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Abstract: Super-resolution enhances the spatial resolution of remote sensing images, yielding clearer
data for diverse satellite applications. However, existing methods often lose true detail and produce
pseudo-detail in reconstructed images due to an insufficient number of ground truth images for su-
pervision. To address this issue, a prediction-to-prediction super-resolution (P2P-SR) network under
a multi-level supervision paradigm was proposed. First, a multi-level supervision network structure
was proposed to increase the number of supervisions by introducing more ground truth images,
which made the network always predict the next level based on the super-resolution reconstruction
results of the previous level. Second, a super-resolution component combining a convolutional neural
network and Transformer was designed with a flexible super-resolution scale factor to facilitate the
construction of multi-level supervision networks. Finally, a method of dividing the super-resolution
overall scale factor was proposed, enabling an investigation into the impact of diverse numbers
of components and different scale factors of components on the performance of the multi-level
supervision network. Additionally, a new remote sensing dataset containing worldwide scenes was
also constructed for the super-resolution task in this paper. The experiment results on three datasets
demonstrated that our P2P-SR network outperformed the state-of-the-art (SOTA) methods.

Keywords: multi-level supervision; remote sensing; super resolution; deep learning

1. Introduction

Super-resolution improved image resolution and enhanced the accuracy of image pro-
cessing tasks such as target detection, semantic segmentation, and scene classification [1–3].
Applying super resolution to remote sensing could provide high-resolution datasets [4–8]
for land planning, environmental protection, and disaster prediction [9–11]. In recent years,
an increasing number of remote sensing satellites have been launched into orbit, and the
imaging resolution of remote sensing satellites has been rising. This provides a wealth of
training data for the super resolution of remote sensing images.

Since deep networks were introduced to super-resolution techniques, various methods
based on different backbone networks have been proposed one after another [12–16].
In these studies, several authors discussed the ill-posedness of super resolution [17–20].
The same low-resolution image can be obtained by downsampling several different high-
resolution images. As an inverse process of downsampling, super resolution predicts
multiple high-resolution images from the same one low-resolution image and selects the
high-resolution image that is most similar to the ground truth. Therefore, super resolution is
an ill-posed problem. The space of all possible functions for mapping from a low-resolution
image to high-resolution images is large. This poses difficulties in training super-resolution
networks and limits the network’s performance improvement. Consequently, reducing the
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ill-posedness of super resolution has become a significant research issue in the development
of this technique.

The VDSR-based super-resolution method [17] was one of the first proposed to reduce
the ill-posedness of super resolution. In [17], it was noted that the limited number of
layers in the feature extraction module of SRCNN restricted detail recovery in super-
resolution output. VDSR effectively improved super-resolution performance by deepening
the network to expand the receptive field. However, the number of layers in the current
deep network is generally large, and the transformer structure further expands the receptive
field of feature extraction. Therefore, simply deepening the network no longer reduces the
ill-posedness of super resolution. In [20], the ill-posedness of super resolution was analyzed
mathematically. The large space of possible functions for mapping from low-resolution
images to high-resolution images makes it difficult to accurately fit a mapping function
using a deep network. To increase the constraints of super-resolution networks, a dual
regression network was proposed. This network introduced additional supervision during
training by comparing super-resolution results with high-resolution ground truth and
computing a loss function between the downsampled result image and the input image.
This method effectively reduced the space of possible mapping functions.

The dual regression network increased the number of supervisions from one to
two, which increased the constraints in the super-resolution process and reduced the
ill-posedness of super resolution. However, the second supervision was applied to the
downsampled output image, potentially losing the recovered image detail again during
the downsampling process. Moreover, the loss function computed between low-resolution
images might be unsuitable for evaluating the super-resolution performance of the network.
To further reduce the ill-posedness of super resolution, a Prediction-to-Prediction Super-
Resolution (P2P-SR) network under a multi-level supervision paradigm was proposed.
Unlike the conventional one-step or dual regression super resolution, our method utilized
multiple Basic Super-Resolution Components (BSRC) with smaller scale factors for image
reconstruction. Supervisions were applied at the output of each component, introducing
multiple levels of constraints to the super-resolution process.

To reduce the ill-posedness of super resolution, a progressive super-resolution network
based on multi-level supervision was proposed. The contribution of our approach is as
follows.

(1) A multi-level supervision structure was proposed and multi-level supervision images
were applied to the output of each component to increase the guidance in the super-
resolution progress and reduce the ill-posedness.

(2) A basic super-resolution component with adjustable scale factor was designed to
enable the construction of different multi-level supervision network-like building
blocks.

(3) In the progressive structure, both the number of components and the scale factor of
each component had an impact on the performance of the network. A method for
dividing the super-resolution overall scale factor was proposed to obtain the best
combination of BSRCs.

The multi-level supervision super-resolution network based on the best BSRC combi-
nation was compared with existing SOTA methods. The experimental results demonstrated
that our method was effective in improving the super-resolution performance.

2. Related Work

Super resolution was initially introduced and applied to natural images before being
adapted and employed for remote sensing images. Over time, various super-resolution
techniques based on convolutional neural networks, generative adversarial networks,
and Transformer structures were developed. Due to the ill-posedness of super resolu-
tion, increased attention has been given to this aspect as the scale factor of the proposed
super-resolution methods increased. One effective approach to reduce the ill-posedness
of the super-resolution problem is to increase supervision in the network training process.
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Consequently, several super-resolution methods aimed at increasing the number of supervi-
sions were proposed, with some employing progressive structures, and others using loops
or other structures. All these approaches enhanced the performance of super-resolution
networks.

