
Citation: Cherezov, A.; Vasiliev, A.;

Ferroukhi, H. Acceleration of Nuclear

Reactor Simulation and Uncertainty

Quantification Using Low-Precision

Arithmetic. Appl. Sci. 2023, 13, 896.

https://doi.org/10.3390/

app13020896

Academic Editor: Jeong Ik Lee

Received: 17 November 2022

Revised: 27 December 2022

Accepted: 28 December 2022

Published: 9 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Acceleration of Nuclear Reactor Simulation and Uncertainty
Quantification Using Low-Precision Arithmetic
Alexey Cherezov * , Alexander Vasiliev and Hakim Ferroukhi

Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
* Correspondence: alexey.cherezov@psi.ch

Abstract: In recent years, interest in approximate computing has been increasing significantly
in many disciplines in the context of saving energy and computation cost by trading off on the
quality of numerical simulation. The hardware acceleration based on the low-precision floating-point
arithmetic is anticipated by the upcoming generation of microprocessors and code compilers and
has already proven to be beneficial for weather and climate modelling and neural network training.
The present work illustrates the application of low-precision arithmetic for the nuclear reactor core
uncertainty analysis. We studied the performance of an elementary transient reactor core model for
the arbitrary precision of the floating-point multiplication in a direct linear system solver. Using
this model, we calculated the reactor core transients initiated by the control rod ejection taking into
account the uncertainty of the model input parameters. Then, we evaluated the round-off errors
of the model outputs for different precision levels. The comparison of the round-off errors and the
model uncertainty showed the model could be run using a 15-bit floating-point number precision
with an acceptable degradation of the result’s accuracy. This precision corresponds to a gain of about
6× in the bit complexity of the linear system solution algorithm, which can be actualized in terms of
reduced energy costs on low-precision hardware.

Keywords: RIA; PWR; FPGA; BDF; UQ

1. Introduction

Progress in nuclear power technology heavily depends on the expansion of comput-
ing performance. The cutting-edge multiphysics [1,2] and multiscale frameworks [3–5],
designed to provide more realistic predictions of a reactor core’s safety parameters and
to unveil the fundamental mechanisms of nuclear fuel behaviour beyond heuristic cor-
relations, require higher-than-ever computing resources. Over decades, the advance in
computing performance has been achieved through transistor miniaturization, which
translates into the improvement of the processor design, clock rate speed-up and the high-
density multicore architecture. However, nowadays the processor architecture scale is
close to its physical limit and it becomes more difficult to shrink [6]. New computing
architectures and models will thus be required to continue gaining improvements in chip
performance. Optical computing [7], DNA computing [8], coupled oscillating networks [9],
approximate computing [10], quantum computing [11] and analogue–digital in-memory
computing [12,13] have become important areas of exploration. Another big advance in
computing performance is envisioned with the use of traditional computing hardware
accelerated for specific engineering tasks. The hardware acceleration of nuclear engineering
applications can rely on machine learning methods and approximate computing techniques
aimed to trade off the computational quality with speed/energy efficiency.

One of the most promising strategies of approximate computing is the use of a smaller
numerical precision in floating-point operations. This idea is motivated by the fact that a
high precision of computing hardware is often excessive considering a much lower accuracy
is required in practice for engineering applications. Moreover, the solution accuracy is

Appl. Sci. 2023, 13, 896. https://doi.org/10.3390/app13020896 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13020896
https://doi.org/10.3390/app13020896
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5631-3610
https://orcid.org/0000-0001-9663-8663
https://doi.org/10.3390/app13020896
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13020896?type=check_update&version=1

Appl. Sci. 2023, 13, 896 2 of 14

usually limited by physical approximations, numerical errors and the uncertainty of the
input data. Therefore, the computing requirement can be decreased in order to redirect
the resources into higher spatial, energy or angular resolution or simply to improve the
statistics in simulations. This idea has proven to be beneficial for several applications of
ocean, weather and climate modelling [14,15] as well as for neural networks training [16].
For a full survey of approximate computing techniques, including their challenges and
obstacles, one can read [10].

The usage of a lower precision provides three advantages that can make computation
faster. Firstly, a floating-point unit processor requires less work per operation. As an
example, switching from double to half precision reduces complexity almost 9 times assum-
ing the best-known Harvey–Hoeven binary multiplication algorithm [17] of complexity
O(n log n) and 14 times for the Karatsuba algorithm [18] of complexity O(n1.585). Secondly,
more data can fit in a chip’s cache allowing to speed up memory-bound computations,
whose performance depends primarily on the time cost to access memory storing working
data. The larger the cache size, the greater number of accesses to the cache that actually
find data, hence, the average memory access time becomes less. Empirical studies [19]
have shown that the cache miss rate decreases as a power law of the cache size, where the
power lies between −0.3 and −0.7, which is equivalent to decreasing by a factor of two
if the precision switches from double to half. Thirdly, the lower precision facilitates the
communication between parallel processors, whose impairment can seriously slow down
computations [20]. Anticipating all these advantages, the low- and multiprecision archi-
tectures are now considered as prospective techniques for the acceleration of large-scale
applications on the forthcoming high-performance computer systems.

