 1}, S

choose r′ ∈ Z∗p and returns C∗ = (C∗0 , C
∗
1 , C

∗
2 ),

where C∗0 = Mbe(g
wb·r′ , g̃wc), C∗1 = gwb·r′ , C∗3,i =

e(g, g̃)wze((gwb·r′)
∑k−1

j=1 zjλj , g̃wc)Gui , i ∈ [1, k], which im-
plicitly defines r = r′ · b.

If wa · wb · wc = wz , then we can see that
(C∗0 , C

∗
1 , C

∗
2 ) are identically distributed as in the TIPFE.Enc

algorithm, because C∗0 = MbG
r, C∗1 = gr, C∗3,i =

e(g, g̃)wze((gwb·r′)
∑k−1

j=1 zjλj = Hr
i G

ui , i ∈ [1, k]. Otherwise,
(C∗0 , C

∗
1 , C

∗
2 ) are randoms for A. Since if A can break the

attribute-hiding with non-negligible probability, S can break
the BDDH problem with equal probability.

E. PRISIGN

In this section, we present the details of correctness defini-
tion, ZKSoK, and security analysis of the PriSign scheme.

E.1 Formal Correctness Definition

Correctness. A PriSign scheme is correct if it satisfies:

Pr



PriSign.Trace
(msk,L,
pst)→ uid

PriSign.Verify
(vid, tok,
tkvid,~v,

mpk)→ 1

PriSign.Setup(1λ, q, n, t, k)→
(pp,msk,mpk,L);
PriSign.IssuerKeyGen()→
(isk, ipk);
PriSign.IssuerReg〈I(isk, ipk)
↔ CA(msk,mpk)〉 → icred;
PriSign.PolMakKeyGen(msk,
mpk)→ ({pski, pvki}i∈[1,n]);
{PriSign.IssPolKey(pski, vid,
~v)→ tkvid,~v,i}i∈[1,t];
PriSign.AggrPolKey(vid,~v,
{tkvid,~v,i,mpki}i∈[1,t])→
tkvid,~v;
PriSign.UserKeyGen()→ (usk,
upk, utk);
PriSign.UserReg〈U(uid, usk,
upk, utk, {mj}j∈[1,q])↔ CA(
msk,mpk,L)〉 → (ucred,L′);
PriSign.ObtTkt〈U(usk, upk,
ucred, {mj}j∈[1,q],D,CTX)↔
I(isk, ipk, icred)〉 → (pst, tkt,
dsid, V P );
PriSign.SignOn(tkt, dsid, V P,
~u,~v,mpk)→ tok.



= 1

E.2 Details of Π5.

The proof of Π5 = ZKSoK{(a, b1, · · · , bl) : Ã = g̃a ∧ B̃i =
g̃bi ,∀1 6 i 6 l} is presented as below.

Prove: choose (za, z1, · · · , zl)
R←−− Z∗p, compute

Ra = g̃za , R̃1 = g̃z1 , · · · , R̃l = g̃zl , c =
HASH(Ã, B̃1, · · · , B̃l, Ra, R1, · · · , Rl), sa = za − c · a, s1 =
z1 − c · b1, · · · , sl = zl − c · bl, and output Π5 =
(c, sa, s1, · · · , sl).

Verify: if c = HASH(Ã, B̃1, · · · , B̃l, g̃sa · Ãc, g̃s1 ·
B̃c1, · · · , g̃sl · B̃cl ), output 1, 0 otherwise.

E.3 Security Analysis

E.3.1 Unforgeability of credentials

Theorem 4.3: Our PriSign scheme satisfies the unforgeability
of credentials if the SDL assumption holds and the PS
signature is unforgeable.

Proof: The PPT adversary A wins the experiment of
unforgeability of credentials if he forges a credential pre-
sentation of an honest user or an unregistered user in
PriSign.ObtTkt algorithm, therefore we distinguish two
types of adversary:

Type-1: A forges icreduid∗ , where ∃uid ∈ HU , and
uskuid = uskuid∗ ;

Type-2: A forges icreduid∗ , where ∀uid ∈ HU ∪ CU , and
uskuid 6= uskuid∗ ;

where uskuid is the private key of user uid and icreduid
is the credential of user uid.

Lemma 1. If there is a type-1 adversary A that breaks
the unforgeability of credentials with the probability ε, then
there is a simulator S that breaks the SDL assumption with
the probability ε

N , where N is a bound on the number of
honest users.