2.1. Super-Resolution Methods

As the most classical image processing network, convolutional neural networks were
first introduced to super-resolution tasks in SRCNN [21]. SRCNN consisted of three con-
volutional layers, achieving image super resolution in a pre-upsampling and lightweight
structure. The input data were upsampled before being sent into the network. However, the
three-layer convolutional network lacked sufficient depth to extract deep image features.
To address this issue, a very deep convolutional super-resolution network (VDSR) with
20 weight layers was proposed in [17]. The increase in the number of network layers
significantly improved the network’s ability to extract image textures and super-resolution
performance. The residual structure was introduced to super-resolution networks in [22],
making it possible to further deepen the network depth. Super-resolution networks gener-
ally consist of two parts: feature extraction and image reconstruction. The above method
improved the feature extraction performance by increasing the convolutional network
depth. To improve the image reconstruction process, a new sub-pixel convolution structure
was proposed in [23], replacing the traditional interpolation method. Experiment results
evidenced that the sub-pixel convolution improved the super-resolution network perfor-
mance and speed. However, it was difficult for sub-pixel convolution to be applied to
non-integer multiples of super resolution. In [24], a post-upsampling super-resolution net-
work structure was proposed. Most of the current super-resolution methods have adopted
this post-upsampling structure.

Since its introduction, the transformer network has outperformed classical convolu-
tional networks in various computer vision tasks. Compared with convolutional networks,
the transformer network has a larger perceptual field and is more suitable for extracting
global features of images. In recent years, the transformer has also been used in the field
of super resolution. An image processing transformer [25] was proposed for low-level
computer vision tasks, including denoising, super resolution, and so on. Based on the
Swin Transformer, the SwinIR [26] network was proposed for super resolution. SwinIR
uses both convolutional networks and Transformer to extract image features, improving
performance while achieving a degree of lightweighting. The recently proposed ESRT [27]
uses a combination of convolutional networks and transformers, and has made further
efforts in network lightweighting.

With the advancements in the super resolution of natural images, various methods
have been applied to remote sensing images. In [28], SRCNN was utilized for multispectral
remote sensing image super resolution, unveiling research on remote sensing image super
resolution. In [29], SRCNN and VDSR were applied to the single-frame super resolution
of remote sensing images. An intensity hue saturation transform was used on the input
image to speed up the network computation while preserving the color information. A
local–global combined network (LGCNet) was proposed in [30]. It could learn multilevel
representations of remote sensing images, including both local details and global environ-
mental priors with its multifork structure. In [31], a deep distillation recursive network
(DDRN) was proposed that contained more linking nodes with the same convolution layers
and performed feature distillation and compensation in different stages of the network.
Remote sensing image super-resolution methods basically followed the development of
natural image super resolution. Recently, various Transformer-based backbone networks
have also been applied to the super resolution of remote sensing images [32–34]. In [35], a
transformer-based enhancement network was proposed to enhance the high-dimensional
feature representation.
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2.2. The Ill-Posedness of Super Resolution

The development of super-resolution methods has always been accompanied by the
discussion of the ill-posedness of super resolution. In [17], the smaller receptive fields
of convolutional networks were thought to worsen the ill-posedness of super resolution.
The convolutional neural networks used for super resolution at that time had fewer layers
and smaller network receptive fields. Local information contained by small patches was
insufficient to recover image detail. The VDSR proposed in [7] used a deeper convolutional
network to increase the perceptual field, using the information contained in the larger
patches for image-detail recovery. The performance improvement was significant compared
to SRCNN, which has fewer layers. With the rapid development of deep networks, the
network depth and number of parameters increased dramatically. The Transformer for
vision tasks expanded the field of perception even further to the entire image. Therefore, it
is no longer appropriate to reduce the ill-posedness of super resolution by deepening the
network. As the first application of GAN to super resolution, reducing the ill-posedness
of super resolution was the main motivation of this work [36]. In [36], the researchers
considered that multiple different super-resolution images could be reconstructed from the
same low-resolution image. Pixel-wise loss functions such as MSE, which were commonly
used at the time, were considered to be averaging over all super-resolution images. This
resulted in over-smoothing of the image and loss of image detail. Therefore, a GAN-based
super-resolution network was proposed to drive the super-resolution results towards a
perceptually more convincing solution. Both of these methods were effective in improving
the performance of super-resolution networks, but unfortunately the relationship between
ill-posedness and network constraints was not discussed.