In this paper, we investigated the advantage of low-precision arithmetic for nuclear
engineering applications. In nuclear safety analysis, the traditional conservative methods
and hypotheses have gradually been replaced with the best estimate plus uncertainty
(BEPU) approach [21] meaning that one should produce a series of high-fidelity simulations
to quantify the best estimate vector and its uncertainty, for example, by means of the
random sampling method. Uncertainty quantification (UQ) is a computationally very
expensive part of the BEPU approach as it implies the multiple execution of a high-fidelity
code to propagate the uncertainty from the model’s input parameters and the nuclear
data to the responses of interest. To address this issue, researchers have developed many
acceleration techniques, such as reduced-order modelling [22–24], neural networks [25]
and automatic differentiation [26] to setup a fast-working heuristic model and bootstrap
the best-estimate solution and its variance on the fly. Although reduced order modelling
acceleration have achieved a high level of maturity, the simulation of representative samples
to train the heuristic model remains quite a time-consuming operation. One can note,
however, that there is no much sense in producing high-fidelity simulations with a high
accuracy since the uncertainty of engineering parameters likely would exceed the numerical
errors by several orders of magnitude. Therefore, the simulations could be performed
with a much lower accuracy as long as it did not violate the simulation’s stability and
the probability distribution of the responses. This research aims to verify this hypothesis
and evaluate the potential speed-up of the UQ for the reactivity-initiated accident in a
pressurized water reactor (PWR) core at least for the elementary point-kinetic reactor core
model with temperature feedback. Note that this study is focused on the multiprecision
analysis of a reactor core simulation rather than on the programming of code on mixed-
precision hardware.

The paper is structured as follows. Section 2 discusses the computing hardware
that implements the arbitrary-precision arithmetic and the programming software that
performs the multiprecision analysis of a computer code. Section 3 shows the results of the
multi-precision analysis applied to the uncertainty quantification of a reactor core model.
Section 4 contains the conclusions.

Appl. Sci. 2023, 13, 896 3 of 14

2. Multiprecision Hardware
2.1. SIMD

Switching from double to single precision on modern consumer processors does not
automatically mean that the computation will be two times faster as the floating-point
operation units are designed to perform optimally for 64-bit calculations. However, one can
achieve a boost by a vectorization of the algorithm and utilizing SIMD (single instruction,
multiple data) or SWAR (SIMD with a register) instructions supported by many modern
CPUs and compilers. Notwithstanding SIMD has great savings for cryptography and the
processing of 3D graphics, the implementation of a specific algorithm with SIMD is tricky
and not automatized.

2.2. Half-Precision

In recent years, lower-precision multiplications accompanied by a higher-precision
accumulation have proven useful in training deep neural networks [27]. Traditionally,
a neural network has been trained using a single 32-bit precision data type for matrix
multiplication and the convolution of vectors. However, it was recognised that half-
precision hardware delivers a significant boost of speed while providing similar training
quality. That motivated major hardware vendors to settle on mixed-precision hardware
units to further enhance their performance [28]. Furthermore, a new floating-point format,
BF16, has drawn attention as it is better suited to support deep learning tasks than the
standardized FP16 variant due to the right balance between exponent and significant parts
of a floating-point number [16]. The comparison of floating-point data types are given in
Table A1 of Appendix A.

2.3. FPGA

Notwithstanding the usefulness for neural network applications, the IEEE-754 and
BF16 data formats are not necessary the best choices for any other scientific problem. In
order to achieve a better optimization of computing resources for arbitrary tasks, a field-
programmable gate array (FPGA) has been invented. An FPGA is an integrated circuit
which can be configured for a specific functionality and/or data type as it contains an array
of transistor logic elements and switchers that can be interwired in various configurations.
The circuit is reconfigured using a configuration file developed on a hardware description
language such as Verilog, VHDL or OpenCL. The recent Intel C++ and Fortran compilers
support programming FPGA devices. Nowadays, FPGA research is an active area of
computer science research [14,29] and many hardware vendors invest their efforts into the
development of high-efficiency programmable chips.

2.4. Novel Data Types

A software solution is not meant to be efficient for real time execution, as it has to
emulate nonstandard numbers and arithmetic on the IEEE-754 floating-point arithmetic
units. To address this issue, novel floating-point data types were developed to replace the
common floating-point arithmetic on a hardware level. Significance arithmetic relies on the
concept of significant digits that carry meaning, contributing to a number, and insignificant
digits used for the approximation of numerical errors. Significance arithmetic was extended
by [30] to unums and posits which are based on a variable-width storage format for the
significand and exponent potentially help to minimize the number of bits used. However,
there are several obstacles for the computation in the posit space, including the change of
bit length of the number structure and concerns about the numerical stability of algorithms.
Another approach is the floating-point adaptive noise reduction (FP-ANR) format sug-
gested by [31]. FP-ANR is compatible with the existing floating-point representation format
as it replaces the uninformative bits of the mantissa by a self-detectable pattern. Scanning
the mantissa from right to left, one can deduce the number of cancelled bits without using
extra memory fields. To conclude, there is a wide range of software solutions emulating
the new formats and a short list of implementations on FPGA [32].

Appl. Sci. 2023, 13, 896 4 of 14

2.5. Multiprecision Emulators

The straightforward execution of a piece of code on low-precision hardware likely will
produce unacceptable results due to the quality loss or iteration divergence. Therefore, it
is useful to experiment with different precision levels to understand the performance of
a numerical model prior the porting it onto specialized hardware. To address this goal,
a variety of programming tools have been developed to be able to propagate the round-off
errors, tune the floating-point numbers’ precision and produce a mixed-precision version
of a specific piece of code. One can find a comprehensive review on multiprecision analysis
in [33].

A reduced-precision emulator (RPE) [34] provides the capability to emulate calcula-
tions in arbitrary reduced floating-point precision. The software program is implemented
as a Fortran module that can be included into existing projects. The module defines a
new derived type “rpe-var” that emulates a reduced-precision variable and can replace
Fortran’s built-in real type in the user’s code. The module provides an overloaded assign-
ment, arithmetic and logic operators that accept “rpe-var” instances as inputs, along with
overloaded versions of many of Fortran’s intrinsic functions. The reduction of the precision
is applied after each operator or intrinsic function call, while the operations are performed
using single-precision arithmetic.

