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Abstract: Engagement ability plays a fundamental role in allocating attentional resources and helps
us perform daily tasks efficiently. Therefore, it is of great importance to recognize engagement
level. Electroencephalography is frequently employed to recognize engagement for its objective
and harmless nature. To fully exploit the information contained in EEG signals, an engagement
recognition method integrating multi-domain information is proposed. The proposed method extracts
frequency information by a filter bank. In order to utilize spatial information, the correlation-based
common spatial patterns method is introduced and extended into three versions by replacing different
correlation coefficients. In addition, the Hilbert transform helps to obtain both amplitude and phase
information. Finally, features in three domains are combined and fed into a support vector machine
to realize engagement recognition. The proposed method is experimentally validated on an open
dataset composed of 29 subjects. In the comparison with six existing methods, it achieves the best
accuracy of 87.74± 5.98% in binary engagement recognition with an improvement of 4.03%, which
proves its efficiency in the engagement recognition field.

Keywords: engagement recognition; electroencephalography; multi-domain information; filter bank;
correlation-based common spatial patterns

1. Introduction

Engagement is the ability to spend attentional resources on task-related stimuli and
ignore external interference [1]. As a fundamental aspect of cognition, engagement abil-
ity plays a crucially important role in the operational environment [2]. Engagement
helps us to ignore interference and focus our awareness, which is necessary for learn-
ing, working, and building normal relationships [3–5]. Being a participant in numerous
and heterogeneous daily tasks, everyone endeavors to improve their efficiency with high
engagement [6–8]. In highly professional scenarios in particular, such as clinical opera-
tions [9], aircraft piloting [10] and aerial work [11], engagement level monitoring is very
important and related to life safety [12]. The disability of being engaged in current tasks
and dealing with mental workload may lead to severe accidents [13]. Moreover, measuring
engagement is of great clinical application. For example, measuring engagement can help
to diagnose psychological diseases, such as attention deficit hyperactivity disorder (ADHD),
which is a common disease in children [14]. Furthermore, engagement level influences
the reliability of psychological tests [15]. Monitoring the engagement level can measure
the credibility of psychological tests and therefore serves as an auxiliary means in other
psychological treatments. In this way, it becomes more and more significant to recognize
and measure engagement level [16,17].

Psychologists have made attempts to design various self-reporting questionnaires
and scales in order to reflect the engagement level of subjects more accurately [18–21].
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However, these subjective tools are delayed and sometimes uncertain due to indistinct
memory and dishonesty. Unlike subjective tools, physiological signals can be collected
simultaneously with the execution of the current task and can reflect the engagement
level more accurately without subjective interference [22,23]. Therefore, researchers have
started to recognize engagement level and workload through physiological signals. In [24],
physiological signals, including electrocardiogram (ECG), skin conductivity (SC), and
respiration (RESP) signals, are collected and combined with the Self-Assessment Manikin
to detect the cognitive load. Belle et al. [25] decomposed ECG signals using an S-transform
algorithm to detect engagement and attention state. Zennifa et al. [22] introduced the
implementation of a low-density hybrid system for engagement recognition, in which
wireless electroencephalography (EEG), ECG, electrooculogram (EOG), and near-infrared
spectroscopy (NIRS) are utilized.

This study focuses on EEG-based engagement recognition. Existing studies in neu-
ropsychology have revealed the direct correlation between EEG signals and a variety of
cognitive behaviors, including engagement level [26–28], and established EEG-based en-
gagement recognition. The key to decoding engagement level using EEG signals is to
extract the most representative features to realize engagement level classification. The most
widely used feature in engagement level classification is spectral power. Booth et al. [29]
predicted engagement utilizing power spectral density (PSD) features. The PSD features in
δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), and β (13–30 Hz) were extracted as features to feed into
classifiers to predict engagement level. Similarly, 1 Hz bin PSD features were utilized by
Li et al. and fed into deep models for engagement assessment [23]. Relative band power
of δ, θ, α, and β bands were calculated, and Pβ/(Pα + Pθ) was taken as an EEG index by
Rabbi et al. [30]. The four features were analyzed under different tasks. Researchers in [31]
extracted relative PSDs from differential EEG channels and fed them into a linear DFA to
realize binary engagement classification for subjects who ranged from 67 to 93 years old.
Researchers in [22] extracted multi-modal physiological signals, including EEG, ECG, and
NIRS signals, in which the maximum power, the power density integral power, and the
relative power of δ, θ, α, and β bands were extracted as features. Then, the features were
selected using a correlation-based feature selection (CFS) method and classified with the
k-nearest neighbor (KNN) method. However, only information in the frequency domain
is utilized in these methods, which fails to exploit the underlying information related to
engagement level in EEG signals. Therefore, it is significant to improve the engagement
recognition accuracy by integrating information from different domains and extracting
representative features to realize classification.

