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Abstract: Unmanned aerial vehicles (UAVs) are increasingly employed in civil applications due to
their ease of use and adaptability. This paper proposes a distributed navigation strategy for a forma-
tion of UAVs in post-avalanche search-and-rescue (SAR) operations. Formations offer a more efficient
approach than single UAVs in dynamic and complex operational environments. Additionally, they
can distribute different sensors, reducing payload and increasing robustness and overall efficiency.
The proposed navigation algorithm relies on the Kalman filter (KF) based on consensus to distribute
state estimation, and internodal transformation theory to improve system scalability, preserving the
dynamic equivalence between the global and local models. The effectiveness of this approach was
tested in two realistic scenarios, resulting in the ability to detect victims and maintain situational
awareness while avoiding unsearched areas. The proposed approach offers a promising alternative
to human-intensive SAR missions.

Keywords: UAV swarm; post-avalanche; search and rescue (SAR); consensus Kalman filter; internodal
transformation theory

1. Introduction

Every year, avalanches in Europe result in at least one hundred victims. Avalanche
transceivers have been demonstrated to reduce mortality from 70.6% to 55.2% by decreasing
the rescue time from about 125 to 25 min [1]. However, this time is still longer than
the maximum survival phase duration of 18 min, during which 91% of people can be
successfully rescued.

Currently, the use of transceivers is mandatory in several countries and regions of the
globe (for example, see Italian law 363/2003), but search missions still involve humans,
making these operations dangerous and slow.

The advent of UAVs was an important addition to search-and-rescue operations,
but the use of single UAVs is not always the most efficient solution for completing
missions [2–5]. Depending on the type of operation, the collaboration of more agents
with the same objectives can enhance overall efficiency. A typical example arises from the
decision to employ smaller and lighter vehicles to reduce costs and increase reliability. The
costs of a single aircraft exponentially increase with the take-off weight [6–9], whereas the
use of several smaller UAVs can be effective in reducing the production and operating
costs [10,11].

On the other hand, system efficiency can be improved by deploying various sensors
on multiple UAVs, thereby reducing the payload of each individual unit and, in the case
of redundancy [2–4,12], increasing the robustness of the whole system, which would no
longer be related to the reliability of a single aircraft. Furthermore, involving several smaller
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vehicles with enhanced maneuverability in confined spaces allows for wider areas to be
surveyed compared to a larger single aircraft, even when equipped with higher quality
sensors. Furthermore, the use of several vehicles can reduce the mission duration, which
represents one of the most important challenges to address.

These features can be summarized into three desirable characteristics, namely flexibil-
ity, scalability and robustness [13], which provide improved performance when compared
to the use of a single aircraft. Specifically, flexibility is the capability to adapt to changing
environmental requirements; robustness is defined as the ability of a formation to continue
operations in the presence of partial failures or other abnormal conditions, such as the loss
of a vehicle; and finally, scalability represents a self-organized mechanism that supports
larger or smaller numbers of individuals without impacting performance [14].

One of the most significant challenges in deploying a formation of robots in emergency
scenarios is the lack of autonomy. This issue weakens system scalability, since UAVs are
typically teleoperated by operators at a one-to-one ratio, requiring a large and well-trained
team of search-and-rescue operators to be engaged in UAV guidance.

Information sharing and cooperation among UAVs are the fundamental requirements
for creating a formation able to act as a unique system. To ensure global situational
awareness, a multi-sensor data fusion grid must be designed [15,16], with individual UAVs
serving as both producers and consumers of information.

These data are shared through a distributed and dynamic communication graph.
The gathered data enable awareness of the surrounding environment, granting UAVs
the capability to identify obstacles and targets and locate the whole formation in rapidly
changing dynamic environments. The measurement data from each agent, with multiple
perspectives distributed throughout the environment, can enhance the “detect & avoid”
capabilities of each UAV.

The main architectures employed in multi-sensor fusion problems are centralized,
decentralized and distributed schemes [17].

For centralized fusion architectures, the extended Kalman filter (EKF) is the preferred
solution for state estimation [18–21]. In this approach, all network nodes broadcast their
information to a central unit, which processes it and provides an estimation of the overall
state. However, this solution becomes impractical when the number of nodes increases
due to the high computational and communication burden associated with a single central
processing unit and point-to-point transmission of extensive data. Moreover, if the central
node becomes unreachable, it leads to a system failure. Therefore, in scenarios requiring
fault tolerance against system failures and the minimization of computation time to op-
erate swiftly in emergency situations, it is imperative to decentralize and distribute the
computational workload among all network nodes.

A decentralized scheme involves multiple centers of information that are able to
communicate with their neighbors, partially mitigating vulnerability to failure [22–24].
Although multi-sensor fusion through a centralized approach is ideally Bayesian-optimal
in terms of tracking performance [17], this kind of architecture lacks scalability and requires
reliable sensors, making it expensive.

In a distributed architecture, each node performs estimation using data obtained from
locally connected neighbors. This kind of architecture is inherently redundant, enhancing
robustness against failure. Furthermore, it presents a lower communication burden since
data need not be transmitted to a central unit.

In decentralized and distributed approaches, achieving convergence to the same value
for all local state estimates can be obtained through consensus theory, originally introduced
from a computer science perspective by Lynch in [25]. Broadly speaking, consensus is a form
of agreement among several spatially distributed agents regarding a certain output value,
without resorting to a central processing unit. The main contribution to solving consensus
problems in networked systems was given in [26–29]. Another significant contribution
appears in [30], where the authors, starting from a previous work [31], investigate the
alignment problem of a set of N autonomous agents and provide a mathematical analysis
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of convergence behavior. In [32], the authors provide a series of interaction rules known as
consensus protocols or algorithms, which detail the exchange of information between an
agent and its neighbors. The problem of cooperative estimation for a swarm of UAVs using
consensus protocols has been addressed in [33,34] among others.

Over the years, several forms of consensus strategies have been proposed. The two
main instances are the consensus on information (CI) and the consensus on measurement
(CM) approaches, particularly adopted for their stability properties. Both methods have
complementary characteristics. CI guarantees stability of the solution, even for a single
consensus step [35]. However, as the correlations between measurements from different
nodes are completely unknown, the boundedness of the estimation error is not guaranteed.
On the other hand, CM can overcome the conservative issue of the CI approach, tending
towards optimal performance similar to centralized solutions, but it can only guarantee
stability with a large number of consensus steps [36]. To combine the benefits of both CI
and CM, in [37], the authors introduced a hybrid approach called hybrid consensus on
measurements and consensus on information (HCMCI), proving the effectiveness of the
proposed algorithm in target tracking problems [36].

However, while a decentralized/distributed approach decreases the communication
burden, avoiding the use of a star network graph with a single central node, it cannot
completely address the problem of reducing computational burden. Indeed, in a distributed
scheme, the cardinality of the state vector considers the overall system, leading to an
excessive computational load on each local CPU in the presence of large number of agents.

The main goal of this paper is to present a distributed navigation algorithm for a
formation of UAVs capable of operating in complex and uncertain scenarios, such as search-
and-rescue missions. The aim of the proposed estimation method is to be distributed,
scalable and fault-tolerant, in order to achieve a high level of situational awareness among
UAVs. This method must be suitable to formations involved in critical and hazardous
missions, where both the number of aircraft and the reliability of the system can be key
factors for the success of the mission.

The proposed algorithm combines the use of Kalman filtering and consensus with
a process known as internodal transformation theory (ITT) [38]. ITT effectively reduces
the order of the local estimated state vector, thus significantly lowering the computational
complexity of the problem.

The navigation model exploits the benefits of the HCMCI technique and the advan-
tages of ITT in terms of computational efficiency. This enables the estimation of the global
state of the formation, supports the guidance and control algorithm and facilitates the
detection of targets in the operational scenario.