2.6. Multiprecision Analysis Tools

The CADNA (Control of Accuracy and Debugging for Numerical Applications) li-
brary [35] estimates the propagation of rounding errors using discrete stochastic arithmetic
(DSA). DSA executes each arithmetic operation within user code several times with a
randomly chosen rounding error. Then, the statistical analysis of the obtained samples is
used to evaluate the number of exact significant digits of the computed result. In addition,
the statistical analysis allows one to detect a few types of numerical instabilities during
the code execution: nonsignificant operands of multiplication, division or a mathematical
function; indeterminism in a branching test; and the sudden loss of accuracy on an addition
or a subtraction. The stochastic operations are implemented by overloading the arithmetic
operators for stochastic types. The library is designed for C/C++ and Fortran applications

3. Numerical Results

For the numerical illustration, we considered an elementary reactor core model based
on the point kinetics equations and the lumped-parameter system of fuel and coolant
temperatures; the mathematical formulation of the model is presented in Appendix B.
Using this model, we simulated several hot zero power transients initiated by the ejec-
tion of control rods worth 1, 1.2, 1.5 and 2 dollars (1$ is equal to one effective delayed
neutron fraction). The excessive reactivity was injected gradually over 10 ms and then
remained unchanged.

The numerical scheme employed a second-order multistep backward differentiation
formula (BDF) method with a variable step size to achieve better performance. The step size
selection algorithm benefited Nordsik’s formulation and minimized the local truncation
error with respect to the given absolute and relative tolerances. The fixed-point iteration
method solved the nonlinear system of equations at every time step. The linear system of
equations was resolved by a direct LU decomposition algorithm [36]. The description of
the numerical scheme is presented in Appendix C.

The presented reactor core model was analysed as follows

1. Code profiling;
2. Uncertainty propagation;
3. Multiprecision analysis;
4. Multiprecision emulation;
5. Speed-up evaluation.

The first step evaluated the computational time utilized by each part of the code and
determined the bottleneck routine; in our example, the most demanding routine was the

Appl. Sci. 2023, 13, 896 5 of 14

matrix–vector multiplication performed for the solution of the in-step iteration. The second
step propagated the model uncertainty by a random sampling of the input data. The third
step propagated the rounding error based on the given uncertainty of the code inputs and
evaluated the minimum required precision of every arithmetic operation. The fourth step
verified the simulation stability and accuracy; in this step, we evaluated the actual rounding
error that must be small compared to the model’s uncertainty. Finally, the fifth step was
to compare the performance of the two code versions: (a) the full-precision version that
was run on a CPU and (b) the low-precision version programmed on an FPGA. In this
work, however, we did not program the low-precision hardware component; instead, we
evaluated the potential speed-up in terms of the bit complexity.

3.1. Code Profiling

The model was coded in Fortran and compiled by GCC 8.2.0 using a double pre-
cision for all variables. The time spent by each routine was obtained at runtime by the
performance analysis tool “GProf” [37]. As was expected, the solution of the in-step linear
system (I − hA)x = b, where h is the time step, by the LU decomposition was the most
demanding routine of the code accounting for 95% of the runtime; of that, 85% was de-
voted to the floating-point operations ×, ÷ and ±, 5% on the cycle loops and 5% on the
variable assignment.

The listing of the LU routine is presented in Table 1; the arithmetic complexity was
evaluated in percent for a linear system of dimension n = 9. The algorithm operated
over n2 + n + 2 floating-point variables contained in input matrix A, input vector b, input
parameter h and additional parameter S used for the summation. The entries of the matrix
and the vector were changed during the algorithm run. At the end of the execution, vector b
contained the final result and matrix A consisted of the lower and upper triangular matrices
of the input matrix; the diagonal elements of A referred to matrix U, assuming the diagonal
entries of L were filled with one.

Table 1. Arithmetic complexity of the LU algorithm applied to the linear system of equations
(I − h A)x = b of dimension n = 9.

Arithmetic Complexity
Code Listing % FLOP
01: do j = 1, n
02: do i = 1, j
03: do k = 1, i - 1
04: A (i, j) = A (i, j) - A (i, k) * A (k, j) 38 n(n2 − 1)/6
05: do i = j + 1, n
06: S = A (i, j)
07: do k = 1, j - 1
08: S = S - A (i, k) * A (k, j) 26 n(n− 1)(n− 2)/6
09: A (i, j) = S / (A (j, j) - 1/h) 10 n(n− 1)/2
10: do i = 1, n
11: do k = 1, i - 1
12: b(i) = b(i) - A (i, k) * b(k) 10 n(n− 1)/2
13: do i = n, 1, -1
14: S = - b (i) / h 3 n
15: do k = i + 1, n
16: S = S - A (i, k) * b (k) 10 n(n− 1)/2
17: b (i) = S / (A (i,i) - 1/h) 3 n

3.2. Uncertainty Propagation

The model uncertainty given in Table A3 of Appendix B was propagated by a run
of the 10,000 transients with randomly perturbed inputs. The random samples were

Appl. Sci. 2023, 13, 896 6 of 14

generated by the Latin hypercube method using the experimental design package for
Python “pyDOE” [38]; this method ensured that the set of randomly generated inputs was
a good representative of the real variability of the model input parameters. The variation
of the reactor core reactivity ρ, power P, fuel temperature Tf and coolant temperature Tc
for all reactivity perturbations is presented in Figure 1 as a function of time.

Figure 1. Reactivity, power and temperature transients due to the ejection of a control rod at HZP;
the dotted lines show the 3σ percentile that accounts for 99.7%.