For the spatial domain, the common spatial pattern (CSP) [32] method is one of
the most popular and powerful spatial filtering methods in the motor imaginary (MI)-
based brain–computer interface (BCI). The purpose of the CSP is to find spatial filters
so that the variance of the filtered data is maximized for one class and minimized for
the other class. However, due to the sensitivity of the CSP to noise, many extensions of
CSP-based methods have emerged to improve its effectiveness. In [33], an L1 norm-based
CSP is introduced, in which the L1 norm is in place of the L2 norm to figure out the
spatial filter estimation in order to improve the robustness of the CSP. Lotte et al. [34]
proposed an integrated theoretical framework of a regularized CSP (RCSP) and specifically
designed four RCSP algorithms, among which the optimal RCSPs are a CSP with Tikhonov
regularization and weighted Tikhonov regularization. Recently, a correlation-based CSP
(CCSP) based on temporal correlation was designed to improve the performance of the
CSP [35]. In this study, the CCSP algorithm was adopted to extract spatial features. For the
frequency domain, the combination of a filter bank and a CSP is a simple way to combine
the information in the frequency domain with that in the spatial domain [36]. A set of
filter banks was designed, and their effectiveness was compared to select the optimal filter
bank. In addition, for the phase domain, both amplitude and phase information were
considered to utilize the potential information embedded in the EEG signals. Therefore,
this paper proposes an engagement recognition using a multi-domain feature extraction
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method based on correlation-based common spatial patterns (MDCCSPs), which presents
three contributions:

• Firstly, an engagement recognition method based on a correlation-based CSP is pro-
posed, in which the temporal correlation is utilized as a prior to improve the effec-
tiveness. Specifically, the original CCSP is extended into three versions by replacing
various correlation coefficients (Pearson’s linear correlation coefficient, Kendall’s cor-
relation coefficient [37], and Spearman’s correlation coefficient).

• Secondly, this study integrates information from spatial, frequency, and phase do-
mains to fully exploit the potential of EEG data. A filter bank is combined with the
original CCSP to extract features in the frequency domain and the spatial domain.
Besides, the Hilbert transform is applied to obtain the amplitude and phase angle of
EEG signals. Multi-domain features are integrated and fed into an SVM to realize
engagement recognition.

• Thirdly, the proposed method is validated and compared with existing methods
on an open dataset composed of 29 subjects. Experimental results show that it of-
fers an efficient way to recognize the level of engagement, which is validated by
its outperformance.

The rest of the article is arranged as follows. The proposed engagement recognition
method using the multi-domain feature extraction method based on correlation-based
common spatial patterns is described in detail in Section 2. In Section 3, the experimental
setups are presented, and the results are analyzed. Then, a discussion is provided in
Section 4. Finally, Section 5 summarizes the whole article.