In this paper, a sensitivity analysis of the main parameters for the proposed algorithm
is presented. These parameters take into account the network complexity and the number
of consensus steps. Additionally, several numerical results are illustrated to prove the
robustness against communication delays and the presence of faults or communication
losses. The objective is to illustrate how the performance of the navigation algorithm is
affected in realistic situations.

The paper is structured as follows: Section 2 provides the problem statement, includ-
ing details about assumptions and model equations; in Section 3, the distributed target
localization algorithm is explained, starting from a centralized version of the Kalman
filter and progressively incorporating ITT and consensus; Section 4 presents the numerical
results obtained by running the proposed algorithm through five simulation tests designed
to assess its capabilities in achieving situational awareness under several parameter set-
tings, communication delays or interruptions and the presence of a non-cooperative target;
Section 5 offers a discussion of the main findings; finally, Section 6 contains the conclusions
of this paper.
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2. Problem Statement

Let us consider a formation of N autonomous UAVs. These UAVs are in flight while
surveying a designated area to detect the possible presence of a target. Each aircraft is
equipped with its own flight control system and autopilot to ensure stability and maneu-
verability. At a high level, they can be treated as material points.

For each UAV, the objective of the navigation system is to estimate the position of
the other UAVs within the formation and the target. This estimation is based on data
provided by on-board sensors such GPS, a transponder for measuring distances to others
UAVs, and a dedicated transponder for measuring the distance to the target (apparecchio di
ricerca in dei travolti in valanga—ARTVA—or avalanche transceiver or détecteur de victime
d’avalanche—DVA).

To achieve this goal, each UAV is equipped with an on-board navigation algorithm
based on the consensus Kalman filter, which can fuse information provided by neighbors
through dedicated communication channels.

This Kalman filter uses a discrete-time kinematic model, described in the inertial
reference frame by the following equations:{

Si(k) = Si(k− 1) + Vi(k− 1)Ts + ωS
i

Vi(k) = Vi(k− 1) + ωV
i

∀i = 1, 2, . . . , N (1)

where k is the time step, Si(k) = [Xi(k), Yi(k), Zi(k)]T represents the vector of the spatial
coordinates, Vi(k) = [VXi (k), VYi (k), VZi (k)]

T indicates the velocity vector of the i-th UAV,

ωi = [ωS
i

T , ωV
i

T
]T is the process disturbance vector and Ts is the sample time. The process

disturbance vector is assumed as a zero-mean white Gaussian noise.
Considering the specific application, let us consider the target as a static point on the

map, with zero speed and its position denoted as St(k) = [Xt(k), Yt(k), Zt(k)]T .
The global state vector x(k) ∈ Rm can be defined by incorporating the 3D position and

velocity of each aircraft, along with the 3D position of the target, as follows:

x(k) = [ST
1 (k), V T

1 (k), . . . , ST
N(k), V T

N(k), ST
t (k)]

T (2)

The set of sensors is modeled as follows:

• The GPS, to measure the position and the speed of the aircraft in the airspace as

zGPS
i (k) = [Xi(k), Yi(k), Zi(k), Vi(k)]T + νGPS

i (k) (3)

where νGPS
i (k) is the measurement noise and Vi(k) = ‖Vi(k)‖2 is the speed of the

aircraft, computed as the norm of the velocity vector.
• The N transponders, to evaluate the relative distance to any other formation agent.

Given that νTr
i (k) is the measurement noise and dij(k) =

∥∥Sj(k)− Si(k)
∥∥

2 the Eu-
clidean distance between the aircraft i and j, the output zTr

i (k) of each transponder is

zTr
i (k) = [di1(k), . . . , diN(k)]T + νTr

i (k) (4)

• The ARTVA, to determine the distance to a potential target in the operational scenario.
The device considered in this work is capable of measuring only the distance to the
target, and it does not incorporate additional functionalities, such as the direction
estimation provided by modern digital ARTVAs. This choice was made to test the
algorithm under the most challenging conditions, simulating an older analog ARTVA,
whose pulses can only be used for distance estimation. Denoting νARTVA

i (k) as the
measurement error and dit(k) = ‖St(k)− Si(k)‖2 as the distance to the target, the
output zARTVA

i (k) of each ARTVA is

zARTVA
i (k) = dit(k) + νARTVA

i (k) (5)
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The measurement vector of the overall set of sensors is represented by

zi(k) = [zGPS
i

T
(k), zTr

i
T
(k), zARTVA

i (k)]T + νT
i (k) (6)

with νi(k) = [νGPST
i (k), νTrT

i (k), νARTVA
i (k)]T as the overall measurement noise vector. The

measurement noise is modeled as a Gaussian process, whose mean value is unknown.
Imagine the UAV formation as a network of sensor nodes. At any time instant k, the

communication structure can be depicted as a directed graph G(k) = {V ,A(k)}, where
V = {1, 2, . . . , N} represents the set of nodes corresponding to the UAVs, andA(k) ⊆ V ×V
denotes the set of edges describing communication links between the aircraft i and j. The
i-th UAV can receive data from the j-th agent if there exists an arc (i, j) ∈ A(k). For each
aircraft i,Mi(k) = {j : (i, j) ∈ A(k)} represents the set of its neighbors, which includes
the i-th UAV. Let Di(k) = (card(Mi(k))− 1) indicate the degree of node i, where card(·)
denotes the cardinality of a given set.

3. Distributed Target Localization

Let x(k) ∈ Rm be the global state vector, containing information to describe the
behavior of each UAV in the swarm, and zi(k) ∈ Rn be the set of variables measured by
the i-th agent.

Considering the definitions of the state vector (2) and the local state model (1), the
global state equation can be expressed as follows:

x(k) = f (x(k− 1)) + ω(k− 1) (7)

where ω(k − 1) ∈ Rm represents the overall process noise vector, with zero mean and
covariance matrix Ω(k− 1).

Similarly, the measurement model for the i-th UAV is defined as:

zi(k) = hi(x(k)) + νi(k) (8)

where the measurement noise is modeled as a white Gaussian noise, with covariance
matrix Ri(k).

Let us denote with z(k) =
⋃N

i=1 zi(k) the overall set of measurements at time k:

z(k) =
N⋃

i=1

zi(k) =


h1(x(k))
h2(x(k))

...
hN(x(k))

+


ν1(k)
ν2(k)

...
νN(k)

 = h(x(k)) + ν(k) (9)

To effectively address the navigation problem for a swarm of aircraft, a multi-sensor
fusion approach can be adopted, merging information and measurements from multiple
aircraft to provide, at each time instant k, an estimate of the overall system state.

In a centralized approach based on the extended Kalman filter (EKF), the estimate
of the global state is obtained through two distinct phases: the prediction phase and the
correction phase.

In the prediction phase, the a priori state estimate x̂(k|k − 1) and its covariance
P(k|k − 1) are derived using the mathematical model and measurements acquired up
to the time instant k− 1. In the correction phase, the a-posteriori state estimate x̂(k|k) and
its covariance are computed by updating x̂(k|k− 1) and P(k|k− 1) with the most recent
set of measurements, denoted as z(k).