Multiple different high-resolution images can be downsampled to the same low-
resolution image. In turn, multiple different super-resolution images can be reconstructed
from the same low-resolution image. The task of super resolution is to select the closest one
of these super-resolution images to the ground truth. In SRFlow [18], a super-resolution
method based on normalized flow was proposed to learn the conditional distribution
of the output. SRFlow therefore directly accounted for the ill-posedness of the problem
and learned to predict diverse photo-realistic high-resolution images. In [10], the ill-
posedness of super resolution was reduced from another perspective. Super resolution was
considered to be the process of fitting a mapping function from a low-resolution image to a
high-resolution image. Due to the ill-posedness of super resolution, the space of all possible
mapping functions is huge. This makes it difficult to train the network. In order to address
this issue, a dual regression network (DRN) [20] was proposed. During the training process
of the DRN, the super-resolution image was reconstructed from the low-resolution input
image, and the loss between it and the ground truth was calculated. The super-resolution
image was then downsampled to the same size as the input image and compared to the
input image, and another loss was calculated. The essence of DRN is the increase in the
number of network supervisions. The increase in supervision benefits the introduction
of more ground truth and imposes more constraints on the network. The improved
performance of super-resolution networks due to DRN illustrated the effectiveness of
increased supervision in reducing the ill-posedness of super resolution.

2.3. Progressive Structure for Super Resolution

Among the many image super-resolution methods, some researchers have also pro-
posed the idea of progressive super resolution. Nevertheless, there were still some short-
comings in these methods. In [37], a progressive cascading residual network was proposed
in response to the instability of network training. First, a super-resolution module with
a magnification of two was trained, and then a new two-times super-resolution network
was connected to it for training. A total of three such modules were trained and finally
connected together to complete the eight-times super resolution. The results showed that
this property yielded a large performance gain compared to the non-progressive learning
methods. This method used the idea of progressive training, but did not use multiple levels
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of supervision. During the training of each module, only one supervision was used to eval-
uate the performance of the whole network. It still suffered from the problem of insufficient
constraints. A leveraging multi-scale backbone with multi-level supervision [38] was pro-
posed for thermal image super resolution. A total of five times supervision was performed
for feature maps, feature fusion maps, and super-resolution results at different stages.
Although the number of supervisions in this method was higher, most of the supervisions
were applied to the feature map. The feature maps were visually quite different from a
good super-resolution output image. In [35], a transformer-based multi-stage enhancement
method was proposed for remote sensing image super resolution. An enhancement module
was added after the super-resolution network to enrich the details. The super-resolution
network was still a one-step approach, and the idea of a multi-stage approach was mainly
reflected in the enhancement module.

3. Methods
3.1. Multi-Level Supervision Super-Resolution Network

As mentioned earlier, super resolution is a typically ill-posed problem. Its ill-posedness
mainly comes from the huge space of all possible functions for mapping from low-resolution
images to high-resolution images. Increasing the number of supervisions in the network
can increase the constraints on the network training, gradually reduce the space of possible
functions, and reduce the ill-posedness of super resolution. Most of the current super-
resolution methods adopted a one-step supervision structure, which was only supervised
once at the output of the super-resolution network, resulting in insufficient constraints in the
super-resolution process. The unsuppressed ill-posedness of super resolution is visualized
in the network output by the loss of image details and the appearance of pseudo-detail.

In order to reduce the ill-posedness of the super-resolution process and improve
the super-resolution network performance, a progressive super-resolution network was
proposed for remote sensing images based on multi-level supervision. As shown in Figure 1,
the P2P-SR network consists of several basic super-resolution components and multi-level
supervision. The overall super-resolution scalar factor of the P2P-SR network can be
set flexibly. The BSRCs can be increased or decreased like building blocks, with fewer
BSRCs for a smaller overall super-resolution scale factor and more BSRCs for a larger
overall super-resolution scale factor. The scale factor of each BSRC is determined by the
overall scale factor and the number of BSRCs. The BSRC consists of a multi-scale feature
extraction module, a global feature extraction module, and an image reconstruction module.
Considering that the scale factor of each BSRC should have some flexibility, the network
structure of each BSRC is the same except for the image reconstruction module. This
helps to shorten the overall training time of the network. During the network training,
the training of the first BSRC was completed first. Its trained parameters were shared to
the subsequent BSRCs, and all BSRCs were tuned together simultaneously to complete
the overall network training. Our network used a progressive super-resolution structure
and multi-level supervision. But this is not a simple stacking of network components. The
cross-level loss functions were designed to facilitate better transfer of image detail loss
across the network components. The effect of the number of BSRCs and each BSRC scale
factor on network performance was explored when the overall scale factor was certain.
These will be explained in detail in later sections.
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Figure 1. The Prediction-to-Prediction Super-Resolution (P2P-SR) network consists of multiple Basic
Super-Resolution Components (BSRC). The number of BSRCs and the scale factor of each BSRC can
be flexibly adjusted.

To conveniently describe the multilevel supervision network, the overall scale factor
was set to M, and the number of BSRCs was set to N. The P2P-SR net used N BSRC
modules to accomplish M-times super resolution. At the output of each component, the
super-resolution result was compared with the ground truth downsampled to the same size.
The loss function was calculated between the result and the ground truth. The progressive
super-resolution process of low-resolution remote sensing images can be expressed as

‖I‖SR = min

(
λ1LossN + λ2

N−1

∑
n=1

Lossn

)
, (1)

where I is the input low-resolution image, ‖·‖SR is the process of super resolution, Lossn is
the loss function of the nth level, and λ1 and λ2 are adjustable weights. From Equation (1),
it is clear that the multi-level supervision network aims to reduce the loss of each BSRC and
the overall network loss at the same time. The loss of the Nth BSRC component is given a
separate adjustable weight λ1. This is because the Nth component is the last component of
the network, and its output is also the output of the overall network. The output of the Nth
component is evaluated not only by the loss function, but also by the visual perception of
the human eye. Setting a separate weight for the loss function of the Nth level component
helps to balance the network output between the evaluation metric and visual assessment.