2. Materials and Methods
2.1. CSP-Based Methods
2.1.1. Common Spatial Patterns

In BCI systems, especially MI-based BCI systems, the CSP is widely used to extract
spatial features and achieves good performance. Considering Xi ∈ RT×C is the EEG signal
from class i, i = 1, 2, where T and C, respectively, denote the number of time samples and
the number of channels, the target spatial filters in the CSP algorithm can be found by
maximizing the objective function

J(w) =
wTXT

1 X1w
wTXT

2 X2w
=

wTV1w
wTV2w

, (1)

where Vi ∈ RC×C, i = 1, 2 represents the spatial covariance matrix of Xi, and w represents
the spatial filter. It should be noted that ∗T is the transpose operation for the matrix. This
constrained optimization problem can be solved by using a Lagrange multiplier method:

L(λ, w) = wTV1w− λ(wTV2w− 1), (2)

where λ stands for the Lagrange multiplier. The target spatial filter w maximizes L; thus
the derivative of L with respect to w should be equal to zero:

∂L
∂w

= 2wTV1 − 2λwTV2 = 0

⇔ V1w = λV2w

⇔ V−1
2 V1w = λw.

(3)

Next, the spatial filter w can be figured out by solving an eigenvalue problem. It can
be obtained as the largest and smallest eigenvalues of matrix M = V−1

2 V1.
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2.1.2. Correlation-Based Common Spatial Patterns

In order to overcome the shortcomings of sensitivity to noise, instability, and overfit-
ting of the original CSP, CCSPs are proposed in [35] to impose the temporal correlation
between signals as a penalty term to obtain a regularization CSP. Therefore, the objective
function becomes

J1(w) =
wTV1w

wTV2w + αP1(w)
, (4)

where α stands for the regularization parameter (α > 0), and P1(w) is the penalty term in
J1(w) based on the correlation coefficient

P1(w) = wTD1w (5)

where D1 is a diagonal matrix in which the diagonal elements are correlations between the
average signal Xi, i = 1, 2 in two classes

Xi =
∑L

l=1 Xl
i

L
, i = 1, 2, (6)

where L is the number of trials in each class. The correlation matrix R ∈ RC×C is then
constructed as

R =


r11 r12 · · · r1C
r21 r22 · · · r2C
...

. . .
...

rC1 rC2 · · · rCC

. (7)

In the correlation matrix R, each element is defined as

rm,n = corr(xm
1 , xn

2 ), m, n = 1, 2, · · · , C (8)

where xm
1 and xn

2 are the m-th and the n-th columns of the matrices X1 and X2. Given the
correlation matrix, D1 is formed as

D1 =


a1

a2
. . .

aC

, (9)

where the diagonal element am is calculated as

am =
∑C

n=1 |rmn|
C

, m, n = 1, 2, · · · , C. (10)

It should be noted that | ∗ | is the absolute operation. Next, D2 is calculated as

D2 =


b1

b2
. . .

bC

, (11)

where bn is obtained following

bn =
∑C

m=1 |rmn|
C

, m, n = 1, 2, · · · , C. (12)
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Therefore, the Lagrange multiplier method is adopted to solve Equation (4):

L1(λ, w) = wTV1w− λ[wT(V2 + αD1)w− 1]. (13)

Similar to Equation (3), the derivative in the following equation is equal to 0:

∂L1

∂w
= 2wTV1 − 2λwT(V2 + αD1) = 0

⇔ V1w = λ(V2 + αD1)w

⇔ (V2 + αD1)
−1V1w = λw

. (14)

The target filters are the eigenvectors corresponding to the largest eigenvalues of matrix
M1 = (V2 + αD1)

−1V1. For the objective function

J2(w) =
wTV2w

wTV1w + αP2(w)
, (15)

where

P2(w) = wTD2w, (16)

the spatial filters are solved following a similar process. Finally, the filters are the eigenvec-
tors corresponding to the largest eigenvalues of matrix M2 = (V1 + αD2)

−1V2.
In this study, the original CCSP is extended into 3 versions using different correlation

coefficients, including Pearson’s linear correlation coefficient (P-CC), Kendall’s correlation
coefficient (K-CC), and Spearman’s correlation coefficient (S-CC). And the effectiveness of
the 3 proposed CCSPs is compared.