Proof: Let (g, g̃, gw, g̃w) be a SDL challenge in BL.
S uses BL as the parameter, runs (pp,msk,mpk,L) ←
PriSign.Setup(1λ, q, n, t, k), and send (pp,mpk) to A. Since
we are considering a type-1 adversary, there is an honest
user with the identity uid∗ that the adversary is trying to
emulate. S makes a guess on uid∗ ∈ HU and answers the
oracles’ queries as follows:
ORegU

(uid, {mj}j∈[1,q]): if uid 6= uid∗, then S proceeds
as usual. Otherwise, it sets upk = gw and utk = g̃w, and
then S completes the remaining operations by simulating
ZKSoK Π1.
OCorU (uid): if uid 6= uid∗, then S proceeds as usual.

Otherwise, it returns ⊥.
OObt(uid,D,CTX): if uid 6= uid∗, then S proceeds as

usual. Otherwise, it completes the remaining operations by
simulating ZKSoK Π2.
ORegI

,OObtI : S knows the secret keys of CA and the
ticket issuer, so it can perfectly simulate these oracles.

If S guesses the uid∗ successfully, then the simulations
of the oracles is perfect, and the probability of its occurrence
is 1

N . In this case, if A successfully forges a credential pre-
sentation pst∗ of user uid∗, then S can use the knowledge
extractor of Π2 to recover w, which is a valid solution to the
SDL assumption. The probability of success for S is ε

N .
Lemma 2. If there is a type-2 adversary A that breaks

the unforgeability of credentials with the probability ε, then
there is a simulator S that breaks the unforgeability of the
PS signature with the same probability.

Proof: S runs the unforgeability game of the PS signature
and so receives a public parameters BL and public key pk =



(X̃, Ỹ0, · · · , Ỹq). S sets mpki = pk, uses BL as the param-
eter, runs (pp,msk,mpk,L) ← PriSign.Setup(1λ, q, n, t, k),
and sends (pp,mpk) to A. S can query the signature oracle
of PS, OPS.Sign(·), and answer oracles queries as follows:
ORegU

(uid, {mj}j∈[1,q]): S generates (uskuid, upkuid,
utkuid) for user uid, and submits (uskuid,m1, · · · ,mq) to
the signature oracle OPS.Sign(·). It then receives a PS signa-
ture σ and sets ucred = σ.
ORegI

: S knows CA’s secret keys used to issue credential
for the ticket issuer, so it can perfectly simulate this oracle.
OCorU ,OObt,OObtI : S knows the secret keys of the ticket

issuer and all honest users, so it can perfectly simulate these
oracles.
S can simulate these oracles perfectly and never aborts.

Since we are considering a type-2 adversary, the ad-
versary outputs a valid credential presentation pst =
({mj}j∈[1,q], σ′1, σ′2, µ, ν, κ,Π2) with the probability ε at the
end of the experiment; S can recover uskuid∗ using the
extractor of Π2 and ∀uid ∈ HU ∪ CU , uskuid∗ 6= uskuid.
So S forges a valid PS signature (σ′1, σ

′
2) on the message

(uskuid∗ , {mj}j∈[1,q]) with the probability ε.

E.3.2 Unforgeability of tokens
Theorem 4.4: Our PriSign scheme satisfies the unforgeability
of tokens if the PS signature is unforgeable.

Proof: S runs the unforgeability game of the PS signature
and so receives the public parameters BL and public key
pk = (Ã, B̃0, B̃1, B0, B1). S uses BL as the parameter, runs
(pp,msk,mpk,L)← PriSign.Setup(1λ, q, n, t, k), and sends
(pp,mpk) to A. S can query the signature oracle of PS
OPS.Sign(·) and answer oracles queries as follows:
ORegI

(): S sets the ticket issuer’s public key ipk = pk
and issues credential for the issuer.
OObt(uid,D,CTX): S generates dsid and V P for a ticket,

and submits (dsid, V P ) to the signature oracle OPS.Sign(·).
It then receives a PS signature σ and sets the ticket τ = σ.
OIssV ,ORegU

,OCorU ,OSign: S knows the secret keys of
CA and all honest users, so it can perfectly simulate these
oracles.
S can simulate these oracles perfectly and never aborts.

At the end of the experiment, the adversary outputs a
forged-yet-valid token tok = (CM,CT ) with the proba-
bility ε; S can recover tok′ = ({dsid, V P}, τ ′1, τ ′2) using the
poly key of the verifier. Since tok′ /∈ QTOK, S forges a valid
PS signature (τ ′1, τ

′
2) on the message (dsid, V P ) with the

probability ε.