The progressive super-resolution structure based on multi-level supervision is bene-
ficial to improve the performance of the super-resolution network. On the one hand, the
multi-level supervision structure introduces multi-level ground truth images and embeds
new information of image details into the super-resolution process at the output of each
BSRC. This helps to reduce the super-resolution ill-posedness and suppress the loss of
detail or pseudo-detail in the super-resolution results. On the other hand, the progressive
super-resolution structure reduces the number of pixels that each BSRC module needs to
predict during the super-resolution process. For the classical one-step super-resolution
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method, the network needs to predict M2 pixels from one pixel to complete the M-times
super resolution. In our P2P-SR network, assuming the same scale factor for each BSRC,
each BSRC only needs to predict M2/N pixels from one pixel. The number of pixels to be
predicted is reduced, and the probability of pseudo-detail in the image is reduced. At the
same time, the smaller the number of pixels to be predicted, the smaller the space of all
possible functions for mapping from a low-resolution image to a high-resolution image.
This can also be considered as reducing the ill-posedness of super resolution.

3.2. Basic Super-Resolution Component

Multiple basic super-resolution components form the main structure of P2P-SR. Each
BSRC consists of multi-scale local feature extraction, global feature extraction and image
reconstruction. Remote sensing images contain a rich variety and number of details
of ground objects. The strong feature extraction capability is the basis for good super-
resolution outputs. Both the CNN network and the transformer network were used for
feature extraction in their network.

The feature extraction in our network consists of two parts: convolutional neural
networks for extracting multi-scale local features and a transformer-based network for
extracting global features. The global feature extraction was designed based on the Swin
Transformer backbone. Based on Swin Transformer’s pyramidal backbone network, a
plain backbone network was designed that was more suitable for super-resolution tasks.
In parallel, the multi-scale local feature extraction is achieved by employing residual
convolution blocks (RCB) and a feature-upsampling block (FUB). RCB comprises batch
normalization, convolutional layers, and an activation function. Following RCB, the feature
maps undergo a downsizing process, necessitating their upsampling through FUB before
concatenation.

The residual structure was added at both the layer level and the block level. The
residual structure of the layer level was designed to be optional. This is because it is
considered that lightweight transformer networks tend to contain more layers in the 3rd
block. The residual structure is more useful in the 3rd block than in the other blocks. A
residual structure that can be chosen flexibly according to the number of layers in the block
is beneficial for balancing network performance and lightweighting.

In the multi-scale local feature extraction part, RCB was designed to extract the multi-
scale feature by the residual structure, and FUB was used to unify feature map resolution.
The number of RCBs was set as 3, and a lightweight multi-scale feature map fusion structure
was designed. The output feature map of the first RCB had the same size as the input
image, and it was formulated as

ILF,1 = FRCB1(ILR), (2)

where FRCB1 was the first RCB, ILR was the input remote sensing images after image
padding, and ILF,1 was the output of first RCB, Then, ILF,1 was sequentially fed into the
two subsequent RCBs, and the feature map size was sequentially reduced by half. The
outputs of the last 2 RCBs were fed to the FUB module for upsampling, and the results
were formulated as

I2 = FFUB(ILF,2), (3)

I3 = FFUB(ILF,3), (4)

where FFUB was the FUB module. I1 was defined as I1 = ILF,1. I1, I2, and I3 shared the
same size and were concatenated by channel. The output of the local feature extraction
branch was formulated as

ILF = Concat(I1, I2, I3), (5)
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Parallelly, 4 Swin transformer layers (STL) were set in the global feature extraction
branch. The output of the ith STL was formulated as

IGF,i+1 = FSTL,i(IGF,i), i = 0, 1, 2, . . . , N, (6)

where FSTL,i was the ith STL and the IGF,i was the output of the ith STL. The output of the
last STL was summed with ILR. The output of the global feature extraction branch was
formulated as

IGF = IGF,4 + ILR. (7)

Finally, ILF and IGF was fed into the image reconstruction module, and the super-
resolution result is formulated as

ISR = FIR(ILF + LGF), (8)

where FIR is the image reconstruction module. Each BSRC magnified the image by a factor
of N
√

M. N was the number of BSRC, and M was the super-resolution multiplier of the
P2P-SR network. Considering that N

√
M may often be non-integer, the classical but flexible

output size method of convolution layers and upsampling was used.

3.3. The Scale Factor Division Method

For the super-resolution process with a certain scale factor, a method was needed
to divide the overall scale factor into each BSRC. As the number of BSRCs increases, the
number of supervisions increases, and the super-resolution ill-posedness is reduced. At the
same time, the total number of network layers increases, and the number of computations
increases. The sum of super-resolution network performance and computational complexity
can be formulated as

Cost = min

[
∑
n

Pn + ∑
n

Lossn

(
ISR
n , GTn

)]
, (9)

where Pn is the high-resolution of the parameters of the nth BSRC, and ISR
n and GTn are the

super-resolution output and the ground truth of the nth BSRC, respectively. Pn and Lossn
are vastly different in order of magnitude and need to be normalized before summing.