2.2. Amplitude and Phase Feature Extraction

To fully exploit the information in EEG signals, the features in the phase domain
are integrated to improve engagement recognition accuracy. To extract the phase an-
gle of EEG signals, the Hilbert transform [38] is employed to an EEG signal X(t) =
[x1(t), x2(t), · · · , xC(t)], in which C is the number of channels:

x̂(t) = H[x(t)] =
1
π

∫ +∞

−∞

x(τ)
τ − t

dτ. (17)

The analytic signal is then formed as

Θ(t) = x(t) + i · x̂(t) = A(t) · ei·θ(t), (18)

where i denotes the imaginary unit. A(t) and θ(t) stand for the amplitude and phase (AP),
respectively: A(t) =

√
x2(t) + x̂2(t),

θ(t) = arctan
x̂(t)
x(t)

.
(19)

2.3. Multi-Domain Feature Extraction Method Based on Correlation-Based Common
Spatial Patterns

In this study, an engagement recognition using the multi-domain information extrac-
tion method based on correlation-based common spatial patterns (MDCCSP) is proposed.
The framework of the MDCCSP is shown in Figure 1.
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Figure 1. Architecture of the proposed MDCCSP.

As shown, one trial of a multi-channel EEG signal X(t) = [x1(t), x2(t), · · · , xC(t)] ∈
RT×C is first input into the filter bank. The filter bank filters the EEG signal into several
sub-bands to process the signal in each sub-band independently in order to extract fre-
quency domain features from frequency bands. Therefore, the signals in the sub-bands are
obtained as

{X1(t), X2(t), · · · , XK(t)} ∈ RT×C, (20)

where K denotes the number of filters in the filter bank. Then, the Hilbert transform
described before is conducted to the EEG signal in each frequency band to extract both
pieces of AP information. Supposing Xk, k = 1, 2, · · · , K is the sub-band EEG signal filtered
by the k-th filter, the AP information of Xk is extracted as

{XA
k (t), XP

k (t)} ∈ RT×C, k = 1, 2, · · · , K, (21)

where XA
k (t) and XP

k (t) represent the EEG signal containing the amplitude information
and the EEG signal containing the phase information, respectively. In all, the number of
signals for all sub-bands is 2× K. For each sub-band, two CCSPs are applied to extract both
AP features:

{FeatureA
k , FeatureP

k } ∈ RN , k = 1, 2, · · · , K, (22)

where N is the number of features produced by a CCSP. FeatureA
k and FeatureP

k stand for
the features obtained from XA

k (t) and XP
k (t). Furthermore, 2× K× N features are obtained

in all. Finally, all the features are fed into a classifier to realize the output of the results.
In this study, the classification is binary, and the results are either low engagement or
high engagement.

2.4. Support Vector Machine

Support vector machine (SVM) is widely applied as a supervised classification model
in BCI systems for its effectiveness [39]. It achieves binary classification with a main strategy
to find a hyperplane that can separate the negative and positive samples in the training set
to the utmost extent. Specifically, the hyperplane that maximizes the distances between the
hyperplane and the closest data samples in two classes is found in the training stage. In
the test stage, unlabeled test data are classified into one class by the relative position to the
hyperplane obtained in the training stage.

In practice, the concept of soft margin is introduced to solve the problem that there is
barely linearly separable data in reality. Given a set of training data and labels
T = {(t1, y1), (t2, y2), · · · , (tH , yH)}, the process to find the hyperplane y = w · t + d can be
formed as an optimization problem:
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min
ω,b,ξi

1
2
‖ω‖2 + c

H

∑
i=1

ξi, (23)

s.t. yi(ω · ti + d) ≥ 1− ξi, ξi ≥ 0, (24)

where ξi = max[0, 1− yi(w · ti + d)], i = 1, 2, · · · , H, which is a hinge loss function, and c
is the penalty parameter. In this study, a c-SVC model is utilized and a radial basis function
(RBF) kernel is implemented in experiments. The penalty parameter c is set to 2.

3. Results
3.1. Dataset

In the experiments, an open dataset [40] is used to validate the effectiveness of the
proposed MDCCSP method. It is a multi-modal dataset comprising NIRs and EEG data
from 29 subjects, from which the EEG data are merely used in this study. Therefore, the
EEG dataset is introduced in the following paragraph. The information (age and gender) of
the subjects is represented in Table 1.

