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Abstract: Images captured by drones are increasingly used in various fields, including geographic
information management. This study evaluates a procedure that incorporates active learning semantic
segmentation for verifying the building registration ledger. Several semantic segmentation techniques
were evaluated to extract building information, with ResNet identified as the most effective method
for accurately recognizing building roofs. Using active learning, the training data were refined by
removing instances with low similarity, leading to improved network performance of the model.
The procedure was demonstrated to identify discrepancies between the building information system
and the inferred label images, as well as to detect labeling errors on a training dataset. Through this
research, the geographic information system dataset is enhanced with minimal human oversight,
offering significant potential for urban planning and building detection advancements.
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1. Introduction

Drones, or Unmanned Aerial Vehicles (UAVs), have transformed the landscape of
aerial photography. Their ability to operate at lower altitudes, coupled with their ability to
capture high-resolution imagery, presents a cost-effective alternative to traditional methods.
This has led researchers and businesses alike to adopt drones for various applications.
Given their adaptability, drones can operate both indoors and outdoors, and the integra-
tion of diverse camera systems allows them to navigate around obstacles with precision.
Today, drones are widely used in surveillance, agriculture, forestry, wildlife monitoring,
disaster management, and even facial recognition [1,2]. Their surge in popularity can be
attributed to their potential role in fostering sustainable urban environments [3]. Globally,
UAVs are being recognized as potent tools for remote sensing in agricultural and environ-
mental sectors [4,5]. One of the emerging areas is the use of remote sensing data for tree
identification and mapping, which is pivotal for forest management [6].

In the construction realm, drones are game changers. Their capabilities range from
pre-construction surveys, ensuring detailed mapping of site topography and underground
infrastructures, to real-time monitoring of construction activities. Moreover, drones are
making high-altitude inspections safer, obviating the need for risk-prone traditional meth-
ods. By enabling precise surveying, drones are reducing both the duration and costs
associated with construction processes [7-9]. Semantic segmentation, an advanced com-
puter vision technique, enhances the efficacy of image analysis, especially for images
captured by drones. This technique classifies image pixels into coherent segments or
objects, finding applications across construction, agriculture, and disaster management
domains [10,11]. Incorporating drone-captured images into building information systems
is of paramount importance. Traditional aerial or satellite imagery, often plagued by lower
resolution and outdated data, is being outpaced by drone imagery, making it the go-to
solution for updating building information systems.
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In the realm of semantic segmentation, algorithms like SegNet, DeepLab, and U-Net,
which are derivatives of convolutional neural networks (CNNs), have been prominent.
These models, with their foundation in CNNSs, are adept at image classification tasks. For
instance, U-Net employs an output feature map as its input, enabling it to classify intricate
images more accurately. SegNet, tailored for image segmentation, enhances CNNs by
preserving intricate information through decoding prior pooling layers [12]. DeepLab, an
evolved version of SegNet, excels in processing high-resolution imagery, ensuring the clear
classification of even the most complex images [13-15]. In this research, while our focus
was on detecting roofs using semantic segmentation, deliberate choices were made not
to use other discriminative techniques like edge detection. Our primary objective was to
concentrate on the most suitable semantic segmentation technique using human-labeled
training data.

This study underscores the significance of labeling and refining data, leveraging only
the building information registered in the GIS (geographic information system). Our
approach leans towards active learning, wherein automatically labeled data undergo
refinement with minimal human intervention, resulting in a curated labeled training
dataset [16]. Often, when delineating specific areas in satellite or drone images, the parcel
data from the geographic information system is harnessed, considering any discrepancies
or errors [17,18]. Manual labeling, while detailed, is labor-intensive and prone to errors.
This necessitates the optimal use of GIS data. At times, discrepancies in images may arise
due to inaccuracies in GIS building data or challenges in deciphering image data. In this
study, the aim was to enhance the training dataset by gauging network similarity during
the refinement phase.

Building detection using drone images necessitates cross-referencing with the building
registration ledger [19-22]. When the extracted data align with the building registration
ledger, updates are in order. Any building not documented in the ledger is earmarked for
special administrative consideration. In scenarios where building coordinate information is
awry, a robust system is imperative to rectify these variances. It is essential that the drone
images are cross-verified with the building registration ledger to ensure data integrity.
Moreover, the service interface should be visually cohesive with the database, mirroring
the building registration ledger records.