The information Kalman filter (IKF) [38] is a variant of the EKF expressed in terms
of information. It is obtained by reformulating the state estimation vector and covariance
matrix in terms of the information matrix and information state vector.
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The a priori information matrix and information state vector are defined as follows:

Q(k|k− 1) = (P(k|k− 1))−1 (10)

q̂(k|k− 1) = Q(k|k− 1)x̂(k|k− 1) (11)

The predicted information vector can be computed as:

q(k|k− 1) = Q(k|k− 1) f (x̂(k− 1|k− 1)) (12)

The a priori information matrix is computed as:

Q(k|k− 1) =
[

F(k− 1)Q(k− 1|k− 1)FT(k− 1) + Ω(k− 1)
]−1

(13)

with

F(k) =
(

∂ f (x)
∂x

)
x=x̂(k−1|k−1)

(14)

At each time step k, the information associated with the measurement z(k) is:

I(k) = HT(k)(R(k))−1H(k) (15)

i(k) = HT(k)R−1(k)c(k) + H(k)x̂(k|k− 1) (16)

with R−1(k) the covariance matrix of measurement noise ν(k),

c(k) = z(k)− h(x̂(k|k− 1)) (17)

H(k) =
(

∂h(x)
∂x

)
x=x̂(k|k−1)

(18)

By using the information associated to z(k), it is possible to compute the a posteriori
information vector:

q(k|k) = q(k|k− 1) + i(k) (19)

The a posteriori information matrix and state estimate can be defined as follows:

Q(k|k) = Q(k|k− 1) + I(k) (20)

x̂(k|k) = (Q(k|k))−1q(k|k) (21)

The proposed distributed estimation strategy combines the HCMCI model with the
principles of ITT to ensure stability and convergence to a common state estimate. This
is done under the assumption of minimal requirements in terms of connectivity and
collective observability [39]. This strategy allows for the decentralization of the estimation
process, providing an estimate of a reduced state vector x̂i(k) ∈ Rmi for each agent i,
where Rmi ⊆ Rm. This vector encompasses the state of the i-th aircraft and its respective
neighbors, denoted by j ∈ Mi(k). This approach reduces the computational load of
individual agents while simultaneously enhancing the formation fault tolerance in case of
central node failures.

In accordance with the ITT model, in order to preserve dynamic equivalence between
the global and local models, at any time k, the local state vector is related to the global one
as follows:

xi(k) = Ti(k)x(k) (22)
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where Ti(k) represents the linear nodal transformation matrix that selects either all the
states or a linear combination of them from the global state vector. This selection depends
on the UAVs visible from the i-th aircraft at time k. The matrix consists of elements that are
either 1 or 0, activating or deactivating states, and it is time-varying to take into account
changes in the formation topology. Generally, the size of Ti(k) is r×m with r ≤ m. For an
effective model reduction, it must be r < m. In such cases, it admits only the pseudo-inverse
matrix, denoted with a superscript plus, T+

i (k).
On the basis of local measurements, the j-th node provides the information matrix Ij|j

and the information vector ij|j

Ij|j(k) = HT
j (k)R−1

j (k)Hj(k) (23)

ij(k) = HT
j (k)R−1

j (k)
(
cj(k) + Hj(k)x̂j(k|k− 1)

)
(24)

with

HT
j (k) =

(
∂hj(x)

∂x

)
x=x̂j(k|k−1)

(25)

cj(k) = zj(k)− h(x̂j(k|k− 1)) (26)

The information contribution at the i-th node due to the observations supplied by the
j-th node, expressed in terms of the information matrix Ii|j, is the following.

Ii|j(k) =
[

Ti(k)
(

TT
j (k)(Ij|j(k)Tj(k))

)+
TT

i (k)
]+

(27)

Analogously, the information vector ii|j(k) = ii(zj(k)) is defined as follows:

ii|j(k) = Tji(k)ij|j(k) (28)

where

Tji(k) = Ii|j(k)Vji(k)I+j|j(k) (29)

Mji(k) = Ti(k)T+
j (k) (30)

The matrix Mji(k) is the state-space transformation matrix. It defines which UAV
needs to communicate its information and indicates which piece of information must
be exchanged between each pair of UAVs. Meanwhile, the matrix Tji(k) represents the
internodal transformation matrix within the information space, responsible for selecting
and mapping all relevant information from UAV j to UAV i. Additionally, the local error
covariance matrix for node i, given the observation from node j, is defined as:

Pi|j(k|k) = I+i|j(k) (31)

The corresponding local estimate of the state vector is:

x̂i|j(k|k) = Pi|j(k|k)ii|j(k) (32)

Given the definitions provided above, it is possible to use the ITT to formulate a
scalable solution to the estimation problem.
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In accordance with the proposed model, the i-th agent of the swarm generates the
a priori state estimate, x̂i(k|k − 1), and updates the information matrix Qi(k) and the
information vector qi(k) as follows:

x̂i(k|k− 1) = Ti(k) f
(
T+

i (k− 1)x̂i(k− 1|k− 1)
)

(33)

Q̃i(k− 1|k− 1) = Ti(k)
(

T+
i (k− 1)Qi(k− 1|k− 1)TT

i (k− 1)
)(

T+
i (k)

)T (34)

Qi(k|k− 1) =
[

Fi(k− 1)Q̃i(k− 1|k− 1)FT
i (k− 1) + Ωi(k− 1)

]−1
(35)

qi(k|k− 1) = Qi(k|k− 1)x̂i(k|k− 1) (36)

where

Fi(k− 1) = Ti(k)
(

∂ f (x)
∂x

)
x=x̂(k−1|k−1)

(37)

with
x̂(k− 1|k− 1) = T+

i (k− 1)x̂(k− 1|k− 1) (38)

Let us assume that, at the first consensus step (l = 0), the matrices and vectors of
information are Q(0)

i (k|k− 1) = Qi(k|k− 1) and q(0)
i (k|k− 1) = qi(k|k− 1), respectively.

Each aircraft evaluates the average values of Qi(k|k− 1) and qi(k|k− 1) as follows:

Q(l+1)
i (k|k− 1) = ∑

j∈Mi(k)
Wij

[
Ti(k)

(
T+

j (k)Q(l)
j (k|k− 1)TT

j (k)
)(

T+
i (k)

)T
]

(39)

q(l+1)
i (k|k− 1) = ∑

j∈Mi(k)
WijTi(k)T+

j (k)q(l)
j (k|k− 1) (40)

for l = 0, 1, . . . , L− 1 consensus steps.
Coefficients Wij(k) can be computed using the Metropolis formula [40]:

Wij(k) =


1

1+max{Di(k),Dj(k)} if (i, j) ∈ A
1−∑j∈Mi(k) Wij(k) if i = j
0 otherwise

(41)

so that, in order to determine the weight, each agent i does not require any knowledge of
the communication graph but only the degrees of its neighboring nodes, denoted as Dj(k),
with j ∈ Mi.

UAVs use the consensus on measurement to update the a priori state estimate using
the information associated with the measurements from neighboring aircraft. By employing
its local measurements, the i-th UAV computes the vectors Ii|i(k) and ii|i(k) following (23)
and (24).

Let us assume that, at the first consensus step (l = 0), the matrix and the vector of
information are I(0)i|i (k) = Ii|i(k) and i(0)i|i (k) = ii|i(k), respectively. At each consensus step
l = 0, 1, . . . , L− 1, the i-th aircraft merges the information sent by its neighbors as follows:

I(l+1)
i|i (k) = ∑

j∈Mi(k)
Wij

[
Ti(k)

(
TT

j (k)I(l)j|j (k)Tj(k)
)+

TT
i (k)

]+
(42)

i(l+1)
i|i (k) = ∑

j∈Mi(k)
WijTji(k)i

(l)
j|j (k) (43)
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At the end of the consensus procedure, the information matrix and vector, Qi(k|k) and
qi(k|k), and the a-posteriori state estimate x̂i(k|k) are computed as:

Qi(k|k) = Q(L)
i (k|k− 1) + Ni I

(L)
i|i (k) (44)

qi(k|k) = q(L)
i (k|k− 1) + Nii

(L)
i|i (k) (45)

x̂i(k|k) = (Qi(k|k))−1qi(k|k) (46)

where Ni(k) = card(Mi(k)), is the cardinality of the setMi(k).
A representation of the algorithm flow and the relationship among phases can be seen

in Figure 1.