Table 1. Information of subjects in the dataset where “M” and “F” stands for “male” and “female”.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Age 28 25 26 23 27 34 28 29 27 32 31 29 33 27 25
Gender F F M F M M M F F M F M M F F

Subject 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Age 32 39 26 32 28 24 23 27 27 26 27 27 36 26
Gender M F F F F M F M M F F M F M

The EEG signals in the dataset are acquired using a BrainAmp EEG amplifier, which is
produced by a German company named Brain Products GmbH. During data acquisition,
the electrodes are placed according to the 10-5 international standard, and 30-channel EEG
signals are recorded with a sampling rate of 1000 Hz. Subjects who participated in the
experiments are ensured healthy conditions. They are instructed to complete two tasks,
which are baseline tasks and mental arithmetic (MA) tasks. In the baseline tasks, subjects
are supposed to be relaxed without thinking, while in the MA tasks, subjects need to carry
on MA following the instructions on the screen. The EEG signals from baseline tasks and
from MA tasks are labeled as low engagement data and high engagement data, respectively.
The detailed process of experiments is represented in Figure 2.

Figure 2. EEG data acquisition process of the dataset and the segmented strategy of the original data.
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In both tasks, subjects first take a 60 s pre-test rest and then receive an instruction
on the screen. The instruction is either a cross or a subtraction formula such as “514− 9”.
After 2 s, the instruction disappears. A beep prompts the beginning of the task. In the
baseline task, subjects only need to stare at the cross, while in the MA task, subjects need to
repeatedly subtract the same value from the result of the last time in mind. For instance,
“514− 9 = 505, 505− 9 = 496, 496− 9 = 487, · · · ”. Each task period lasts for 10 s, and each
subject takes both tasks 20 times. There is a rest with a random length from 15 s to 17 s
between every two tasks. During the whole experiment, subjects are required to keep still
to avoid motion artifacts to the utmost extent.

3.2. Data Pre-Processing

The original EEG data are first common average re-referenced and then band-pass
filtered with a passband from 0.5 Hz to 50 Hz using a fourth-order Chebyshev II filter. The
filtered data are downsampled to 200 Hz. A toolbox is used to remove the EOG artifacts
automatically. The 10 s EEG data recorded during the tasks are segmented into 2 s pieces
for the next steps, which is shown in Figure 2. The data from baseline tasks is labeled as
low engagement, while that from MA tasks is labeled as high engagement. The whole
experiment is carried out under the environment of MATLAB 2020b. Results are obtained
using a 10-fold cross-validation.

3.3. Effect of Filter Banks

In this study, a filter bank is utilized to extract frequency-domain information to
improve the accuracy of the proposed MDCCSP method. Here, a set of filter banks are
designed with various bandwidths and various sizes of overlapping to find an optimal set
of filter banks for experiments. The principle of the design of filter banks is to fully cover
all the frequency range of 4–32 Hz that is considered. Therefore, the designs of filter banks
are shown in Table 2.

Table 2. Filter banks validated in the experiments.

Filter Bank

Index 1 2 3 4 5 6 7 8

Frequency
Range

(4–32 Hz)

4–6 4–8 4–8 4–12 4–16 4–20 4–24 4–8 (theta)
6–8 6–10 8–12 8–16 8–20 8–24 8–28 8–13 (alpha)
8–10 8–12 12–16 12–20 12–24 12–28 12–32 13–32 (beta)

10–12 10–14 16–20 16–24 16–28 16–32
12–14 12–16 20–24 20–28 20–32
14–16 14–18 24–28 24–32
· · · · · · 28–32

30–32 28–32

Number of
filters 14 13 7 6 5 4 3 3

The number of filters included in the eight sets of filter banks is between 3 and
14. The effects of the filter bank combining traditional EEG rhythms (theta, alpha, and
beta bands) are also compared in the experiments. In this experiment, x(t) and Θ(t) are
extracted to obtain AP information, and the S-CC is used in the proposed MDCCSP method.
The regularization parameter in the MDCCSP is set to α = 0.001. The number of features
generated by each CCSP N is set as two. The engagement recognition results using different
sets of filter banks in Table 2 are shown in Figure 3. And the recognition accuracies are
shown in Table 3.