In this research, methods that recognize buildings by earmarking roof edges, com-
monly integrated into many studies, were excluded. The emphasis was on data refinement.
Edge detection was intentionally omitted. Moreover, it was recognized that drone images
can be influenced by shadows based on the sun’s orientation—a factor not considered.
Hence, meticulous care is required when segmenting such regions. The primary objective
was data refinement using GIS data, and there is optimism that the proposed method will
elevate recognition in application development.

This study increases the accuracy of map data by identifying unregistered structures
and refreshing the geographic information system with data on demolished buildings. This
study presents a UAV-centric semantic image segmentation methodology to pinpoint build-
ing locations using geographic information. The paper unfolds as follows: Section 2 outlines
the methodologies employed, ranging from the refinement of the Geographical Information
System to the detailed processes of semantic segmentation for roof detection and geographic
image processing techniques. Section 3 explains our experimental results, highlighting the
optimal algorithm selection, the GIS dataset refinement, and the practical application of
our findings on test images. Finally, Section 4 concludes with a summary of our significant
discoveries and their broader impact on geographic information management.

2. Materials and Methods
2.1. Methods for Geographical Information System Refinement

The goal of this research was to investigate the building registration ledger on South
Korean maps by following the building registration ledger inspection procedure illustrated
in Figure 1. The process consisted of three steps: The process of finding the optimal
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algorithm, the process of refining data using active learning, and investigating the building

registration ledger.
Train the
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Figure 1. Proposed procedure for building registration ledger inspection using semantic segmentation.

As seen in the figure, the process progressed in the order of algorithm selection, data
refinement, and checking the building registration ledger. In the process of finding the
highest-performing algorithm for the semantic segmentation of drone images, the aim was
to validate the performance of UNet, SegNet, DeepLab18, and DeepLab50. For accurate
training and validation, manually labeled information was utilized. Once the algorithm
was selected, a method was proposed to refine the dataset for training using this algorithm.
Labeling every building for processing a vast range of images is challenging and difficult.
However, the GIS of the building registration ledger can be used for automatic labeling,
and there is a need to train and validate using these data. By measuring the training
data similarity of the network trained with the algorithm and removing images with
low similarity with human verification, the performance of the trained network can be
improved. While the performance might be lower than when humans perform the labeling,
it allows for the processing of a large amount of data without labeling. This process is
referred to as active learning. After this process, if the IoU exceeded the threshold, the
investigation results were recorded in the building database of the GIS system based on the
building registration ledger.

2.2. Semantic Segmentation Algorithms for Roof

In this study, UNet, SegNet, DeepLab18, and DeepLab50 were evaluated as building
detection methods for urban areas. Figures 2 and 3 show the network architecture used in
this study. Various networks were employed to identify the one with the best performance,
taking into account both accuracy and learning time. The input represents images captured
by drones which have been resized to a format of 256 x 256 x 3, indicating RGB channels.
The output, on the other hand, consists of values in a 256 x 256 format, which determine
whether a given pixel corresponds to a roof or not.

After capturing drone images with a resolution of 2560 x 2560 x 3, they were georef-
erenced using RTK-based GPS systems to achieve centimeter-level accuracy in latitude and
longitude information. These images were then labeled and divided into 10 x 10 segments
corresponding to the labeled image. Four different networks, UNet, SegNet, DeepLap18,
and DeepLap50, were applied to image learning in both urban and rural areas. The input
network size was 256 x 256 x 3, and the output network size was 256 x 256 x 1. The input
comprised a color image, and the output was divided into roof and non-roof areas using
two classes.
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Figure 2. Illustration of neural networks: (a) Unet and (b) SegNet, which both have input dimensions
of 256 x 256 x 3 and output dimensions of 256 x 256.
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Figure 3. ResNet (a) 18 with input dimensions of 256 x 256 x 3 and (b) 50, where only the input and
output structures are modified.

The networks were tested with filter sizes of 32 and 3 and had two output classes
representing the roof and non-roof regions. The encoder depth was set to 4, batch size to 10,
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and learning rate to 1/1000. The performance of each network was evaluated to determine
its suitability for utilizing existing networks.

Figure 2a,b show the architectures of UNet and SegNet, respectively, with x 256 x 3
color image input and a 2-class output. Figure 3a,b illustrate DeepLap18 and DeepLap50,
which are similar, but with DeepLap50 having 49 block connections. The learning network
used in this study was the same as that used in a previous study. 1/O changed in the
network model.