E.3.3 Unlinkability of credentials
Theorem 4.5: Our PriSign scheme satisfies the unlinkability
of credentials if the DDH assumption holds in G1.

Proof: Let (g, gw1 , gw2 , gw3) be a DDH challenge in G1.
S uses (G1, g) as the parameter, runs (pp,msk,mpk,L)
PriSign.Setup(1λ, q, n, t, k), and sends (pp,mpk) to A. In
the experiment, S makes a guess on uid∗ ∈ HU that
the adversary is trying to break, and answers the oracles’
queries as follows:
ORegU

(uid, {mj}j∈[1,q]): If uid 6= uid∗, then S proceeds
as usual. Otherwise, it assigns upkuid∗ = gw1 . Then, it
simulates the ZKSoK Π1, chooses r1

R←−− Z∗p and computes
σ1 = gr1 , σ2 = gw1y0r1gr1·(x+

∑
j∈[1,q]mjyj). We note that S

can use global variablesQTKT to trace user identities directly
without tracing keys.
OCorU (uid): If uid 6= uid∗, then S proceeds as usual.

Otherwise, it returns ⊥.
OObt,OObtU : If uid 6= uid∗, then S proceeds as usual.

Otherwise, it simulates the ZKSoK Π2.
ORegI

,OCorI ,OIssV : S knows the secret keys of CA, the
ticket issuer and all verifiers, so it can perfectly simulate
these oracles.

At some stage in the experiment,A outputs the identities
uid0 and uid1 of two honest users along with an attribute
disclosure policy D∗. If uidb 6= uid∗, then S aborts. Other-
wise, it proceeds as follows.
OUnlCredb

(uid0, uid1,D,CTX): S chooses
r2

R←−− Z∗p, computes σ′1 = (gw2)r1 , σ′2 = σw2
2 =

gw3y0r1(gw2)r1·(x+
∑

j∈[1,q]mjyj), µ = (gw3)r1 , ν = σ′r21 , κ =
X̃
∏
j∈[1,q]/D Ỹ

mj

j g̃r2 . Then, it simulates the ZKSoK Π2 and
completes the remaining operations.

If w1 · w2 = w3, then we can see that (σ′1, σ
′
2, µ, ν, κ) are

identically distributed as in the PriSign.ObtTkt algorithm.
Otherwise, w3 is random element, which means that σ′2 is
random. Therefore, the behaviors of A can be used to solve
the DDH assumption in G1, unless S aborts. The advantage
of S is at least ε

N , where N is a bound on the number of
honest users.

E.3.4 Unlinkability of tokens
Theorem 4.6: Our PriSign scheme satisfies the unlinkability
of tokens if the ABCB scheme satisfies the unlinkability.

Proof: S runs the unlinkability game of the ABCB
scheme and so receives the public parameters BL and public
key pk = (Ã, B̃0, B̃1, B0, B1). S uses BL as the parameter,
runs (pp,msk,mpk,L) ← PriSign.Setup(1λ, q, n, t, k), and
sends (pp,mpk) to A. S can query the oracles of ABCB and
answer oracles queries as follows:
OIssV ,OCorV ,ORegU

,OCorU ,OObtU ,OSign: S knows the
secret keys of CA and all users, so it can perfectly simulate
these oracles.
ORegI

(): S sets the ticket issuer’s public key ipk = pk
and issues credential for the issuer.
OObt(uid,D,CTX): S generates dsid and V P for a

ticket, and submits (dsid, V P ) to the ABCB’s issuing oracle
OABCB.Issue(·). It then receives a credential σ and sets the
ticket τ = σ.

At some stage in the experiment, A outputs two honest
user uid0 and uid1 and a designated verifier vid with the
policy ~v.
OUnlTktb(uid0, uid1, ~u, vid,~v,CTX): If uid0 /∈ HU or

uid1 /∈ HU , then S aborts. Otherwise, it submits uid0, uid1
to the challenge oracle OABCB.Unlb(·), and then receives a
token tok′b. It encrypts tok′b with ~u and returns the ciphertext
tokb.
S can simulate these oracles perfectly and never aborts.

At the end of the experiment, the adversary outputs a guess
b∗ with the probability ε. Because the adversary knows
the policy key, it can decrypts tokb, then outputs tok′b and
make a guess. So S can return A’s guess as its own, thus
turning A’s advantage in attacking PriSign system into an
advantage in attacking ABCB scheme.