As seen from the above equation, the correlation between Cost and the number of
BSRCs n is difficult to predict. It may be assumed that the number of BSRCs increases from
1. Initially, the number of BSRCs is small, and with the network being sufficiently trained,
the increase in the number of BSRCs benefits the increase in the number of supervisions
in the network, which in turn helps to reduce the super-resolution ill-posedness. The
reduction in super-resolution ill-posedness helps to reduce the probability of detail loss
and pseudo-detail in the output image, which leads to a reduction in the Lossn of the nth
BSRC. In this case, the increase in the number of BSRCs also leads to an increase in the
number of network parameters. If the network is properly designed to be lightweight so
that the increase of Pn is smaller than the decrease of Lossn, then Cost has the possibility to
be reduced. In the comparison of experimental results, the performance improvement of
our method on 4-times super-resolution results is more significant than 2 times, although
4-times super resolution requires more BSRCs. As the number of BSRCs continues to
increase, the number of BSRCs may be saturated for a super-resolution task of certain scale
factor. More BSRCs bring limited performance gains, but significantly increase the number
of network parameters. Therefore, finding the appropriate number of BSRCs is important
for our multi-level supervision-based super-resolution network.

After determining the number of BSRCs, the scale factor of each BSRC is also worth
discussing. Let the number of BSRCs in the network be N and the ith BSRC super-resolution
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multiplier be mi, then the relationship between the number of BSRCs, the scale factor of
each BSRC, and the overall scale factor of our super-resolution network is as follows:

M =
N

∏
i=1

mi, mi > 1. (10)

From the above equation, it can be seen that when N increases, the scale factor of each
component decreases. When N tends to infinity, mi tends to 1. This means that each BSRC
only magnifies the input image at a very small factor. Each BSRC needs only a very small
number of parameters to perform its own super-resolution task. Therefore, when N tends
to infinity, the trend of increasing or decreasing the total number of parameters is difficult
to predict. Therefore, it is necessary to optimize the BSRC combination and find out the
relationship between super-resolution network performance, the number of parameters,
and the scale-factor division method.

In the experiments on the various scale-factor division ways, it was proposed to start
from two aspects, namely the number of BSRCs in the network and the super-resolution
scale factor of each BSRC. In terms of the number of BSRCs, the higher the number of
BSRCs, the more training constraints were introduced into the network, but the greater
the computational complexity. The optimal number of BSRCs was obtained by comparing
the super-resolution network performance and the computational complexity of different
numbers of BSRCs. In terms of the scale factor of each BSRC, four combinations of isometric,
isoperimetric, front-segment dense, and back-segment dense distributions were designed.
The front-segment dense distribution and the back-segment dense distribution focused on
the impact of early detail recovery and late detail recovery on the final super-resolution
output, respectively. The isotropic and isoparametric distributions gave equal weight to
early detail recovery and late detail recovery and were compared with each other. The super-
resolution network performance and computational complexity of various combinations of
scale factors were compared, and the optimal method to divide the overall scale factor was
presented. The experimental results can be found in the subsection of ablation studies.

3.4. Loss Function

During the development of deep learning, various loss functions have been proposed.
L1 loss and perceptual loss [39] are the commonly used loss functions. L1 loss can signifi-
cantly improve the peak signal-to-noise ratio (PSNR) value of super-resolution results and
is simple and effective to calculate. However, L1 loss also has the problem of excessive
smoothing, which is not conducive to the recovery of image details. For the progressive
structure, different loss functions were used at different levels, and the losses at different
levels were allowed to interact with each other.

Perceptual loss was used at the first and second BSRC, and a combination of perceptual
loss and L1 loss was used at the third and fourth BSRC. The loss function of the first and
second BSRC can be formulated as

Loss1 = Lp, (11)

Loss2 = Lp +
α

m2
Loss1, (12)

where Lp is the perceptual loss and α is a constant adjusted for training. This is because
the recovery of image details relies heavily on the first two levels, and once a detail is lost
somewhere, it is difficult to make up for it subsequently. Perceptual loss enables better
control of detail loss by comparing the multi-scale feature map differences between the
output and the ground truth. In the third and fourth BSRC, while controlling the loss of
details, the output needs to match the human eye’s perception. Thus, the L1 loss was added
to the perceptual loss, and the sum can be formulated as:

Lp,1 = φ1Lp + φ2L1. (13)
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where φ1 and φ2 are adjustable weights. The Lp,1 is used as part of the 3rd and 4th
BSRC’s loss.

Due to our progressive structure and multi-level supervision, it is also necessary to
consider the relationship between losses of multiple BSRCs. The loss of the 3rd and 4th
BSRCs can be formulated as

Lossn = Lp,1 +
n−1

∑
l=1

αl Lossl
ml+1ml+2 · · ·mn

. (14)

As seen in the above equation, the loss of each BSRC includes the loss of the BSRCs before
it. This is because the loss of detail in the output of the earlier BSRC will have an impact
on the super-resolution performance of the subsequent BSRC. The penalty for the loss of
detail in the earlier BSRC should be increased. It should also be noted that the weights of
the losses in the previous BSRC are also different. The further the distance between two
BSRCs, the larger the product of ml+1ml+2 · · ·mn. A smaller weight should be given to the
BSRC that is farther away as a balance.