2.3. Geographic Image Processing and Latitude and Longitude Determination

When analyzing drone images, it is crucial to minimize coordinate system errors by
accurately applying the images to maps. The coordinate system of the building map and
drone image must be precise to ensure accurate analysis. The building’s coordinate system
was defined as ‘Korea Central Belt 2010’, with a possible error of approximately 10 cm.
Meanwhile, the accuracy of the drone image could have errors of up to 50 cm using RTK
GPS. The input test image resulted in a predicted output in two-pixel classes that could
be used to locate and update a building’s presence on the map. Before dividing the image
into 10 x 10 labeling, the TIFF image’s tag was read to calculate the coordinate information
using the ‘Korea Central Belt 2010” coordinate system. Once the location of the roof was
identified through semantic segmentation, the corresponding TIFF Cartesian coordinate
system values were determined. To calculate the position of an image pixel matrix in the
Cartesian coordinate system, the latitude and longitude positions of the coordinate system,
WGS84, projected onto the image must be determined. Therefore, it is important to work
with these two coordinate systems in a unified manner.

The image labeling process involves assigning a roof or non-roof label to each pixel in
the image, as illustrated in Figure 4. The sizes of the input and output images were M = 256
and N = 256, respectively, and they were in RGB format. The labeled images were used to
train the network. When a test image is input into a trained network, the network outputs
a predicted image showing which pixels are roofs and which are not.
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Figure 4. (a) Image matrix used for recognition, (b) ground truth showing labeled pixels, (c) detected

(0,0)

roofs inferred by algorithms, and (d) bounding box made by detected pixels.

The image labeling process involves assigning a roof or non-roof label to each pixel
in the image, as illustrated in Figure 4. Panel (a) shows the image with the correspond-
ing coordinate system. This coordinate system is necessary because standard Cartesian
and image pixel coordinates differ. Converting the image coordinates into geographical
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coordinates requires an accurate coordinate system. Our study aimed to determine the
geographical locations of the detected buildings, and hence, the detected pixel locations
needed to be transformed into their corresponding geographical coordinates.

Figure 4b shows the image with ground truth labels, indicating which pixels represent
roofs and which do not. Panel (c) presents the inferred roofs obtained using the proposed
algorithm. Finally, in panel (d), the bounding boxes are generated based on the inferred
roofs. The geographical coordinates of these bounding boxes were extracted and compared
with those of the registered buildings in the cadastral map to validate their correspondence.

The input and output images had sizes of M = 256 and N = 256, respectively, and were
represented in RGB format. These labeled images were used to train the network. Once a
test image is fed into the trained network, the network predicts the location of the roof by
outputting an image that indicates the pixels corresponding to the roof.

3. Results and Discussion
3.1. Selection of the Optimal Algorithm

The first procedure was conducted to select the best-performing algorithm. Drone
images are typically prepared for this purpose, as shown in Figure 5. Jeju’s urban area has
a high concentration of buildings. When using the RTK GPS, the resulting images were
highly accurate and large, with a precision of 5 cm. Figure 5a displays the entire region,
with an image size of 500 x 500 m?. Figure 5b illustrates the image after it was segmented
into 10 x 10 smaller images, resulting in a total of 100 images. In Figure 5c, the map was
manually labeled by humans, with only the roofs highlighted in black, which were later
categorized under the roof class. Figure 5d shows the corresponding 100 labels for the
segmented images. The label images created manually in this manner had two classes:
ground and roof. The aim was to find the best-performing algorithm through training and
testing without validation, using the same options whenever possible. Therefore, separate
validation was not conducted.
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(c)
Figure 5. The data used for training: (a) drone-captured images divided into 100 images and (b)

divided images with dimensions of 256 x 256 x 3. (a) Labeled images corresponding to one image
and (c,d) the divided labeled images.
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Figure 6 presents the test images produced in a consistent manner. Figure 6a displays
the entire test image. Figure 6b illustrates the 100 segmented images derived from the
main image. Figure 6¢ depicts the comprehensive label image, while Figure 6d showcases
the 100 individual images that were manually labeled. For testing purposes, segmented
images were utilized. Notably, these images include the latitude and longitude details for
each pixel.

EEEIHEE!E

Figure 6. Data used for testing. (a) Drone-captured images divided into 100 images and (b) divided
images with dimensions of 256 x 256 x 3. (c) Labeled images corresponding to each divided image
and (d) divided labeled images. Images contain latitude and longitude information for each pixel.

A program was developed incorporating algorithm verification, data refinement, and
GIS DB update functionalities using the MATLAB 2022b library to facilitate the proposed
process. To determine the most effective performance of Unet, SegNet, ResNet18, and
ResNet50, tests were conducted on an Intel(R) Core(TM) i9-10900 and RTX 3070 8 Mega.
For all algorithms, the number of epochs and batch size were set to 50 and 10, respectively.
The learning time was measured and compared among the different algorithms to select
the algorithm that required the least amount of time. The results are shown in Table 1.
ResNet19 had the shortest learning time among all models.