As shown, the second filter bank achieves the highest recognition accuracy of
87.74± 5.98% at the significance level of 5%. In the following experiments, the second filter
bank with 13 filters is adopted.
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Figure 3. The engagement recognition results of the MDCCSP using different filter banks. The gray
fold lines stand for the results of each subject in the dataset, while the red fold line with error bars
denotes the average and the standard error accuracy of the 29 subjects.

Table 3. Engagement recognition accuracy using MDCCSP with different filter banks where the best
results are marked bold.

Filter Bank

Index 1 2 3 4 5 6 7 8

Accuracy (%)

90.33 93.67 93.33 92.00 92.00 93.67 92.00 93.67
87.67 90.00 89.67 88.00 85.00 83.00 81.67 83.33
94.00 94.67 95.67 95.00 94.33 92.00 91.67 96.00
90.00 91.33 89.33 91.67 91.33 89.33 86.00 91.33
75.00 77.00 76.67 77.33 75.00 75.00 73.67 76.00
86.00 91.00 88.33 89.00 83.67 82.33 83.00 84.33
94.00 92.33 93.00 92.67 91.67 91.67 92.67 93.33
89.67 91.67 91.00 90.67 88.67 88.00 88.67 88.67
86.33 87.33 86.33 85.67 85.00 85.33 86.00 87.67
92.00 92.33 94.00 94.33 90.33 90.00 90.33 94.67
76.67 80.33 79.00 76.67 75.33 72.67 74.33 76.00
80.00 77.33 78.33 79.33 77.00 80.00 77.00 75.67
93.00 94.33 92.67 93.33 92.00 90.33 90.67 90.33
88.00 87.33 87.67 86.00 85.67 86.00 85.00 83.00
80.67 82.00 82.00 80.00 75.67 74.00 70.67 70.67
83.00 84.67 81.67 84.33 81.00 79.33 79.33 80.67
87.33 89.00 86.67 85.33 84.00 83.33 78.00 82.00
91.33 92.67 92.67 92.00 92.00 89.67 90.00 89.00
79.67 85.67 86.00 82.33 78.67 78.33 79.33 79.67
65.67 72.00 70.33 69.33 70.00 66.67 69.00 66.00
87.00 89.67 90.33 89.67 89.00 85.67 88.67 87.67
86.33 85.33 86.00 85.33 87.00 84.00 85.00 86.67
82.00 88.00 87.33 87.33 83.33 82.33 82.00 82.67
83.67 82.67 83.67 80.00 80.00 77.67 79.67 82.00
89.00 90.33 89.33 92.33 94.00 91.00 90.33 90.33
96.67 96.00 96.00 95.33 95.33 95.67 96.00 94.67
79.33 82.67 82.33 81.67 80.67 83.33 77.67 81.33
83.33 88.00 85.00 86.33 82.00 79.00 76.00 80.00
93.33 95.00 94.67 92.33 93.67 92.00 90.67 92.00

Mean ± std 85.90 ± 6.77 87.74 ± 5.98 87.21 ± 6.17 86.74 ± 6.40 85.29 ± 6.88 84.18 ± 7.02 83.62 ± 7.22 84.80 ± 7.50

p-value <0.01 / <0.05 <0.01 <0.01 <0.01 <0.01 <0.01
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3.4. Effects of Phase Information

Phase-domain information is utilized to enhance the proposed MDCCSP method. Thus
it is supposed to validate the effects of phase information in engagement recognition. To
extract phase information, the Hilbert transform [38] is employed following Equation (17).
And therefore, the analytic signal is obtained in Equation (18). It should be noted that
AP features are extracted from x(t) and Θ(t) in the experiments. The optimal filter bank
with 13 filters in Table 2 is adopted. And the S-CC is used in the proposed MDCCSP
method. The regularization parameter in the MDCCSP is set to α = 0.001. The effects of
extracting only amplitude information, extracting only phase information, and extracting
both amplitude and phase information are compared. The results are shown in Figure 4 and
Table 4, from which it can be observed that for all the subjects, the MDCCSP extracting only
phase information achieves an average accuracy of 76.57± 6.94%, which is much higher
than the chance level 50% (p < 0.001). These results prove that only phase information still
matters in engagement recognition. Moreover, the MDCCSP extracting both pieces of AP
information achieves the best performance 87.74± 5.98% (p < 0.001), which demonstrates
that the phase information can enhance the effectiveness of the proposed engagement
recognition method.