3.3. Multiprecision Analysis

This section presents the multiprecision analysis of the LU algorithm shown in Table 1.
The multiprecision analysis aimed to evaluate the minimum precision of A and b entries
that was required to propagate the code’s input data without information loss; in general,
the larger the uncertainty of the inputs, the smaller the required precision. In order to
estimate the exact number of bits and/or digits of the variables of merit, we replaced all
the floating-point variables in our code with the stochastic data type provided by CADNA
software. The required precision was evaluated for all the variables of the LU algorithm at
each time-step iteration.

Figure 2 shows the results of the CADNA analysis applied to matrix A and vector
b. At the beginning, matrix I − hA defined the system of neutron kinetics and lumped
temperature equations coupled by means of the reactor core power; therefore, most entries
of the input matrix were equal to zero. The LU algorithm gradually changed the entries
of matrix A; however, 21 entries were still kept equal to zero for all iterations due to the
input sparse structure. In order to simplify the multiprecision analysis, these entries were
excluded from consideration.

The division operation on the lines 9 and 17 of the LU algorithm in Table 1 required
special treatment. If the time step h is small, then denominator 1− hx has to preserve
a much higher precision than term hx. In order to reduce the complexity of this oper-
ation, one should hardcode the function f (x) = 1/(1− x). Note, this function can be
resolved by the Newton–Raphson iterative method with the on-the-fly precision correction
algorithm proposed by [39]. In our implementation, we computed the division function
using double-precision arithmetic; however, the argument of this function was given in the
reduced precision.

Figure 2 shows the precision of A and b varied from two to six decimal digits, which
is equivalent to 7 and 20 bits, respectively. The digits referred to the decimal representation
of a floating-point number as the binary representation was not available in the CADNA
version used. The number of digits varied as a function of time and reactivity as can be
seen in Figure 3. One can notice the correlation between the required precision and the
time-step history presented in Figure A1 of Appendix B; the smaller the time step used,

Appl. Sci. 2023, 13, 896 7 of 14

the higher the precision required. The step size was a function of the local truncation error
evaluated by the BDF as the discrepancy between corrector and predictor vectors. The
correlation between the required precision and the local truncation error might be useful
for a further optimization of the algorithm.

Figure 2. Number of significant digits estimated by CADNA for 9× 9 matrix A and vector b and the
initial structure of the input matrix; empty cells indicate zero elements.

Figure 3. Mean number of significant digits over the simulation.

3.4. Multiprecision Emulation

In this section we analyse the stability and accuracy of the low-precision version of
the code using RPE [34]. We assumed that the emulator assigned the same number of
significant bits for all variables of merit; otherwise, one would have to develop a floating-
point arithmetic unit for varied precision, which can be unstable and too complex. The
multiprecision analysis provided by CADNA showed that a 17-bit precision arithmetic
was required to guarantee that the accuracy of the LU algorithm was enough to propagate
the input uncertainty. Firstly, we tested the code for this guaranteed precision; however,
the actual precision requirements might have been even lower due to the inaccuracy of
the DSA estimation method, and also because the precision estimate varied in time and
depended on the index of the matrix entry. Therefore, it was useful to run the code several
times while making the precision lower and lower until either the rounding error became
too large, or simulation became unstable. In the next paragraph, we show how these criteria
were met for the reactor core’s transient model.

The RPE emulation aimed to confirm that the rounding error of the low-precision
simulations did not exceed the uncertainty originated from the model’s input. Hence, we
calculated and compared two data sets referring to (a) the full-precision simulations pro-
duced by the random sampling and (b) the full-to-reduced precision simulation discrepancy
produced for the same random samples. Figure 4 shows the full-to-reduced discrepancy in
the peaking power Pmax, the total energy release Ptot and the fuel and coolant temperatures
at specific time moments. The rounding error computed for the 15-bit precision was com-
parable to the variation of the parameters of merit due to the uncertainty of the input data.
A further drop in precision led to a much higher scope of the rounding errors, and at some
point, it resulted in an unstable simulation resulting in a split of the cloud of points.

Appl. Sci. 2023, 13, 896 8 of 14

Figure 4. Reduced-to-full precision discrepancy of power, fuel temperature and coolant temperature.

3.5. Speed-Up Evaluation

In this section, we estimate the potential speed-up of the reduced-precision version
of the code in terms of the bit complexity. Figure 4 shows that simulations could be done
with an acceptable degradation of the accuracy using 15-bit instead of 52-bit precision
for the LU algorithm Table 1. The algorithm performed n3

3 + n2

2 −
5n
6 multiplications

and n(n+1)
2 divisions, where n = 9 was the rank of matrix A. In our implementation,

the reduced-precision code computed the divisions using double-precision arithmetic.
Hence, we evaluated the speed-up accounting for the multiplications only, which was
about 86% of the floating-point operations. Table A2 shows the gain in the bit complexity
of the multiplication function that uses the operands of the reduced precision compared
to the double precision. As can be seen, one could reach a 4× to 12× gain in the bit
complexity depending on the multiplication algorithm. For example, for the Karatsuba
method, the potential speed-up of our algorithm was about six times. Moreover, the use of
the reduced precision required four times less inner iterations than that for 52 bits. As a result,
the reduced-precision version of the code could potentially be accelerated by about 24 times.