Figure 1. Graphical representation of the algorithm for the i-th UAV and the relationship among
phases of the proposed HCMCI algorithm.

4. Numerical Simulations

To assess the performance of the proposed algorithm, five simulation tests were
conducted with formations of UAVs flying over a designated area of interest. The first
simulation test involved a sensitivity analysis to evaluate the impact of key operational
parameters, such as the number of consensus iterations L and the communication link
schemes A, on situational awareness. The second simulation test examined the algorithm
resilience by introducing communication disruptions among certain UAVs, demonstrat-
ing its ability to resume estimation once communication was reestablished. The third
simulation assessed the algorithm performance in estimating the position of a stationary
target within the operational scenario. The fourth example explored the robustness of the
algorithm to communication delays. Finally, the fifth test case examined the capability of
the algorithm to be integrated in a complete guidance, navigation and control algorithm
and involved in a realistic post-avalanche scenario. Additionally, a centralized EKF was
employed as a benchmark to compare the performance trade-off between centralized and
decentralized techniques.

The numerical simulations presented in this study were conducted using MATLAB
routines with a time step size of Ts = 1 s. Initially, each aircraft knows only its own
position information, and the overall state estimate was initialized with random values.
This assumption allowed for the evaluation of algorithm convergence towards the correct
estimate and the assessment of its ability to achieve consensus.



Appl. Sci. 2023, 13, 11186 10 of 28

To take into account measurement errors, they were simulated by introducing biases
and white Gaussian noise into the simulation output. The main parameters are summarized
in Table 1.

Table 1. Sensor biases and measurement noise covariance matrices considered in the simulations.

Description Value

GPS bias—(m) [2, 2, 4]T

Transponder bias—(m) 4 · 10−2

GPS noise covariance—(m2) I3 · [4 · 10−1, 4 · 10−1, 1]T

Transponder noise covariance—(m2) 1 · I10 · 10−4

In order to evaluate the performance of the proposed algorithm, two indicators were
defined: standard deviation (SD) and mean absolute error (MAE) [41]. The estimation error
made by the i-th UAV, relative to the position of the j-th agent at the time instant k, is:

e
Sj
i (k) =

∥∥Ŝi,j(k)− Sj(k)
∥∥ (47)

where Ŝi,j(k) indicates the position of the j-th agent estimated by the aircraft i The average
error in a time window composed by nk time steps is

µ
Sj
i =

1
nk

nk

∑
k=1

e
Sj
i (k) (48)

The mean absolute error MAE
Sj
i made by the i-th UAV is defined as follows:

MAE
Sj
i =

1
nk

nk

∑
k=1

e
Sj
i (k) (49)

Similarly, it is possible to define the standard deviation σ
Sj
i with respect to the average

error as follows:

σ
Sj
i =

√√√√ 1
(nk − 1)

nk

∑
k=1

(
e

Sj
i (k)− µ

Sj
i

)2
(50)

4.1. Simulation Test #1

Simulation test #1 presents the outcomes of a preliminary sensitivity analysis aimed at ex-
amining the impact of key operational parameters, specifically the number of consensus steps
L and the communication link schemes A, on the performance of the proposed algorithm.

As an illustrative scenario, consider a swarm of 10 UAVs with their initial positions
summarized in Table 2. Assume that all UAVs in the swarm fly in the same direction
at a constant speed of 2 m/s, maintaining a fixed altitude of 100 m above the terrain.
Throughout the flight, several maneuvers are performed in both the horizontal and vertical
planes, involving changes in altitude. These maneuvers enable the evaluation of the
navigation algorithm capability to estimate trajectory modifications.
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Table 2. Simulation Tests #1 and #2—UAVs initial position.

Agent X(0) (m) Y(0) (m) Z(0) (m)

UAV1 100 170 100
UAV2 100 130 100
UAV3 50 100 100
UAV4 0 50 100
UAV5 −50 100 100
UAV6 −100 130 100
UAV7 −100 170 100
UAV8 −50 200 100
UAV9 0 250 100
UAV10 50 200 100

The sensitivity analysis was conducted by considering four distinct configurations of
consensus steps, namely L ∈ {3, 5, 10, 20}, and three communication schemes (A2, A3, A4),
characterized by an increasing number of communication links (refer to Figure 2).

Figure 2. UAVs formation and communication link schemes, (A2,A3,A4) used in the simulation tests.

As a representative result, Tables 3 and 4 present the standard deviation (54) and the
mean absolute error (MAE) (53) of the estimated position of UAV2 performed by UAV1.
These results provide insights into the influence of consensus steps and communication
links on the estimation process. It is observed that performance improvement is not
consistently achieved by increasing the parameter value. Notably, a higher number of
communication links among UAVs leads to better performance, indicated by lower values
of standard deviation and mean absolute error, and exhibits limited sensitivity to an
increase in consensus steps. This characteristic of the algorithm is further depicted in
Figure 3, which visually illustrates the findings from the analysis of Tables 3 and 4.

Table 3. Simulation Test #1—Comparison of standard deviation σS2
1 of UAV2 position estima-

tion error made by UAV1 with respect to the number of consensus iterations and communication
link schemes.

Communication Scheme A σS2
1 for L = 3 σS2

1 for L = 5 σS2
1 for L = 10

A2 1.0437 1.0418 1.0440
A3 0.9669 0.9631 0.9605
A4 0.7334 0.7304 0.7294
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Table 4. Simulation Test #1—Comparison of Mean Absolute Error MAES2
1 of UAV2 position es-

timation made by UAV1 with respect to the number of consensus iterations and communication
link schemes.

Communication Scheme A MAES2
1 for L = 3 MAES2

1 for L = 5 MAES2
1 for L = 10

A2 0.1781 0.1788 0.1793
A3 0.1597 0.1609 0.1611
A4 0.1112 0.1099 0.1094
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Number of Consensus steps, L
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Figure 3. Simulation Test #1—Graphical comparison in terms of Mean Absolute Error, MAES2
1 ,

committed by UAV1 in the estimation of UAV2 position. The minimum and maximum values of each
bar represent, respectively, the minimum and maximum values of the standard deviation σS2

1 .

Figure 4 presents an example of the estimated trajectory of UAVs as viewed from UAV1
compared with reference trajectories. In this example, with an arbitrary communication
configuration A = A3 and L = 10, only UAV2, UAV3 and UAV10 are visible from UAV1,
as indicated in Figure 2. Despite the presence of maneuvers, each agent is capable of
estimating the positions of the visible UAVs. Specifically, the scenario includes left/right
turn maneuvers in the horizontal plane at t = 40 s and t = 80 s, followed by pull up/pull
down maneuvers in the vertical plane at t = 120 s and t = 140 s.
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Figure 4. Simulation Test #1—Estimates of UAV1 about the position of its neighbours, UAV2, UAV3

and UAV10, with configuration A = A3 and L = 10 steps of consensus.

4.2. Simulation Test #2

For simulation test #2, consider the same scenario with 10 UAVs as in simulation
test #1. The UAVs start from the initial positions specified in Table 2 and fly in the same
direction at a constant speed of 2 m/s, maintaining a fixed altitude of 100 m above the
terrain. The trajectories of the UAVs, depicted in Figure 5, include several maneuvers in
the horizontal plane before reaching the destination point.
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Figure 5. Simulation Test #2—UAVs reference trajectories used in simulation test #2.

The primary objective of simulation test #2 is to evaluate the algorithm capability
to resume trajectory estimation for UAVs following communication interruptions among
the aircraft. To illustrate such a feature, the proposed scenario introduces communication
link failures during the flight due to obstacle avoidance. Specifically, at two specified
time intervals, t1 = 65 s and t2 = 120 s, lasting ∆t = 10 s, the communication links
among UAVs are disrupted. The affected aircraft include UAV1, UAV2, UAV6 and UAV7.
Figure 6 displays the communication links before and after the interruptions, highlighting
the formation of two sub-swarms. When the data transmission between UAV1 and UAV2,
as well as between UAV6 and UAV7, is lost, the two sub-swarms reorganize into separate
cycle graphs to accurately estimate the state of their neighboring UAVs [42,43].