4. Experiments
4.1. Dataset and Settings

Although there are a large number of remote sensing satellites operating in space, the
remote sensing image datasets are far less complete than the set of natural images due to
national security, data confidentiality, and other reasons. At the same time, existing remote
sensing image datasets are not fully suitable for super-resolution tasks. On the one hand,
most of them were made for target detection tasks. This has resulted in a limited variety of
ground object detail contained in the images in the datasets. These datasets contained a
large number of remotely sensed images of cars, aircraft, and boats, but lacked remotely
sensed images of areas such as buildings, vegetation, and water surfaces. On the other
hand, some datasets were produced in earlier years, and the limited resolution of remote
sensing images made it difficult to provide effective supervision for super-resolution tasks.
Therefore, a new super-resolution dataset was produced based on the latest Google Earth
images.

The new dataset comprises remote sensing images of urban centers, suburban areas,
grasslands, farmlands, forests, water, and other regions. Remote sensing images of city
centers and suburbs in Barcelona, New York, London, and Berlin were gathered. Images
of grassland and farmland areas in the plains of Western and Eastern Europe were also
collected. Furthermore, images of forested areas from South America and water areas
from the Caribbean Sea were obtained. The acquisition of remote sensing images primarily
focused on detail-dense areas to thoroughly test the detail recovery capability of the
super-resolution network. These images were cropped to a size of 256× 256 and were
downsampled in multiple levels to obtain supervision images at different levels before
being fed into the deep network training period. After pre-processing, our new dataset
contains 4000 training images and 410 test images.

In order to adequately train and test the proposed super-resolution method and exist-
ing methods, the UCMerced dataset and the AID dataset were also used. The UCMerced
dataset was produced in 2010 for scene classification by the University of California, Merced.
The images were obtained from the US National Geological Survey’s National Map Urban
Areas image collection. It contains 21 categories of scenes, each containing 100 remote
sensing images. The dataset was widely used in training and testing of networks for land
use type classification, target detection, etc. The AID dataset was a large dataset collected
from Google Earth for scene classification in 2017, produced by Wuhan University and
Huazhong University of Science and Technology. It contained thirty categories of scenes,
each containing between 200 and 400 images. Considering the large number of images in
the AID dataset and the GPU memory limitation, images containing complex textures were
chosen as the training set, which contains about 4000 images.
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Considering the increase in parameter quantity brought by multi-level networks, pa-
rameter quantization and network pruning were adopted during the training process [40–43].
This approach greatly reduced the network size and computational complexity while pre-
serving the original network performance. Both our method and the existing method used
as a comparison were trained and tested on an Ubuntu 18.04 server with an RTX2080 GPU.
The server has a cuda version of 10.0 and a pytorch version of 1.6.0.

4.2. Comparison with State-of-the-Art Methods

Our method was compared with the state-of-the-art methods: SRGAN [36], RDN [44],
RCAN [45], DRN [20], TransENet [35], SwinIR [26], and ESRGCNN [46]. In terms of
network structure, SRGAN is based on a generative adversarial network, TransENet is
based on a convolutional neural network structure, and the rest of the methods are based on
convolutional neural networks. RCAN and DRN additionally used the channel attention
structure. In terms of the ill-posedness of super resolution, SRGAN and DRN discussed
this problem and proposed methods to reduce the ill-posedness by deepening the network,
using GAN and increasing the number of supervision, respectively.

The visual comparison of the output of each method is shown in Figure 2. From the
visual comparison, our method has the advantage in reducing both the loss of details and
the appearance of pseudo-detail during super resolution. Both PSNR and the structure
similarity index measure (SSIM) were used as network performance evaluation metrics.
The comparison of each network performance is shown in Table 1. Except for one value, our
method outperformed existing SOTA methods. In the two-times super-resolution task, our
method achieved a PSNR improvement of 0.29∼2.48 dB over the existing optimal method.
In the four-times super-resolution task, our method achieved a PSNR improvement of
0.47∼3.57 dB over the existing optimal method. It can be seen that our method has a
more significant performance improvement on the four-times super-resolution task than
on the two-times task. This is because the ill-posedness of four-times super resolution
is more severe than two times. The four-times super resolution has a more urgent need
for additional supervision to reduce the ill-posedness. Accordingly, greater gains can be
obtained by using a multi-level supervision structure on four-times super-resolution tasks.
This also suggests that the larger the super-resolution scale factor, the greater the multi-level
supervision structure needed to introduce adequate supervision. Exploring the benefits of
multi-level supervision structures in super-resolution tasks with larger scale factors could
be an interesting direction for future research. To validate the statistical significance of
the experiments, Friedman’s test, a non-parametric statistical method, was employed to
compare various methods. The p-values for PSNR and SSIM were calculated separately.
The p-value for PSNR is 1.88× 10−6, and the p-value for SSIM is 2.08× 10−5. These p-values
are both lower than the standard threshold of 0.05, indicating significant differences among
the compared methods.
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(a
)

HR

GT LR SRGAN [36] RDN [44] RCAN [45]

DRN [20] TransEN [35] SwinIR [26] ESRGCN [46] P2P-SR(Ours)

(b
)

