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The restoration of degraded vegetation and ecosystems is a critical tool for mitigating
biodiversity losses, stabilizing soils, improving water quality, sequestering carbon, and
providing other ecosystem services. The goals of vegetation restoration include reestablish-
ing native plant communities, restoring ecological processes and functions, and repairing
human impacts to the landscape [1]. However, the environmental impacts of vegetation
restoration practices remain inadequately understood. Recent research has aimed to eluci-
date restoration outcomes across multiple ecological indicators and provide guidance for
maximizing benefits while minimizing unintended consequences.

The significance of vegetation restoration stems primarily from widespread ecosystem
degradation and biodiversity declines worldwide [2]. Up to 2 billion hectares globally may
be suitable for restoration [2], presenting major opportunities for ecological enhancement.
Degradation reduces the ability of ecosystems to provide services that are foundational for
human wellbeing, such as climate regulation, water provisioning, and nutrient cycling [3].
Restoration goals thus center on increasing vegetation cover, richness, structural complex-
ity, and native species abundances to recover these ecosystem functions [4]. Successful
restoration can generate numerous ecosystem service benefits, including enhanced carbon
storage, soil development, hydrologic regulation, nutrient cycling, habitat provisioning,
and resilience to climate change [3,5,6]. However, restoration practices may also have
unintended environmental tradeoffs that require careful evaluation [4]. Environmental im-
pacts may also change over time as restored systems develop along ecological successional
trajectories [7].

Considerable research in recent years has examined the environmental impacts of
vegetation restoration across various biomes and ecological indicators. Multiple meta-
analyses indicate that restoration effectively increases species diversity and richness on
average, but long-term trajectories may continue diverging from reference ecosystems even
after decades [8,9]. A closer examination reveals that biodiversity responses vary across
biomes, with larger gains seen in wetland and forest restoration compared to grassland and
shrubland projects [8]. Nevertheless, specific geographic regions within these biomes, such
as tropical forests in Sub-Saharan Africa and Southeast Asia, remain understudied [9,10].
Focused research expanding across these tropical regions could provide new insights into
restoration outcomes and context dependencies. Temporal studies tracking soil nutrients,
microbial communities, and enzymatic activities demonstrate successional changes during
restoration [11–13], but more long-term data are needed [7,14].

Soil carbon accumulation is commonly enhanced by restoration, but the magnitude
depends on climate, soil type, previous land use, and restoration methods [3,15]. Modeling
studies project continuing soil carbon accrual over decades to centuries as restored systems
aggrade [16,17]. Potential tradeoffs exist between increased water yield from reforestation
and reduced storm flow buffers [18]. Assessments using multiple ecosystem service indi-
cators highlight both synergies and tradeoffs among hydrologic regulation, biodiversity
enhancement, carbon storage, and sustainability outcomes [9,19].
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Several reviews synthesize the state of knowledge on vegetation restoration outcomes.
Brudvig et al. [4] emphasize the need to embrace variability and context dependency in
judging restoration success across multidimensional ecological indicators. They highlight
major knowledge gaps regarding long-term trajectories, landscape factors, and integrating
socioeconomic considerations. A global meta-analysis by Crouzeilles et al. [9] determines
key biophysical and anthropogenic factors influencing restoration success for forests, includ-
ing climate, previous land use intensity, and herbivory. Wortley et al. [19] review the criteria
for evaluating restoration outcomes and call for standardized indicators encompassing
ecosystem services.

Recent studies also elucidate factors influencing restoration outcomes across habitat
types and biome boundaries. In tropical forests, passive restoration has proven more effec-
tive than tree planting for biodiversity recovery [6,9]. However, active interventions may
still be needed in certain contexts and cost-effective techniques require further research [9].
For riparian zones, revegetation success depends on climate, topography, channel dynam-
ics, and flooding regimes [20,21]. Outcomes also vary with landscape factors like adjacent
land use and connectivity [9]. Studies clarifying how biotic and abiotic controls interact
across spatial scales are lacking.

Several key knowledge gaps persist regarding vegetation restoration. Plant and animal
colonization dynamics during restoration are poorly characterized, limiting understand-
ing of community assembly patterns [4]. Long-term studies tracking soil development
trajectories are scarce, precluding assessment of time lags [7]. Landscape context effects
on local restoration outcomes need elaboration, including edge influence, fragmentation,
and metapopulation source-sink dynamics [9]. Integrating socioeconomic factors into plan-
ning remains a challenge, such as cost–benefit analysis and stakeholder participation [19].
Developing standardized criteria and indicators for systematic evaluation across sites and
ecosystem types is also essential [19].

To address these knowledge gaps, a global network of coordinated, long-term, inter-
disciplinary studies is critically needed to elucidate restoration outcomes across contexts.
By linking restoration practices to multivariate ecological responses over decades, this
research network could provide integrated guidelines to maximize restoration success. It is
crucial to continue focusing on the connection between restoration practices, environmental
factors, and multivariate outcomes in order to understand the dependencies on context [4].
Conducting systematic experiments that test different restoration methods across various
biomes can help unveil general principles while taking into account landscape variation [9].
Additionally, it is essential to extend monitoring efforts to capture slower responses such
as plant colonization and soil development, but this will require sustained funding [7,9].
Techniques such as remote sensing, geospatial modeling, and simulation approaches can
shed light on the effects of scale on restoration outcomes [9]. When planning and assessing
restoration efforts, it is important to incorporate socioeconomic factors and standardize
criteria for evaluating success [19,22].

The priorities of different research directions can be ranked in the following order of
importance:

(1) Standardize criteria and indicators for systematic meta-analysis across diverse studies:
Standardizing criteria and indicators is crucial for conducting robust meta-analysis
and synthesis of restoration research. By establishing consistent guidelines, re-
searchers can clarify general principles and enhance the reliability of their findings.
This will facilitate the integration of diverse studies and provide a stronger evidence
base for restoration practices. (Top Priority)

(2) Establish coordinated research networks for long-term, interdisciplinary studies link-
ing practices to ecological outcomes: Coordinated research networks are essential
for managing long-term studies and fostering interdisciplinary collaborations. These
networks can help establish a framework for monitoring and evaluating the ecolog-
ical outcomes of restoration practices. Linking practices with multiple ecological
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responses will fill key knowledge gaps and provide valuable insights for future
restoration efforts. (Second Highest Priority)

(3) Incorporate socioeconomic factors into participatory planning and development of
success metrics: Considering socioeconomic factors and involving local communities
in the planning and implementation of restoration initiatives is crucial for their suc-
cess. By integrating social and economic aspects into the decision-making process,
researchers can ensure that restoration efforts are relevant and impactful. Furthermore,
developing success metrics that are locally relevant will provide a more meaningful
evaluation of restoration outcomes. (Third Highest Priority)

(4) Test different restoration methods through replicated experiments across regions and
biomes: Conducting replicated experiments across different regions and biomes is
important for understanding the efficacy of restoration methods across contexts. This
approach allows researchers to account for variability and identify methods that
are most effective in specific circumstances. By conducting rigorous experiments,
valuable insights can be gained regarding the best practices for restoration. (Fourth
Highest Priority)

(5) Harness remote sensing, geospatial modeling, and simulation approaches to clarify
scale dependencies: While remote sensing, geospatial modeling, and simulation
approaches can provide valuable insights on scaling effects in restoration, field studies
should take priority. These methods should be used in conjunction with on-the-
ground research to verify and validate their findings. Field studies provide a more
direct and accurate understanding of ecological processes and should be the primary
focus when investigating scale dependencies in restoration. (Lowest Priority)
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