(a) (b)
Figure 6. Simulation Test #2—UAVs communication link schemes before (a) and after (b) the inter-
ruption in the data transmission between UAV1 and UAV2 and between UAV6 and UAV7.

Figure 7 depicts the estimated coordinates of UAV2 by UAV1 compared with the
reference trajectory. As observed in the figure, the position estimation made by UAV1 is
interrupted solely during the two designated time intervals of communication loss, and it
is promptly resumed once the connection among the aircraft is re-established.
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Figure 7. Simulation Test #2— Comparison between reference and estimated position of UAV2 made
by UAV1. (a) X component. (b) Y component.

4.3. Simulation Test #3

Simulation test #3 aims to evaluate the navigation algorithm ability to estimate the
position of a stationary target within the operational scenario. To validate its estimation
performance, a comparison was conducted with a centralized version of the KF.

In this test, a sample scenario was considered, involving a formation of 10 UAVs
flying together to survey the area of interest and locate the target. Each aircraft maintains
a constant speed of 2 m/s, flying in the same direction at an altitude of 100 m above the
terrain. Communication capabilities are limited to two neighboring agents, forming a
cycle graph, while each UAV is equipped with an additional receiver to detect the signal
emitted by the target within a range of dsens = 200 m. To account for the noise in the target
transmitter signal, the simulation parameters outlined in Table 1 are augmented with the
bias and noise covariance values specified in Table 5.

Table 5. Simulation Test #3—Target transceiver parameters in terms of bias and noise covariance.

Description Value

Target transmitter bias—(m) 4 · 10−4

Target transmitter noise covariance—(m2) 1 · I1 · 10−4

The aircraft navigate towards the target position located at (212.1, 362.1, 0) m, starting
from their respective initial positions as presented in Table 6 and Figure 8.
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Figure 8. Simulation Test #3—Starting position of the UAVs and location of the target. Solid black
lines represent the link between aircraft to make a cycle graph.
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Table 6. Simulation Test #3—UAVs starting position.

Agent X(0) (m) Y(0) (m) Z(0) (m)

UAV1 56.6 234.8 100
UAV2 84.8 206.6 100
UAV3 70.7 150 100
UAV4 70.7 79.3 100
UAV5 0 79.3 100
UAV6 −56.6 65.1 100
UAV7 −84.8 93.4 100
UAV8 −70.7 150 100
UAV9 −70.7 220.7 100
UAV10 0 220.7 100

Figures 9–11 depict the estimated components of the target position vector, providing
a comparison among the actual value, the estimation obtained from the centralized KF and
that derived from the proposed decentralized KF. As observed in the figures, during the
initial phase of the simulation, the target position remains unknown as it lies outside the
sensor range of the UAVs.

At t = 10 s, the target enters the sensor range of UAV1, but localization is not yet
feasible. It is worth noting that for localization problems based on fusion algorithms, a
minimum of three aircraft measurements is required to accurately determine the target
location [44–46].

From t = 30 s, the target comes within the sensor range of UAV1, UAV2, UAV3 and
UAV10, thus becoming localizable.
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Figure 9. Simulation Test #3—Comparison of the estimates of the target position. Xt represents the
real X-coordinate of the target, while X̂1

t and X̂cen
t are, respectively, the estimate made by UAV1 that

uses the HCMCI algorithm, and that of the centralized scheme.
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Figure 10. Simulation Test #3—Comparison of the estimates of the target position. Yt represents the
real Y-coordinate of the target, while Ŷ1

t and Ŷcen
t are, respectively, the estimate made by UAV1 that

uses the HCMCI algorithm, and that of the centralized scheme.
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Figure 11. Simulation Test #3—Comparison of the estimates of the target position. Zt represents the
real Z-coordinate of the target, while Ẑ1

t and Ẑcen
t are, respectively, the estimate made by UAV1 that

uses the HCMCI algorithm, and that of the centralized scheme.

The estimated target position definitively converges around t = 43 s.
The estimation error made by the i-th UAV, relative to the position of the target at the

time instant k, is:
eη

i (k) = ‖η̂i(k)− η(k)‖ (51)

where η̂i(k) indicates the position component of the target estimated by the aircraft i. The
average error in a time window composed by nk time steps is

µ
η
i =

1
nk

nk

∑
k=1

eη
i (k) (52)

The mean absolute error MAEη
i made by the i-th UAV is defined as follows:

MAEη
i =

1
nk

nk

∑
k=1

eη
i (k) (53)

Similarly, it is possible to define the standard deviation σ
η
i with respect to the average

error as follows:

σ
η
i =

√√√√ 1
(nk − 1)

nk

∑
k=1

(
eη

i (k)− µ
η
i

)2
(54)

Table 7 shows mean absolute error and standard deviation computed by UAVs for any
component η of the target position vector.

Table 7. Simulation Test #3—Results comparison in terms of standard deviation and Mean
Absolute Error.

Performance Index Proposed HCMCI Model Centralized Model

σXt
1 (m) 0.6250 0.6251

σYt
1 (m) 0.5972 0.6223

σZt
1 (m) 1.0847 0.7911

MAEXt
1 (m) 0.2013 0.1515

MAEYt
1 (m) 0.2839 0.1586

MAEZt
1 (m) 0.0438 0.1851

Figures 12 and 13 show the uncertain target volume detected by the proposed algo-
rithm with respect to the centralized KF and the real target position.
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Figure 12. Simulation Test #3—3D representation of the estimation error. The true position of the
target is depicted by means of the blue marker.
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Figure 13. Top view of the estimation error. The true position of the target is depicted by means of
the blue marker.

4.4. Simulation Test #4

Simulation test #4 aims to assess the navigation algorithm’s capability to estimate
the position of a stationary target within the operational scenario in the presence of com-
munication delays among the swarm of UAVs. The same scenario shown in the previous
subsection was considered (see Table 6), where the communication channel among UAVs
is not considered ideal but introduces a delay typical of wireless communication.

Considering the size of UAVs and the typical size of the considered scenarios, three
different constant communication delays among aircraft in the formation were considered,
0.1 s, 0.2 s and 0.5 s, to stress the procedure in the worst situations.

As already shown, results do not depend on the number of consensus steps when
L ≥ 3, while the communication scheme can give a performance improvement.

As a representative result, Figure 14 shows the capability of the algorithm to localize
the target also in the configuration A = A2, considered as the worst possible because it
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shows the slowest convergence in previous results. It is worth noticing that the algorithm
is robust to any communication delay until 0.5 s, with a convergence speed that decreases
by increasing the length of the delay. Without delays, the estimation of the target position
converges to the real value at t = 43 s (see Figures 9–11), while with a delay of 0.5 s, the
convergence is assured only after t = 110 s.
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Ẑ1
t;d2

Ẑ1
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Figure 14. (a–c) Simulation Test #4—Comparison of the estimates of the target position considering
three different communication delays. Xt, Yt and Zt represents the real X, Y and Z coordinates of the
target, while X̂1

t , Ŷ1
t and Ẑ1

t are the estimates made by UAV1. The subscripts d1, d2 and d5 represent,
respectively, communication delays of td1 = 0.1 s, td2 = 0.2 s and td5 = 0.5 s.

4.5. Simulation Test #5, a Post-Avalanche Scenario

The primary objective of this section is to prove the effectiveness of the proposed
navigation algorithm in a SAR mission for locating a missing skier. An illustrative example
is shown in Figure 15, where a swarm of UAVs identifies the missing individual, points
towards the target and subsequently awaits the rescue phase by hovering over the skier.