Figure 4. The engagement recognition results of MDCCSP extracting different AP information.

Table 4. The average engagement recognition results of MDCCSP extracting AP information, where
the best result is marked in bold.

Amplitude Phase AP

Mean ± std 81.28 ± 7.25% 76.57 ± 6.94% 87.74 ± 5.98%

p-value <0.001 <0.001 /

3.5. Effects of Correlation Coefficients

The correlation coefficient used in the original CCSP is P-CC. This study proposes the
K-CCSP and the S-CCSP and applies them to the proposed MDCCSP recognition method.
To determine the optimal CC, the recognition results of the MDCCSP utilizing the P-CC,
K-CC, and S-CC are compared. It should be mentioned that the various CCs are only



Appl. Sci. 2023, 13, 11924 11 of 15

adopted in extracting features from x(t) signals because Θ(t) is a complex signal to which
the K-CC and the S-CC are not applicable. The optimal filter bank is used, and AP features
are extracted in this experiment, and the regularization parameter in the MDCCSP is set to
α = 0.001. The experimental results using the P-MDCCSP, K-MDCCSP, and S-MDCCSP are
shown in Table 5.

Table 5. The average engagement recognition results of MDCCSP using different CCSPs where the
best result is marked bold.

P-CC K-CC S-CC

Mean ± std 87.74 ± 5.98% 87.68 ± 6.40% 87.61 ± 6.52%

p-value / >0.1 >0.1

As shown in Table 5, there are no significant differences between the accuracies of the
P-MDCCSP and K-MDCCSP methods, and between the accuracies of the P-MDCCSP and
S-MDCCSP methods. In the following experiments, the P-MDCCSP is utilized.

3.6. Effects of Regularization Parameter α

In order to improve the accuracy of the proposed engagement recognition method, we
seek the optimal regularization parameter α used in Equations (4) and (15). The optimal
filter bank is used and AP features are extracted in this experiment, and the S-CC is
used in the MDCCSP. The results of the proposed MDCCSP using different regularization
parameter α in {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} are compared, which are presented in
Figure 5. As shown, it achieves the best average accuracy when α = 10−3; therefore, the
regularization parameter α defaults to 10−3 in the following experiments to obtain the best
recognition results.

Figure 5. The average engagement recognition results of MDCCSP using different regularization
parameters α.

3.7. Experimental Comparison

The CSP is the most popular method in BCI systems, and all CSP-based methods are
on the basis of the CSP method. The proposed MDCCSP is based on the original CSP
method. Therefore, it is first supposed to compare the results with CSP-based methods.
The CSP [32], CCSP [35], and FBCSP [36] methods are chosen to validate the improvements
of the proposed method. To compare with the CCSP and the FBCSP, the effectiveness of
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the main idea of the MDCCSP is validated, that is, integrating multi-domain information,
including frequency information, spatial information, and phase information. The filter
bank used in the FBCSP in the experiments is the second filter bank in Table 3. In addition,
the proposed method is also compared with Barachant’s minimum distance to the Rieman-
nian mean method (MDMR) [41], Shin’s method [40], and She’s method [42] to validate the
effectiveness of the MDCCSP. Barachant et al. projected data onto the Riemannian space
and extracted features in the space to realize classification. Shin et al. employed a shrinkage
linear discriminant analysis to classify the features extracted by the CSP. An extreme learn-
ing machine was utilized to extract high-level features in She’s method. The recognition
accuracies are presented in Table 6. It can be observed that the proposed MDCCSP method
achieves the best performance compared with existing methods, with an average accuracy
of 87.74± 5.98%, which provides a 4.03% improvement on the second-best method. In
detail, for 24 out of 29 subjects, the MDCCSP achieves the best accuracy, which validates
the effectiveness of the proposed method.