Appl. Sci. 2023, 13, 896 9 of 14

4. Conclusions

The numerical precision of many engineering applications is often excessive in view of
the model approximation and input uncertainty. The mixed-precision technique tries to re-
solve this maladjustment and optimizes the exploitation of the computational infrastructure
to make computations faster or more energy efficient. This work presented a brief overview
of the existing multiprecision methods, hardware and software; it discussed the status and
prospects of half-precision computing, FPGA chips and the novel floating-point number
formats. The multiprecision analysis was illustrated for an elementary reactor core model
and the uncertainty quantification of the transient initiated by the insertion of reactivity.
The analysis performed using RPE and CADNA codes allows us to conclude that there is
a large room for the acceleration of nuclear engineering applications on mixed-precision
hardware. Future work will be focused on the multiprecision analysis of spatial reactor
core models.

Author Contributions: Conceptualization, A.C.; methodology, A.C.; software, A.C.; validation, A.C.;
formal analysis, A.C.; investigation, A.C.; resources, A.C.; data curation, A.C.; writing—original draft
preparation, A.C.; writing—review and editing, A.C. and A.V.; visualization, A.C.; supervision, A.V.;
project administration, H.F.; funding acquisition, A.V. and H.F. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Swiss Nuclear Safety Inspectorate ENSI grant number
H-101230.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable.

Acknowledgments: This work was partly funded by the Swiss Nuclear Safety Inspectorate ENSI
(H-101230) and conducted within the framework of the STARS program (http://www.psi.ch/stars,
accessed on 2 January 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

Abbreviations
The following abbreviations are used in this manuscript:

FPGA Field-programmable gate array
PWR Pressurized water reactor
RIA Reactivity initiated accident
UQ Uncertainty quantification

Appendix A. IEEE-754 Standard

Floating-point numbers represent a finite subset of the continuum of real numbers.
Today’s numerical algorithms rely on the conventional single and double IEEE-754 floating-
point representation. The IEEE-754 technical standard was introduced by the Institute of
Electrical and Electronic Engineering in 1985 to define arithmetic formats, operations on
arithmetic formats, rounding rules and exceptions handling. An arithmetic format com-
prises: (a) finite numbers described by a sign, a fraction and an exponent; (b) positive and
negative zeros; (c) positive and negative infinities; (d) quiet and signalling not-a-numbers
(NaN). The standard specifies three floating-point basic formats, binary32, binary64 and
binary128, and two decimal basic formats, decimal64 and decimal128, which are named for
their numeric base and number of bits used for interchange encoding.

http://www.psi.ch/stars

Appl. Sci. 2023, 13, 896 10 of 14

As an example, consider how to decode a floating-point number written in the binary32
format. A number

0 0111 0110 0011 0010 1001 1000 0100 001 (A1)

comprises a sign S (1 bit), an exponent E (8 bits) and a fraction F (23 bits) parts. The sign
bit S determines the sign of the number; zero stands for a positive and one for a negative
number. The exponent E is stored as an unsigned integer from 0 (all bits are zero) to
255 (all bits are one) and indicates an offset from the actual value by the exponent bias
B = 127. Thus, the exponent ranges from −126 to +127, where 127 represents the actual
zero. Values −127 and 128 are reserved for special numbers. The biasing is done to simplify
the comparison of two numbers. In our example, the exponent E and fractional F parts read

e = E− B = 26 + 25 + 24 + 22 + 21 − 127 = −9 (A2)

f = F/L = 2−3 + 2−4 + 2−7 + 2−9 + 2−12 + 2−13 + 2−18 + 2−23, (A3)

where L = 223. The true significand includes 23 fraction bits to the right of the binary
point and an implicit leading bit to the left of the binary point with value one (unless the
exponent is stored with all zeros). Thus, only 23 fraction bits of the significand appear in
the memory format, but the total precision is 24 bits. The number in 10-base is written as

a = (−1)s (1 + f) 2e = 0.0023391323629766703. (A4)

Table A1. Floating-point number size, bits.

BF16 FP16 FP32 FP64

Width 16 16 32 64
Significand 8 10 23 52
Exponent 7 5 8 11

Max 3.38 × 10+38 6.55 × 10+4 3.40 × 10+38 1.79 × 10+308

Min 1.17 × 10−38 6.10 × 10−5 1.17 × 10−38 2.22 × 10−308

eps 3.06 × 10−03 9.76 × 10−4 1.19 × 10−7 2.22 × 10−16

Table A2. Bit complexity gain of multiplication of two floating-point numbers with n-bit significance
compared to the multiplication of two floating-point numbers with 52-bit significance (FP64).

Long Multiplication Karatsuba [18] Harvey–Hoeven [17]
Precision n O(n2) O(n1.585) O(n log(n))

11 22 12 7
13 16 9 6
15 12 7 4
17 9 6 3
19 7 5 3
21 6 4 2

Appendix B. Mathematical Model

The model consisted of a point-kinetic approximation of the distribution of neutrons,
delayed neutron precursors and a lumped-parameter system of the fuel and coolant tem-
peratures. The model held K groups of precursors represented by the vector~λ of decay
constants and the vector ~β of delayed neutron fractions. The equation of the reactor core
power P is given by

∂P
∂t

=
ρ− β

l0
P +

(
~λ, ~C

)
, (A5)

where l0 is the mean neutron generation time, ~C is the vector of the precursor’s number
density times’ energy release, β = (1,~β) is the total delayed neutron fraction,~λ is the vector

Appl. Sci. 2023, 13, 896 11 of 14

of delayed neutrons decay constant and ρ is the reactor core reactivity. The last term of the
equation represents the delayed neutron source, which is equal to the dot-product of vector
~λ and vector ~C.