To address this issue, consider a swarm of N UAVs flying at a fixed altitude whose
guidance algorithm is based on the DTG-based approach [47]. This approach ensures
that the the swarm remains distributed and scalable, without a leader–follower architec-
ture, while maintaining a local triangular topology that is highly efficient in terms of the
packing problem.

The integrated GNC scheme is depicted in Figure 16, which provides an overview
of the overall architecture and the information flow between the high-level DTG-based
guidance and control and the consensus-based navigation modules.
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Figure 15. Simulation Test #5—Representative example of a SAR activity for a missing skier equipped
with ARTVA device. The red arrows indicate the communication link between the UAVs.

Figure 16. Proposed GNC algorithm architecture and information flow between the high-level modules.

The proposed scenario represents a simplified environment with no disturbances, such
as wind. It is also assumed that the swarm is homogeneous, consisting of the same type of
quadrotors. We have assumed perfect conditions for communication and reconnaissance of
the search area. Therefore, no communication delays and no loss of precision over greater
distances are considered. Furthermore, the take off and landing of UAVs are not modeled;
it is assumed that all UAVs have already been launched at the beginning of the scenario
and are flying at a fixed altitude. Battery consumption is not included in the model.

The case study takes into account real research techniques in post avalanche scenarios.
The most known search strategies are the parallel track and creeping line search. They
involve maintaining parallel tracks, with the former being parallel to the major axes and the
latter parallel to the minor axes. These strategies are suitable for uncertain target locations
and flat terrain, ensuring uniform coverage.

The typical post-avalanche zones to be surveyed are usually small [48]; in this section,
the operational scenarios are defined over an area of [200× 100] m. Two scenarios are
provided, with the same area and different positions of the skier, as summarized in Table 8.

Table 8. Real position of the Skier.

Scenario ID Skier Position (m)

1 Ss = [100, 180, 0]T

2 Ss = [140, 50, 0]T

Given the search area, a formation of 5 UAVs was deployed, flying at a fixed altitude
of 5 m and cruising at a speed of 3 m/s.

To cover the selected search area, two coverage techniques were explored, as they
are the most suitable for this type of mission: the parallel track technique was used in
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scenario #1 (Figure 17) and the creeping line in scenario #2 (Figure 18). Both search paths
have the same length and guarantee complete surveillance of the defined area.
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Figure 17. (a,b) Simulation Test #5—Parallel Track search pattern (black solid line) and real position
of the skier (blue marker).
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Figure 18. Simulation Test #5—Creeping Line search pattern (black solid line) and real position of the
skier (blue marker). (a) Iso view. (b) Planar view.

UAV starting positions for both operational scenarios are given in Table 9.

Table 9. Simulation Test #5—UAVs Initial position.

Agent X(0) (m) Y(0) (m) Z(0) (m)

UAV1 0 0 5
UAV2 −20 30 5
UAV3 −20 −30 5
UAV4 −40 20 5
UAV5 −40 −20 5

The ARTVA receiver is the device responsible for detecting the presence of the skier
under the snow. Its operational range is currently about 60 m [49]. However, although
the most modern versions of these devices are valid and efficient, their performance in
real operating conditions are degraded due to several factors, like ambient noise and
interference with other electronic devices or other beacons. Considering an altitude of 5 m,
the projected detection area over the terrain has a diameter of dsens = 20 m. Table 10 shows
the sensor biases and the measurement noise covariance matrices.
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Table 10. Simulation Test #5—Sensor biases and measurement noise covariance matrices.

Description Value

GPS bias—(m) [2, 2, 4]T

Accelerometer bias—(m/s2) [0.1, 0.15, 0.2]T

Gyro bias—(rad/s) [0.1, 0.08, 0.11]T

Magnetometer bias—(G) [0.05, 0.02, 0.06]T

Transponder bias—(m) 4 · 10−2

ARTVA bias—(m) 1.2
GPS noise covariance—(m2) I3 · [4 · 10−1, 4 · 10−1, 1]T

Accelerometer noise covariance—
(
(m/s2)2) 1 · I3 · 10−4

Gyro noise covariance—
(
(rad/s)2) 8 · I3 · 10−8

Magnetometer noise covariance—(G2) 4 · I3 · 10−8

Transponder noise covariance—(m2) 1 · I4 · 10−4

ARTVA noise covariance—(m2) 1 · I1 · 10−1

At the beginning of the simulation, it is assumed that each UAV knows only its
position, initializing the overall state estimate with random values. Such an assumption is
useful for evaluating algorithm convergence to the correct estimate and ability to reach the
consensus.

The proposed scenarios were simulated in MATLAB routines with a step size of
Ts = 0.1 s, L = 5 consensus steps and a simulation period of T = 400 s.

Simulation parameters are presented in Table 11.

Table 11. Simulation Test #5—Parameters of the integrated GNC model.

Parameter Value

Cruise speed Vc (m/s) 3
Minimum speed Vmin (m/s) 0
Maximum speed Vmax (m/s) 10

Minimum normal acceleration a⊥min (m/s2) −5
Maximum normal acceleration a⊥max (m/s2) 5

Minimum tangential acceleration a‖min (m/s2) −10
Maximum tangential acceleration a‖max (m/s2) 10

Safety distance dsa f ety (m) 3
Desired distance d (m) 20

UAV size rj∀j = 1, ..., N (m) 1
MPC weight matrix for tracking error QMPC diag([10,10,10,10])
MPC weight matrix for control effort RMPC diag([1,1])

Number of steps of the MPC prediction horizon np 10
Number of steps of the MPC control horizon nc 5

Figure 19 represents the trajectories of the UAV swarm following the parallel track
(Figure 19a) and the creeping line (Figure 19b) search patterns. Green solid lines indi-
cate the obtained formation graph. The distance among aircraft tends to remain near
the desired value, d, for all the duration of the simulation and for both the considered
research methodologies, as also confirmed by the analysis of Figure 20. The purpose of the
swarm is to fly over the area near the missing person, once its position is identified. This
behavior is highlighted by the continuous flight above the skier position at T = 390 s (see
Figures 17 and 18), as shown in Figure 19.



Appl. Sci. 2023, 13, 11186 22 of 28

0 100 200
x [m]

!50

0

50

100

y
[m

]

t=0 s t=50 s

t=160 s

t=250 s
t=390 s

UAV 1
UAV 2
UAV 3
UAV 4
UAV 5

(a)

0 100 200
x [m]

!50

0

50

100

150

y
[m

]

t=100 s

t=220 s

t=390 s

t=0 s

UAV 1
UAV 2
UAV 3
UAV 4
UAV 5

(b)
Figure 19. Simulation Test #5—UAV trajectories in the search of the missing skier along the search
patterns. Solid black line represents the reference trajectory to be followed by the formation. Colored
circular markers indicate positions of UAVs at different time instants. Green straight lines are used to
highlight the connection graph. (a) Scenario #1. (b) Scenario #2.
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Figure 20. Simulation Test #5—Average distance dmean between adjacent UAVs compared with the
desired distance. (a) Scenario #1. (b) Scenario #2.

Figures 21 and 22 show trajectories of UAV2 and UAV3 as estimated by UAV1, com-
pared with reference paths. As can be seen, UAV1 is always able to estimate its neighbors’
trajectories. It is worth remembering that each UAV in the swarm, at the beginning of the
simulation, knows only its position, and the estimates start at random values. As can be
seen, the estimates made by UAV1 converge to the correct values after a few time instants,
necessary for the convergence of the consensus algorithm.
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Ŝ1
3

(b)
Figure 21. (a,b) Simulation Test #5, Scenario #1—UAVs positions estimated by UAV1.
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Figure 22. (a,b) Simulation Test #5, Scenario #2—UAVs positions estimated by UAV1.