HR

GT LR SRGAN [36] RDN [44] RCAN [45]

DRN [20] TransEN [35] SwinIR [26] ESRGCN [46] P2P-SR(Ours)

(c
)

HR

GT LR SRGAN [36] RDN [44] RCAN [45]

DRN [20] TransEN [35] SwinIR [26] ESRGCN [46] P2P-SR(Ours)
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(d
)

HR

GT LR SRGAN [36] RDN [44] RCAN [45]

DRN [20] TransEN [35] SwinIR [26] ESRGCN [46] P2P-SR(Ours)

(e
)

HR

GT LR SRGAN [36] RDN [44] RCAN [45]

DRN [20] TransEN [35] SwinIR [26] ESRGCN [46] P2P-SR(Ours)

(f
)

HR

GT LR SRGAN [36] RDN [44] RCAN [45]

DRN [20] TransEN [35] SwinIR [26] ESRGCN [46] P2P-SR(Ours)
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(g
)

HR

GT LR SRGAN [36] RDN [44] RCAN [45]

DRN [20] TransEN [35] SwinIR [26] ESRGCN [46] P2P-SR(Ours)

Figure 2. Comparison of the 4-times super-resolution outputs of P2P-SR and other methods [20,26,
35,36,44–46]. There are seven sets of images from different scenes. In each set of results, HR is the
high-resolution original image, GT is a local zoom of the HR image, and LR is a local zoom of the
low-resolution input image. Also shown in each set of pictures are the results of the seven compared
methods (a–g) as well as our method.

Although a two-level supervised network was used, which may bring an increase
in parameters, it can be seen that the proposed network still has advantages in terms of
parameter quantity and will not bring additional burden to practical applications. As
shown in Table 2, the computational complexity of different methods were calculated
under our datasets. It can be seen that the proposed method has certain advantages in
computational complexity comparing with other comparative methods. As mentioned
before, multi-level supervised networks may increase computational complexity for the
purpose of improving the performance of super resolution. But it has been proven that the
computational complexity of the proposed network has not become a significant drawback
of the network.

Table 1. Performance comparison of different super-resolution methods on three datasets.

Method Parameters Metrics
UCMerced Dataset [47] AID Dataset [48] Our Datasets

×2 ×4 ×2 ×4 ×2 ×4

SRGAN [36] 1.6 M PSNR (dB) 32.59 26.26 31.54 26.18 29.04 23.50
SSIM 0.9302 0.8663 0.9276 0.8647 0.9168 0.7549

RDN [44] 22.1 M PSNR (dB) 32.82 26.63 31.60 26.06 29.17 23.27
SSIM 0.9695 0.8577 0.9444 0.8632 0.9103 0.7615

RCAN [45] 15.5 M PSNR (dB) 32.63 27.27 32.08 26.54 29.55 23.82
SSIM 0.9556 0.8616 0.9489 0.8620 0.9323 0.7745

DRN [20] 9.8 M PSNR (dB) 33.11 27.64 32.18 27.12 29.04 24.37
SSIM 0.9635 0.8743 0.9447 0.8830 0.9376 0.7853

TransENet [35] 37.3 M PSNR (dB) 33.51 27.91 32.90 27.36 30.29 24.63
SSIM 0.9704 0.8887 0.9592 0.8787 0.9490 0.7896

SwinIR [26] 11.6 M PSNR (dB) 33.62 27.73 33.08 27.55 30.45 25.05
SSIM 0.9606 0.8824 0.9609 0.8965 0.9544 0.7992

ESRGCNN [46] 1.2 M PSNR (dB) 34.23 28.04 33.07 27.43 30.57 25.31
SSIM 0.9668 0.9016 0.9636 0.9003 0.9580 0.7971

P2P-SR (Ours) 7.3 M PSNR (dB) 34.62 28.39 33.37 28.02 31.52 26.84
SSIM 0.9728 0.8951 0.9705 0.9105 0.9648 0.8079
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Table 2. Comparison of the complexity of the different reconstructed networks under our datasets.

Method Parameters FLOPS (×4)

SRGAN 1.6 M 83.6 G
RDN 22.1 M 769.3 G

RCAN 15.5 M 537.5 G
DRN 9.8 M 269.2 G

TransENet 37.3 M 1120.1 G
SwinIR 11.6 M 307.6 G

ESRGCNN 1.2 M 67.6 G
P2P-SR (Ours) 2.1 M 86.6 G

4.3. Ablation Study

Three ablation studies were carried out for the multi-level supervision network struc-
ture of our method, the method of dividing the super-resolution scale factor, and the
cross-level loss function.

4.3.1. Multi-Level Supervision

To verify the effectiveness of the progressive super-resolution and multi-level super-
vision network structure of our method, the super-resolution output results for different
levels were compared. First, the number of components in our method’s network was
reduced to one, setting the super-resolution scale factor of the component to four. The
classical one-step super-resolution method was conducted on our network. Second, the
number of components in our network was increased to two, setting the super-resolution
multiplier to two for both. Third, the number of components in our network was increased
to three, setting the super-resolution multiplier to two for both. Third, the number of
components in our network was increased to three and the super-resolution scale factor
of each component was set to

√
2,
√

2 and two. Finally, the number of components was
increased to four and the super-resolution scale factor for each component was set to

√
2.