The equation of the energy release associated with the delayed neutrons is given by

∂~C
∂t

=
~β

l0
P− dg~λ ~C, (A6)

where dg~λ stands for a diagonal matrix whose main diagonal is vector~λ.
Assuming the reactor core comprises fuel and coolant regions, then the time-dependent

fuel temperature Tf and coolant temperature Tc averaged over the corresponding region are
described by the lumped-parameter thermal–hydraulic equations. The system of equations
for the fuel and coolant temperature change is given by

M f Cp f
∂Tf

∂t
= P + ah(Tc − Tf), (A7)

McCpc

(
∂Tc

∂t
+ v

Tc − Tin
L

)
= ah(Tf − Tc), (A8)

where Mi is a mass, Cpi is a specific heat capacity, v is a flow rate, L is the length of the
channel, ah is a heat transfer coefficient from the fuel to the coolant regions and Tin is the
temperature of the inlet coolant flow.

The reactivity ρ is a function of the coolant and fuel temperatures due to the Doppler
and coolant density effects. In this study, we assumed the reactivity was a linear function
near a steady-state temperatures of the fuel T0

f and the coolant T0
c , that is,

ρ = ρ0 + αD(Tf − T0
f) + αc(Tc − T0

c), (A9)

where ρ0 stands for the external reactivity insertion by means of control rods, αD stands
for the Doppler reactivity coefficient and αc stands for the total reactivity coefficient of the
coolant temperature and density.

The model has two steady-states M0 and M1, which correspond to zero power and to
zero reactivity. The former trivial state M0 given by

M0 : P = 0, ~C = 0, Tf = Tin, Tc = Tin, (A10)

remains stable while the total reactivity ρ < 0. The zero-reactivity state M1 is given by

M1 : P = P0, ~C =
~β

l0
P0, Tf = Tc +

P0

ah
, Tc = Tin +

P0

McCpc

L
v

, (A11)

where the steady-state power P0 is determined by the equation ρ = 0. In our simulations,
the model transient always started from the zero-reactivity state M1.

The specific parameters of the model corresponded to a pressurized water reactor
(PWR) core. The total fraction β of delayed neutrons was equal to 700 pcm. The lumped
parameters of the fuel and coolant thermal–hydraulic model are presented in Table A3. The
parameters of the six group emitters are presented in Table A4.

The model simulated the transients initiated by a positive reactivity introduced at the
HZP and HFP reactor core states. The excessive reactivity was injected gradually from 0 to
10 ms and then remained unchanged. The reactivity, power, fuel and coolant temperatures
responses for all perturbations are presented in Figure 1. The simulation of each case was
performed 104 times in order to propagate the uncertainty of the input data. A step size on
each time iteration was selected automatically to preserve the local truncation error within
a given tolerance. The time step and number of internal iteration histories are presented in
Figure A1.

Appl. Sci. 2023, 13, 896 12 of 14

Table A3. Parameter values and uncertainties.

Par Units Value 3σ, % Description

P0 W 0.1 10−2 Initial power
l0 µs 10 10−2 Mean generation time

M f t 95 10−2 Fuel mass
Mc t 15 10−2 Coolant mass
Cp f J/kg K 260 6 Fuel heat capacity
Cpc J/kg K 5400 6 Coolant heat capacity
a f pcm/K −5 9 Doppler coefficient
ac pcm/K 1 9 Coolant total temp/dens coefficient
ah MW/K 5.4 9 Heat transfer × surface
Tin K 566 10−2 Inlet temperature
v m/s 5 10−2 Coolant velocity

Table A4. Decay constant λ and fraction β of delay neutron precursors.

N λ, s−1 β, pcm

1 0.0127 26.6
2 0.0317 149.1
3 0.1150 131.6
4 0.3110 284.9
5 1.4000 89.6
6 3.8700 18.2

Figure A1. Time step size (on the left) and number of fixed-point iterations (on the right).

Appendix C. Numerical Scheme

The numerical integration scheme employed the backward differentiation formula
(BDF) of the second order with an automatic step-size selection. In order to understand the
numerical scheme, consider an ordinary differential equation

∂x
∂t

= f (t, x), for 0 < t < T, (A12)

given initial point x(0) = x0. Let us use Nordsik’s notation and denote~z(t) the vector of
time-derivatives with a step size h > 0, that is,

~z =

(
x, hẋ,

h2

2
ẍ
)

. (A13)

The first two components of~z0 are x0 and f (0, x0), while the second derivative should be
set to zero as we assumed the transient started from a steady state.

Using Nordsik’s notation, the multistep BDF can be formulated as a predictor–corrector
scheme. The predictor~zP

h of Nordsik’s vector at the time point t + h is given by

~zP
h =

1 1 1
0 1 2
0 0 1

~z0. (A14)

Appl. Sci. 2023, 13, 896 13 of 14

This equation can be extended to an arbitrary order considering the matrix on the right-hand
side is the Pascal matrix. The correction step applied to the vector~zP is

~zh = ~zP
h +~l

(
xh − xP

h

)
. (A15)

Here, coefficients~l depend on the numerical scheme order. For the second order, l0 = 0,
l1 = 3/2 and l2 = 1/2. The solution x(t + h) is calculated as follows

xh = xP
h + hl−1

1

(
f (t + h, xh)− ẋP

h

)
. (A16)

The local truncation error eh of solution xh at the time point t + h relates to the
difference between the predictor and corrector vectors ~zP

h and ~zh. Specifically, for the
nth order scheme, the local error is given by

eh = ln
(

xh − xP
h

)
+ O(hn+1). (A17)

The time step is selected in such a way that the relative local error is less than one. Given
absolute and relative tolerances A and R, the step size h′ is

h′ = C

(
A + Rxh

xh − xP
h

) 1
n+1

h, (A18)

where the safety coefficient C = 1.2.
The extension to the system of ODEs is straightforward. Nordsik’s vector~z is replaced

by a matrix whose columns correspond to one equation of the ODE system, the division in
Equation (A18) is assumed component-wise and the brackets in that equation are replaced
by a norm. The other equations of the integration scheme do not change.