Figures 23–25 show the effectiveness of the proposed algorithm in the estimation
process of the skier position, comparing the real value with the estimation made by UAV1,
for both the analyzed case studies. As shown, at the beginning of the simulation the skier
position is unknown, still being far from the range of the receivers onboard the UAVs.
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Figure 23. Simulation Test #5—Estimate of the skier position. Xs represents the real X-coordinate,
while X̂s

1 is the estimate made by UAV1. (a) Scenario #1. (b) Scenario #2.
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Ŷ 1
s

(a)

0 100 200 300 400

time [s]

40

45

50

55

60

65

70

75

80

Y
 [m

]

Ys
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Figure 24. Simulation Test #5—Estimate of the skier position. Ys represents the real Y-coordinate,
while Ŷs

1 is the estimate made by UAV1. (a) Scenario #1. (b) Scenario #2.

Once the skier ARTVA transmitter enters the range of at least three aircraft receivers
(at t = 260 s (#1) and t = 230 s (#2)), the estimates tend to the real position, converging
definitively after the time necessary for the consensus phase.

In case study #1, it is worth noticing that a first convergence estimation is reached
at t = 170 s. This is due to the particular research path; in fact, as shown in Figure 19a,
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at t = 160 s the skier enters the sensor range of only one UAV of the swarm, whose
measurement is still not sufficient to correctly estimate the position of the missing person
(see Section 4.4).
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Figure 25. Simulation Test #5—Estimate of the skier position. Zs represents the real Z-coordinate,
while Ẑs

1 is the estimate made by UAV1. (a) Scenario #1. (b) Scenario #2.

Table 12 shows mean absolute error (Equation (53)) and standard deviation
(Equation (54)) for any component of the target position vector, Ss. These uncertainties in
the estimation are graphically represented in Figures 26 and 27 for both the scenarios.

Table 12. Simulation Test #5—Estimation performance in terms of standard deviation and Mean
Absolute Error for skier position estimation.

Performance Index Scenario #1 Scenario #2

σXt
1 (m) 0.6498 0.6690

σYt
1 (m) 0.6707 0.6547

σZt
1 (m) 1.1234 1.0879

MAEXt
1 (m) 0.1343 0.0727

MAEYt
1 (m) 0.0778 0.0331

MAEZt
1 (m) 0.6035 0.3248
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Figure 26. Simulation Test #5, Scenario #1—graphical representation of the estimation error. The true
position of the skier is depicted by means of the blue marker. (a) 3D view. (b) Top view.

The data presented in this section represent the results regarding the accuracy of
the proposed algorithm, with standard deviations never exceeding 1 m and MAE values
consistently below 0.1 m for the estimation of the X and Y coordinates. Furthermore, the
potential application of the proposed GNC model in SAR scenarios is demonstrated. The
aircraft can promptly estimate the position of the missing skier when trilateration is feasible.
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Additionally, the swarm consistently follows the predetermined search path, using the
situational awareness provided by the local estimates.
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Figure 27. Simulation #5, Scenario #2—graphical representation of the estimation error. The true
position of the skier is depicted by means of the blue marker. (a) 3D view. (b) Top view.

5. Limitations and Discussion

Several numerical simulations were carried out to highlight the advantages and
disadvantages of the proposed procedure in the following contexts: (1) the ability to achieve
situational awareness regarding the position and speed of each agent in the formation;
(2) the capability to localize a static target in a distributed manner using the transceivers on
each UAV; (3) resilience to communication delays and interruptions; and (4) integration
with a comprehensive guidance, navigation and control procedure, simulating a realistic
post-avalanche search-and-rescue mission.

Regarding the ability to achieve situational awareness, a sensitivity analysis of the main
parameters showed that the algorithm is nearly insensitive to the number of communication
steps, at least when dealing with a limited number of UAVs. Instead, performance is
primarily influenced by the communication scheme. As expected, the topology of the
communication graph is crucial, representing how the agents share information among
themselves. The communication scheme A = A2 is considered the worst-case scenario and
is thus employed in the other tests.

From the perspective of target localization capability, a comparison with a centralized
EKF showed that the proposed algorithm achieves nearly identical performance in terms
of target localization, as presented in Table 7, for both the MAE and standard deviation
σ. The distributed procedure is only 5 s slower than the centralized one, as depicted in
Figures 9–11.

The robustness to communication delays and interruptions was confirmed through
numerical simulations. These assessments included evaluating the algorithm capability to
resume UAV position estimation following disruptions in communication links at speci-
fied time intervals (Figure 7) and showing the convergence capabilities in the presence of
three different constant communication delays among UAVs (Figure 14). As observed, the
position estimation is temporarily interrupted during communication loss but promptly
resumes once the connection among agents is re-established. The procedure remains re-
silient to communication delays, albeit affecting the convergence time for target localization,
as expected.

Finally, the last set of simulation results proves the algorithm capability to be em-
ployed within a comprehensive guidance navigation and control procedure. It has been
demonstrated to be useful in estimating UAV positions, which are essential for trajectory
tracking, collision avoidance and target localization. The results show a localization error
of less than 1 m, with no faults during the mission.
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6. Conclusions

The main objective of this paper was to develop a distributed navigation algorithm for
a swarm of UAVs to estimate the position of a target in the operational scenario. The aim of
the algorithm is to provide situational awareness to the aircraft formation and eliminate
the need for a central unit, thereby making it scalable and computationally efficient.

The proposed algorithm combined the advantages of the hybrid consensus on mea-
surements and consensus on information (HCMCI) technique with the internodal trans-
formation theory (ITT). This combination allowed for the distributed estimation of the
swarm overall state and the detection of the target position. The algorithm was designed
to be adaptable to various swarm architectures and environments, enabling the swarm to
self-organize and adjust its configuration over time.

Numerical analyses were conducted to evaluate the algorithm effectiveness. A sensi-
tivity analysis was performed to assess its performance by varying the main operational
parameters and communication link schemes.

Results highlight that performance is not significantly improved by increasing the
number of consensus steps which, on the other hand, increases the time required to execute
the consensus algorithm. Furthermore, as expected, the graph topology can improve
algorithm convergence by optimizing communication.

Regarding reliability, it is observed that communication delays can decrease the
convergence capability, as intuitively expected. However, in realistic scenarios with small
delays (approximately 0.1 s), it does not adversely affect performance.

Furthermore, some simulation tests were also conducted to evaluate the algorithm’s
ability to resume estimation after communication interruptions and to estimate the position
of a fixed target. A comparison with a centralized version of the EKF was included to
evaluate the performance trade-offs of the decentralized technique.

The proposed navigation algorithm successfully achieved the objectives outlined in
this paper, demonstrating its capability to estimate the target position and maintain overall
situational awareness.

Future research in this field should explore the possibility of detecting and isolat-
ing multiple targets, which would represent another important factor in enhancing the
effectiveness of such algorithms in emergency scenarios.
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14. Bayindir, L.; Şahin, E. A review of studies in swarm robotics. Turk. J. Electr. Eng. Comput. Sci. 2007, 15, 115–147.
15. Mitchell, H.B. Multi-Sensor Data Fusion: An Introduction; Springer: Berlin/Heidelberg, Germany, 2007.
16. You, H. Mission-driven autonomous perception and fusion based on UAV swarm. Chin. J. Aeronaut. 2020, 33, 2831–2834.
17. He, S.; Shin, H.S.; Xu, S.; Tsourdos, A. Distributed estimation over a low-cost sensor network: A review of state-of-the-art. Inf.

Fusion 2020, 54, 21–43. [CrossRef]
18. Zhan, P.; Casbeer, D.W.; Swindlehurst, A.L. A centralized control algorithm for target tracking with UAVs. In Proceedings of the

Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 30
October–2 November 2005; pp. 1148–1152.