Table 1. Elapsed time.

UNet SegNet ResNet18 ResNet50
Training time 220.9 170.3 85.3 174.5

After measuring the learning time for U-Net, SegNet, ResNet18, and ResNet50, their
performances were evaluated for roof detection accuracy. The total accuracy, mean accuracy,
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mean JoU, and weighted IoU were measured and are listed in Table 2. Although ResNet50
exhibited an accuracy of over 80%, it required a long training time. Therefore, ResNet18
was chosen for this test because of its relatively high accuracy and short training time.
The training was conducted using the same dataset and for the same number of epochs
across all models. The respective layer counts for UNet, SegNet, ResNet18, and ResNet50
were 58, 59, 100, and 206. Their training speeds were recorded as 220.9, 170.3, 85.3, and
174.5 respectively. It seems that ResNet50, with its most complex layer structure, took
the longest training time and achieved the highest accuracy. Given that accuracy is more
crucial than time, memory, or resources in our context, ResNet50 appeared to be the most
suitable algorithm.

Table 2. Performance results of the test network.

Global Accuracy Mean Accuracy Mean IoU Weighted IoU
UNet 0.77065 0.75067 0.60549 0.63206
SegNet 0.75993 0.70205 0.56705 0.60776
ResNet18 0.78701 0.75992 0.62369 0.65181
ResNet50 0.82275 0.80698 0.67971 0.70237

These metrics were used to evaluate how well the model classified the two classes:
roof and background. As shown in Table 3, when the performance metrics were calculated,
the Global Accuracy was approximately 82.3%, indicating that approximately 82.3% of the
pixels were correctly classified. The Mean Accuracy

Y TP

Global Accuracy = Y(TP + FP + EN)

was approximately 80.7%, representing the average accuracy

TP

Mean Accuracy = 52 TP+ FD

across classes, which was approximately 80.7%. Mean Intersection over Union (loU)

1 TP
Mean 1ol =2} 75 Fp T N
was approximately 68.0%, demonstrating how well the model separated the classes. The
Weighted IoU

1 (TP + FN) rp i

; _1 TPTFPTFN
Weighted IoU = 22 TG 1)

was approximately 70.2%, calculated by assigning weights to each class based on their size
and then calculating the IoU.

Table 3. Confusion matrix of ResNet50.

Expected
Confusion Matrix
Roof Background
Labeled Roof 0.8615 0.1385
abele Background 0.24754 0.75246

Table 3 presents the confusion matrix for ResNet50. Figure 7 displays the misclassified
regions, highlighting the areas where incorrect predictions occurred. Specifically, Figure 7a
represents false negatives, and Figure 7b illustrates false positives, both drawn to identify
their distinct characteristics.
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Figure 7. Misclassified regions of ResNet50: (a) false negatives and (b) false positives.

Upon reviewing the results of the initial test in the first test file, ResNet detected roofs
more accurately, as shown in Figure 8. The results indicated that SegNet did not consider
morphological aspects, whereas ResNet did consider the morphological model. Due to
the high rainfall in the area, green waterproofing materials are commonly used, resulting
in predominantly green roofs. While ResNet correctly identified green roofs, there was
no significant difference compared to ResNet18. However, SegNet was unsuitable for this
study because it did not consider morphological aspects.

3) “

(a) (b)

Figure 8. (a) Actual site image and (b) results of (1) Unet, (2) SegNet, (3) Resnetl8, (4) and
Resnet50, respectively.

3.2. Refinement of the GIS-Labeled Dataset

The intention was to conduct data refinement using Resnet50, which had the best
performance. Manually labeling roofs is time-consuming, so there is a need to automatically
label using the GIS of the building registration ledger. As mentioned earlier, once the top-
performing algorithm was selected, the aim was to refine the GIS-labeled training dataset
using this algorithm. After undergoing this refinement process, the performance of the
neural network could be enhanced. The training was conducted using GIS labeling from
two urban areas. To test the trained network, a third city was selected for evaluation.
Figure 9 displays the study’s focus on urban areas. Figure 9a,b present the targeted
urban regions, while the corresponding GIS system labeling information is illustrated in
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Figures 9c and 9d, respectively. Furthermore, with the aim of refining the data, a validation
procedure that adjusts separate options was not established. The primary objective of the
training here was data refinement. As seen in the figure, by using the GIS, the building
registry contained latitude and longitude coordinates, allowing it to be utilized as labeling
data that matched the coordinates in the image.
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Figure 9. For data refinement, images in (a,c) were divided into 100 images and used as input for the
training network, while (b,d) were used as the target for the network with 100 images.