In the process of increasing the number of components, supervision was applied at the
output of each component.

The experimental results corresponding to different numbers of components are shown
in Table 3. As the number of components in the network increased, the PSNR and SSIM of
the super-resolution results improved. This indicated that as the number of components in
the network increased, the number of supervision levels increased and more supervision
images were introduced into the network training process. The network training received
more constraints, and the ill-posedness of the super resolution was reduced. This benefited
the reconstruction accuracy of the super-resolution results.

Table 3. Ablation study for different number of super-resolution components.

Methods PSNR (dB) SSIM

×1→ ×4 24.19 0.7804
×1→ ×2→ ×4 24.65 0.7877

×1→ ×
√

2→ ×2→ ×4 25.99 0.7917
×1→ ×

√
2→ ×2→ ×2

√
2→ ×4 26.84 0.8079

4.3.2. Scale Factor of Each Component

After increasing the number of components in the network to four, it is worth exploring
how to determine the scale factor for each component. In order to verify the effect of
different combinations of scale factors of components on the super-resolution results,
various combinations were trained and compared. As shown in Table 4, the scale factors
were unevenly distributed for the first two combinations and evenly distributed for the last
two. The case of uneven distribution of scale factors was divided into a dense distribution
in the front section and a dense distribution in the back section. For the case of a dense
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distribution of the scale factor in the front section, the image output multipliers for each
component were 1.3, 1.6, 2 and 4, respectively. For the case of a dense distribution in the
latter part of the scale factor, the image output multipliers for the each components were 2,
2.3, 2.6 and 4, respectively. The case of even distribution of scale factors was also divided
into equivariate and isometric distributions. For an even distribution of scale factors, the
magnification of the output image for each component was set to 1.5, 2, 2.5, 4 and

√
2, 2,

2
√

2, 4.

Table 4. Ablation study for different scale factors of super-resolution components.

Methods PSNR (dB) SSIM

×1→ ×1.3→ ×1.6→ ×2→ ×4 26.23 0.7928
×1→ ×2→ ×2.3→ ×2.6→ ×4 26.59 0.7976
×1→ ×1.5→ ×2→ ×2.5→ ×4 26.76 0.7986
×1→ ×

√
2→ ×2→ ×2

√
2→ ×4 26.84 0.8079

The experimental results corresponding to the different scale factor distributions
are shown in Table 4. The experimental results illustrated that the uneven scale factor
distribution had a limited degree of enhancement on the super-resolution result. A multi-
level supervision structure with evenly distributed scale factors was effective in improving
super-resolution results, and the best super-resolution results were obtained when the scale
factors were distributed in an equiproportional series.

4.3.3. Loss Function

In order to fully exploit the effect of the multi-level supervision structure, the cross-
level loss function was designed. To verify the usefulness of the cross-level loss function,
ablation studies were conducted for different combinations of loss functions. As shown in
Table 5, four combinations of loss functions were compared. In the first three combinations
of loss functions, the same loss function is applied at the output of each BSRC. In the first
two combinations of loss functions, the same loss function was applied at the output of
each BSRC. The loss function for each BSRC was the L1 loss or perceptual loss. In the third
combination of loss functions, both L1 loss and perceptual loss were used. The loss function
for the first two BSRCs was perceptual loss, and the loss function for the last two BSRCs
was L1 loss. The fourth combination of loss functions was the cross-level loss. From the
experimental results in Table 5, it can be seen that the loss functions using all L1 loss and
all perceptual loss had better performance on PSNR and SSIM respectively. Using both L1
loss and perceptual loss could result in better performance on both PSNR and SSIM. The
cross-level loss function further improved the super-resolution performance of the network
and achieved the best results.

Table 5. Ablation study for different loss functions.

Loss Function PSNR (dB) SSIM

L1 Loss 25.48 0.7821
Perceptual Loss 25.21 0.7908

Perceptual Loss + L1 Loss 26.39 0.7934
Cross-level Loss 26.84 0.8079

5. Conclusions

Super resolution is a typical non-adaptive problem, and the space of all possible
functions for mapping from a low-resolution image to a high-resolution image is large.
This leads to a loss of detail and pseudo-detail in the super-resolution output. Increas-
ing the number of supervisions in the super-resolution process can effectively reduce the
ill-posedness. Therefore, a progressive super-resolution network based on multi-level su-
pervision was proposed, and a lightweight BSRC with adjustable scale factor was designed.
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The relationship between the number of BSRCs, the scale factor of each BSRC, and the per-
formance of the multi-level supervision network was explored. Additionally, a cross-level
loss function suitable for the multi-level supervision structure was designed. To fully test
the performance of the super-resolution network, a dataset containing various types of
ground regions was produced. Experiments were conducted on two publicly available
datasets and the new dataset. The experimental results showed that the P2P-SR network
outperformed existing SOTA methods. By further analyzing the experimental results, it
was found that multi-level supervision has greater performance gains in super-resolution
tasks with larger scale factors. It is speculated that the multi-level supervision network
will have better performance in super-resolution tasks above four times. In future research,
experiments will be conducted with multi-level supervision networks in super-resolution
tasks at larger magnifications such as five times, eight times, and so on.

Also, the relationship between multi-level supervision and the reduction in super-
resolution ill-posedness will be further explored.
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