19. Kocer, B.B.; Tjahjowidodo, T.; Seet, G.G.L. Centralized predictive ceiling interaction control of quadrotor VTOL UAV. Aerosp. Sci.
Technol. 2018, 76, 455–465. [CrossRef]

20. Akagi, J.; Christensen, R.S.; Harris, M.W. Centralized UAV Swarm Formation Estimation with Relative Bearing Measurements
and Unreliable GPS. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland,
OR, USA, 20–23 April 2020; pp. 383–391.

21. D’Amato, E.; De Capua, C.; Filianoti, P.F.; Gurnari, L.; Nardi, V.A.; Notaro, I.; Scordamaglia, V. UKF-based fault detection and
isolation algorithm for IMU sensors of Unmanned Underwater Vehicles. In Proceedings of the 2021 International Workshop
on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Reggio Calabria, Italy, 4–6 October 2021;
pp. 371–376.

22. Medeiros, H.; Park, J.; Kak, A. Distributed object tracking using a cluster-based kalman filter in wireless camera networks. IEEE J.
Sel. Top. Signal Process. 2008, 2, 448–463. [CrossRef]

23. Liggins, M.E.; Chong, C.Y.; Kadar, I.; Alford, M.G.; Vannicola, V.; Thomopoulos, S. Distributed fusion architectures and algorithms
for target tracking. Proc. IEEE 1997, 85, 95–107. [CrossRef]

24. Lee, D.J. Unscented information filtering for distributed estimation and multiple sensor fusion. In Proceedings of the AIAA
Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008; p. 7426.

25. Lynch, N.A. Distributed Algorithms; Elsevier: San Francisco, CA, USA, 1996.
26. Saber, R.O.; Murray, R.M. Consensus protocols for networks of dynamic agents. In Proceedings of the 2003 American Control

Conference, Denver, CO, USA, 4–6 June 2003.
27. Olfati-Saber, R.; Murray, R.M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans.

Autom. Control 2004, 49, 1520–1533. [CrossRef]
28. Fax, J.A. Optimal and Cooperative Control of Vehicle Formations; California Institute of Technology: Pasadena, CA, USA, 2002.
29. Fax, J.A.; Murray, R.M. Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 2004,

49, 1465–1476. [CrossRef]
30. Jadbabaie, A.; Lin, J.; Morse, A.S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans.

Autom. Control 2003, 48, 988–1001. [CrossRef]
31. Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel type of phase transition in a system of self-driven particles.

Phys. Rev. Lett. 1995, 75, 1226. [CrossRef]
32. Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and cooperation in networked multi-agent systems. Proc. IEEE 2007,

95, 215–233. [CrossRef]
33. D’Amato, E.; Notaro, I.; Mattei, M.; Tartaglione, G. Attitude and position estimation for an UAV swarm using consensus

Kalman filtering. In Proceedings of the 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 4–5 June 2015;
pp. 519–524.

34. Azam, M.A.; Dey, S.; Mittelmann, H.D.; Ragi, S. Average Consensus-Based Data Fusion in Networked Sensor Systems for
Target Tracking. In Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC),
Las Vegas, NV, USA, 6–8 January 2020; pp. 0964–0969.

35. Battistelli, G.; Chisci, L. Kullback–Leibler average, consensus on probability densities, and distributed state estimation with
guaranteed stability. Automatica 2014, 50, 707–718. [CrossRef]

http://dx.doi.org/10.1007/s10514-013-9349-9
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01481
http://dx.doi.org/10.1016/j.inffus.2019.06.026
http://dx.doi.org/10.1016/j.ast.2018.02.020
http://dx.doi.org/10.1109/JSTSP.2008.2001310
http://dx.doi.org/10.1109/JPROC.1997.554211
http://dx.doi.org/10.1109/TAC.2004.834113
http://dx.doi.org/10.1109/TAC.2004.834433
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1109/JPROC.2006.887293
http://dx.doi.org/10.1016/j.automatica.2013.11.042


Appl. Sci. 2023, 13, 11186 28 of 28

36. Battistelli, G.; Chisci, L.; Mugnai, G.; Farina, A.; Graziano, A. Consensus-based linear and nonlinear filtering. IEEE Trans. Autom.
Control 2014, 60, 1410–1415. [CrossRef]

37. Battistelli, G.; Chisci, L.; Mugnai, G.; Farina, A.; Graziano, A. Consensus-based algorithms for distributed filtering. In Proceedings
of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 794–799.

38. Mutambara, A.G. Decentralized Estimation and Control for Multisensor Systems; Routledge: Boca Raton, FL, USA, 2019.
39. Olfati-Saber, R. Kalman-consensus filter: Optimality, stability, and performance. In Proceedings of the 48h IEEE Conference on

Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 15–18 December 2009;
pp. 7036–7042.

40. Xiao, L.; Boyd, S.; Lall, S. A scheme for robust distributed sensor fusion based on average consensus. In Proceedings of the IPSN
2005. Fourth International Symposium on Information Processing in Sensor Networks, Boise, ID, USA, 15 April 2005; pp. 63–70.

41. Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing
average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]

42. Khuller, S.; Raghavachari, B.; Rosenfeld, A. Localization in Graphs; Technical Report; University of Maryland: College Park, MD,
USA, 1998.

43. Khan, U.A.; Kar, S.; Moura, J.M. Distributed sensor localization in random environments using minimal number of anchor nodes.
IEEE Trans. Signal Process. 2009, 57, 2000–2016. [CrossRef]

44. Oguejiofor, O.; Aniedu, A.; Ejiofor, H.; Okolibe, A. Trilateration based localization algorithm for wireless sensor network. Int. J.
Sci. Mod. Eng. (IJISME) 2013, 1, 2319–6386.

45. Safavi, S.; Khan, U.A.; Kar, S.; Moura, J.M. Distributed localization: A linear theory. Proc. IEEE 2018, 106, 1204–1223. [CrossRef]
46. Doostmohammadian, M.; Taghieh, A.; Zarrabi, H. Distributed Estimation Approach for Tracking a Mobile Target via Formation

of UAVs. IEEE Trans. Autom. Sci. Eng. 2021, 19, 3765–3776. [CrossRef]
47. Bassolillo, S.R.; D’Amato, E.; Notaro, I.; Blasi, L.; Mattei, M. Decentralized mesh-based model predictive control for swarms of

UAVs. Sensors 2020, 20, 4324. [CrossRef]
48. Swiss Federal Institute for Snow and Avalanche Research. Avalanche Sizes. Available online: https://www.slf.ch/en/avalanche-

bulletin-and-snow-situation/about-the-avalanche-bulletin/avalanche-sizes.html (accessed on 5 August 2023 ).
49. Adaxys, C. The effect of consumer electronics on avalanche transceiver. In Proceedings of the International Snow Science

Workshop, Banff, AB, Canada, 29 September 2014 , 2014; pp. 1134–1139.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TAC.2014.2357135
http://dx.doi.org/10.3354/cr030079
http://dx.doi.org/10.1109/TSP.2009.2014812
http://dx.doi.org/10.1109/JPROC.2018.2823638
http://dx.doi.org/10.1109/TASE.2021.3135834
http://dx.doi.org/10.3390/s20154324
https://www.slf.ch/en/avalanche-bulletin-and-snow-situation/ about-the-avalanche-bulletin/avalanche-sizes.html
https://www.slf.ch/en/avalanche-bulletin-and-snow-situation/ about-the-avalanche-bulletin/avalanche-sizes.html

	Introduction
	Problem Statement
	Distributed Target Localization
	Numerical Simulations
	Simulation Test #1
	Simulation Test #2
	Simulation Test #3
	Simulation Test #4
	Simulation Test #5, a Post-Avalanche Scenario

	Limitations and Discussion
	Conclusions
	References