Figure 10 displays the images used for training. Figure 10a is the initial training image
with its corresponding label shown in Figure 10b, and the similarity score for the network
regarding this image is 0.2944. Similarly, Figure 10c presents another training image with
its label illustrated in Figure 10d, and it has a similarity score of 0.4541. By removing these
two images and measuring the test results, improved performance was observed when
comparing before and after refinement. The table displays performance metrics before and
after manual refinement. Direct human intervention identified and removed 10 instances
with the lowest similarity out of the initial 200 data points. By excluding these potential
sources of error, improved results were achieved. Such hands-on refinement is vital to
curtail error propagation, ensuring the model’s robustness in real-world applications.
Through this refinement process, it was confirmed that performance can be enhanced by
cleansing the input data. In this manner, it was verified that the network performance
can be improved, as shown in Table 4, by training and refining using the GIS building
information system without manual labeling by humans. However, compared to manually
labeled data, the performance using ResNet50 was found to be inferior. Yet, there is a
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significant advantage in being able to utilize GIS information without manual labeling.
Regarding IoU, it is
TP

loU= 75 Fp 7 FN

(d)

Figure 10. We identified images from the GIS-based labeled training data with low IoU values, where

(a) visually appears like a rectangular building in (b), and (c) has a labeling error that makes it appear
like a walkway in (d).

Table 4. Performance results of the refinement on the training dataset.

Global Accuracy Mean Accuracy MeanloU WeightedloU

Before 0.7841 0.77669 0.6392 0.64405
refinement
After refinement 0.78896 0.78383 0.64729 0.6514

3.3. Inference of Test Images and Validation of GIS Application Implementation

Figure 11 illustrates the process of verifying the accuracy of building information.
In Figure 11a, the building is located within the image. After identifying its position,
Figure 11b showcases the roof detected by Resnet18, represented as a rectangle. Using
this detected area, its location on the map in Figure 11c is determined and compared with
the building information system. The verification results of this comparison are displayed
in Figure 11d. The comparison method checks for a match between the roof value of the
building information system and the recognized value; if it matches the IOU threshold,
the database containing the building information is updated. In this study, a match of 0.6
was set as the threshold. Additionally, the area enclosed by the rectangle was checked
for inclusion in the database using the Contain function of PostGIS, and the database was
updated accordingly.



Appl. Sci. 2023,13, 11254

12 of 14

(c) (d)

Figure 11. The result is from verifying the registered buildings through the proposed system: (a) a

photo taken from a drone, (b) a photo predicting the roof using ResNet50, where the blue square in
the image represents the building area, (c) a map showing building information from the geographic
information system, and (d) results of marking them on the actual geographic information system
with a pink dot indicating buildings confirmed in the ledger.

Methods for recognizing buildings from satellite or aerial imagery have been ex-
tensively researched [23,24]. In such building recognition tasks, various techniques are
employed, including the incorporation of GIS information as input and the use of edge
detection [25,26]. Generalizing these methods for application across different regions is
challenging due to the diverse roof structures in different areas. For instance, some regions
might require waterproofing for building roofs, while others might maintain a consistent
style due to sunlight exposure. Furthermore, images captured by drones have high resolu-
tion, allowing for more accurate roof detection using precise models. The significance of
this study lies in selecting an appropriate model for drone-captured images, refining the
data, and verifying the buildings in the GIS.

4. Conclusions

This study aimed to inspect the building registration ledger, proposing and testing
a procedure for its verification. Human-labeled training data were leveraged to evaluate
multiple semantic segmentation methods, with the aim of identifying the most effective
technique. Our findings indicated that ResNet50, due to its superior accuracy, emerged
as the best candidate. To further refine and expand our GIS-labeled training dataset, the
active learning approach was incorporated. This approach pinpointed training data with
low similarity, enabling their refinement and, consequently, the generation of a more ro-
bust training set. After training the network with this optimized dataset, the model was
employed to scrutinize the registered buildings on maps. This procedure was designed
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to confirm the presence or absence of buildings, aligning with the records of the building
registration ledger. Through active learning and the meticulous selection of semantic seg-
mentation methods, our methodology offers a promising avenue for maintaining accurate
and up-to-date building information systems and maps. Furthermore, the Contain function
of PostGIS was utilized to ascertain that the recognized area was accurately incorporated
into the database.
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