The fixed-point algorithm iterates the solution of nonlinear system Equation (A16) to
achieve the ultimate convergence for the given floating-point number precision. Specifically,
the iteration stops when all the components of solution vector ~xh become periodical. It
is clear that for such a stopping criterion, the higher the floating-point precision used,
the more iterations have to be done until convergence. However, the convergence rate
of the fixed-point iteration algorithm for the point-kinetic model is rather high; therefore,
even for the double precision, the number of iterations is less than 20.

References
1. Turner, J.A.; Clarno, K.; Sieger, M.; Bartlett, R.; Collins, B.; Pawlowski, R.; Schmidt, R.; Summers, R. The Virtual Environment for

Reactor Applications (VERA). Design and architecture. J. Comput. Phys. 2016, 326, 544–568. [CrossRef]
2. Avramova, M.; Abaraca, A.; Hou, J.; Ivanov, K. Innovations in Multi-Physics Methods Development, Validation, and Uncertainty

Quantification. J. Nucl. Eng. 2021, 2, 44–56. [CrossRef]
3. Wang, Y.; Schunert, S.; Ortensi, J.; Laboure, V.; DeHart, M.; Prince, Z. Rattlesnake: A MOOSE-Based Multiphysics Multischeme

Radiation Transport Application. Nucl. Technol. 2021, 207, 1047–1072. [CrossRef]
4. State-of-the-Art Report on Multi-Scale Modelling of Nuclear Fuels; OECD: Paris, France, 2015.
5. Cooper, M.W.D. Atomic Scale Simulation of Irradiated Nuclear Fuel. Ph.D. Thesis, Imperial College, London, UK, 2015.
6. Hennessy, J.L.; Patterson, D.A. Computer Architecture: A Quantitative Approach, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2018.
7. Cohen, E.; Dolev, S.; Rosenblit, M. All-optical design for inherently energy-conserving reversible gates and circuits. Nat. Commun.

2016, 7, 11424. [CrossRef] [PubMed]
8. Lewin, D.I. DNA Computing. Nat. Commun. 2002, 4, 5–8. [CrossRef]
9. Wang, T. Novel Computing Paradigms Using Oscillators. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2019.
10. Mittal, S. A Survey of Techniques for Approximate Computing. ACM Comput. Surv. 2015, 48, 1–33. [CrossRef]
11. Weber, L.; Honecker, A.; Normand, B.; Corboz, P.; Mila, F.; Wessel, S. Quantum Monte Carlo simulations in the trimer basis:

First-order transitions and thermal critical points in frustrated trilayer magnets. SciPost Phys. 2022, 12, 29. [CrossRef]
12. Xiao, F.; Liang, F.; Wu, B.; Liang, J.; Cheng, S.; Zhang, G. Posit Arithmetic Hardware Implementations with The Minimum Cost

Divider and Square Root. Electronics 2020, 9, 1622. [CrossRef]

http://doi.org/10.1016/j.jcp.2016.09.003
http://dx.doi.org/10.3390/jne2010005
http://dx.doi.org/10.1080/00295450.2020.1843348
http://dx.doi.org/10.1038/ncomms11424
http://www.ncbi.nlm.nih.gov/pubmed/27113510
http://dx.doi.org/10.1109/5992.998634
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.21468/SciPostPhys.12.2.054
http://dx.doi.org/10.3390/electronics9101622

Appl. Sci. 2023, 13, 896 14 of 14

13. Haq Rashed, M.R.; Jha, S.K.; Ewetz, R. Hybrid Analog-Digital In-Memory Computing. In Proceedings of the 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), Munich, Germany, 1–4 November 2021; pp. 1–9. [CrossRef]

14. Jeffress, S.; Duben, P.; Palmer., T. Bitwise Efficiency in Chaotic Models. Proc. R. Soc. A 2017, 473, 20170144. [CrossRef]
15. Russel, F.P.; Duben, P.D.; Niu, X.; Luk, W.; Palmer, T.N. Exploiting the Chaotic Behaviour of Atmospheric Models with

Reconfigurable Architectures. Comput. Phys. Commun. 2017, 221, 160–173. [CrossRef]
16. Agrawal, A.; Mueller, S.M.; Fleischer, B.M.; Sun, X.; Wang, N.; Choi, J.; Gopalakrishnan, K. DLFloat: A 16-b Floating Point Format

Designed for Deep Learning Training and Inference. In Proceedings of the 2019 IEEE 26th Symposium on Computer Arithmetic
(ARITH), Kyoto, Japan, 10–12 June 2019; pp. 92–95. [CrossRef]

17. Harvey, D.; van Der Hoven, J. Integer Multiplication in time O (n log n). Ann. Math. 2021, 193, 563–617. [CrossRef]
18. Karatsuba, A.A. The Complexity of Computations. Proc. Steklov Inst. Math. 1995, 211, 169–183.
19. Hartstein, A.; Srinivasan, V.; Puzak, T.R.; Emma, P.G. Cache miss behavior: Is it

√
2. In Proceedings of the 3rd Conference on

Computing Frontiers, Ischia, Italy, 3–5 May 2006; pp. 313–330.
20. Liang, L.; Zhang, Q.; Song, P.; Zhang, Z.; Zhao, Q.; Wu, H.; Cao, L. Overlapping Communication and Computation of GPU/CPU

Heterogeneous Parallel Spatial Domain Decomposition MOC Method. Ann. Nucl. Energy 2020, 135, 106998. [CrossRef]
21. Best Estimate Safety Analysis for Nuclear Power Plants: Uncertainty Evaluation; Technical Report 52; IAEA: Vienna, Austria, 2008.
22. Abdel-Khalik, H.S.; Bang, Y.; Kennedy, C.; Hite, J. Reduced Order Modeling for Nonlinear Multi-Component Models. Int. J.

Uncertain. Quantif. 2012, 2, 341–361. [CrossRef]
23. Bang, Y.; Abdel-Khalik, H.S.; Hite, J.M. Hybrid Reduced Order Modeling Applied to Nonlinear Models. Int. J. Numer. Methods

Eng. 2012, 91, 929–949. [CrossRef]
24. Cherezov, A.; Sanchez, R.; Joo, H.G. A Reduced-Basis Element Method for Pin-by-Pin Reactor Core Calculations in Diffusion and

SP3 Approximations. Ann. Nucl. Energy 2018, 116, 195–209. [CrossRef]
25. Phillips, T.R.F.; Heaney, C.E.; Smith, P.N.; Pain, C.C. An autoencoder-based reduced-order model for eigenvalue problems with

application to neutron diffusion. Int. J. Numer. Methods Eng. 2021, 122, 3780–3811. [CrossRef]
26. Bokov, P.M.; Botes, D.; Groenewald, S.A. Dual Number Automatic Differentiation as Applied to two-group cross-section

uncertainty propagation. Nucl. Technol. Radiat. Prot. 2021, 36, 107–115. [CrossRef]
27. Henry, G.; Tang, P.T.P.; Heinecke, A. Leveraging the bloat16 Artificial Intelligence Datatype for Higher-Precision Computations.

arXiv 2019 , arXiv:1904.06376.
28. Ho, N.M.; Wong, W.F. Exploiting half precision arithmetic in Nvidia GPUs. In Proceedings of the 2017 IEEE High Performance

Extreme Computing Conference (HPEC), Waltham, MA USA, 12–14 September 2017; pp. 1–7. [CrossRef]
29. Algredo-Badillo, I.; Conde-Mones, J.J.; Hernandez-Gracidas, C.A.; Morin-Castillo, M.M.; Oliveros-Oliveros, J.J.; Feregrino-Uribe, C.

An FPGA-based analysis of trade-offs in the Presence of Ill-conditioning and Different Precision Levels in Computations. PLoS
ONE 2020, 15, 106998. [CrossRef]

30. Gustafson, J.L. The End of Error: Unum Computing; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015.
31. Defour, D. FP-ANR: A Representation Format to Handle Floating-Point Cancellation at Run-Time. HAL Archive. 2017. Available

online: https://hal.inria.fr/lirmm-01549601/ (accessed on 19 December 2022).
32. Podobas, A.; Matsuoka, S. Hardware Implementation of POSITs and Their Application in FPGAs. In Proceedings of the IEEE

International Parallel and Distributed Processing Symposium Workshops, Vancouver, BC, Canada, 21–25 May 2018.
33. Demeure, N. Gestion du Compromis Entre la Performance et la Précision de Code de Calcul. Ph.D. Thesis, Université Paris-Saclay,

Paris, France, 2021.
34. Dawson, A.; Duben, P.D. RPE v5: An Emulator for Reduced Floating-Point Precision in Large Numerical Simulations. Geosci.

Model Dev. 2017, 10, 2221–2230. [CrossRef]
35. Eberhart, P.; Brajard, J.; Fortin, P.; Jezequel, F. High Performance Numerical Validation using Stochastic Arithmetic. Reliab.

Comput. 2015, 21, 35–52.
36. Golub, G.H.; Loan, C.F.V. Matrix Computations, 3rd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 1996.
37. Graham, S.L.; Kessler, P.B.; McKusick, M.K. An execution profiler for modular programs. Softw. Pract. Exper. 1983, 13, 671–685.

[CrossRef]
38. pyDOE: The Experimental Design Package for Python. Available online: https://pythonhosted.org/pyDOE (accessed on 19

December 2022).
39. Chatelain, Y.; Petit, E.; de O. Castro, P.; Lartigue, G.; Defour, D. Automatic Exploration of Reduced Floating-Point Representation

in Iterative Methods. In Proceedings of the 25th International Conference Euro-Par 2019 Parallel Processing, Gottingen, Germany,
26–30 August 2019; pp. 481–494.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICCAD51958.2021.9643526
http://dx.doi.org/10.1098/rspa.2017.0144
http://dx.doi.org/10.1016/j.cpc.2017.08.011
http://dx.doi.org/10.1109/ARITH.2019.00023
http://dx.doi.org/10.4007/annals.2021.193.2.4
http://dx.doi.org/10.1016/j.anucene.2019.106988
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2012003523
http://dx.doi.org/10.1002/nme.4298
http://dx.doi.org/10.1016/j.anucene.2018.02.013
http://dx.doi.org/10.1002/nme.6681
http://dx.doi.org/10.2298/NTRP2102107B
http://dx.doi.org/10.1109/HPEC.2017. 8091072
http://dx.doi.org/10.1371/journal.pone.0234293
https://hal.inria.fr/lirmm-01549601/
http://dx.doi.org/10.5194/gmd-10-2221-2017
http://dx.doi.org/10.1002/spe.4380130803
https://pythonhosted.org/pyDOE

	Introduction
	Multiprecision Hardware
	SIMD
	Half-Precision
	FPGA
	Novel Data Types
	Multiprecision Emulators
	Multiprecision Analysis Tools

	Numerical Results
	Code Profiling
	Uncertainty Propagation
	Multiprecision Analysis
	Multiprecision Emulation
	Speed-Up Evaluation

	Conclusions
	Appendix A
	Mathematical Model
	Numerical Scheme
	References