Table 6. Engagement recognition accuracies of several existing methods compared with the proposed
method where the best results are marked bold.

Comparison Results

Literature Blankertz [32] Ang [36] Shin [40] Ghanbar [35] She [42] Barachant [41] Ours

Methods CSP FBCSP CSP + Shrink-
ageLDA CCSP HSS-ELM MDMR MDCCSP

Accuracy (%)

88.33 89.33 84.33 87.67 88.67 78.33 93.67
70.33 84.00 67.33 69.33 80.67 74.00 90.00
82.33 88.67 82.67 84.33 86.67 94.00 94.67
82.00 91.00 78.33 84.33 82.00 80.00 91.33
71.67 73.67 67.33 74.33 76.00 75.33 77.00
77.00 80.33 72.00 77.33 84.67 81.67 91.00
88.67 93.33 86.33 90.00 89.00 93.00 92.33
81.67 88.67 80.67 84.67 78.67 80.00 91.67
79.33 82.33 76.33 79.00 78.00 73.67 87.33
87.33 88.00 87.00 88.00 85.33 87.33 92.33
64.67 80.67 68.67 68.67 75.00 72.33 80.33
75.00 73.33 73.33 76.67 79.67 62.00 77.33
81.00 87.33 74.33 83.00 86.67 84.33 94.33
80.67 84.00 78.67 80.00 77.00 74.33 87.33
71.67 75.33 68.00 71.67 65.00 65.33 82.00
74.33 82.67 68.00 74.67 75.00 63.67 84.67
74.00 81.33 60.33 77.00 83.67 83.33 89.00
85.33 90.33 85.67 88.33 90.67 83.33 92.67
74.67 82.00 71.67 76.33 81.67 78.00 85.67
66.67 70.33 65.00 64.33 72.67 62.67 72.00
84.67 86.00 76.00 81.67 79.67 84.67 89.67
79.67 83.33 79.00 83.67 84.00 85.67 85.33
75.67 84.33 74.00 77.33 84.67 76.00 88.00
79.00 78.00 80.67 77.33 85.00 78.67 82.67
83.00 86.33 85.00 90.00 88.33 77.33 90.33
94.33 94.67 92.00 93.67 92.33 94.67 96.00
68.67 73.67 71.00 68.67 72.00 71.00 82.67
68.33 83.33 64.33 72.33 76.67 70.00 88.00
78.00 91.33 71.33 78.67 88.33 91.00 95.00

Mean ± std 78.21 ± 7.07 83.71 ± 6.20 75.49 ± 7.93 79.41 ± 7.36 81.64 ± 6.38 78.47 ± 9.05 87.74 ± 5.98

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 /

4. Discussion

This article attempts to improve the effectiveness of engagement recognition by inte-
grating multi-domain information and exploiting the potentiality of original EEG signals.
An engagement recognition method using AP feature extraction based on filter bank
correlation-based common spatial patterns (MDCCSPs) is proposed to realize more accu-
rate engagement recognition. By integrating frequency, spatial, and phase information,
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the proposed method utilizes EEG signals more sufficiently and therefore improves the
recognition accuracy, which is validated in experiments compared with existing methods.

The filter bank is used to extract features in different frequency sub-bands to exploit
frequency-domain information. Therefore, it is supposed to validate the effectiveness of
various filter banks and find the optimal set to improve the performance of the proposed
methods. A total of 7 filter banks including 3 to 14 filters are validated and compared.
The results show that the second filter bank in Table 3 including 13 filters achieves the
best performance. Except for frequency-domain information, phase-domain information
is also adopted. To validate its effect, the recognition results of extracting only amplitude,
only phase, and both AP are compared. Only phase information reaches 76.57± 6.94%
accuracy, which is far higher than the chance opportunity. By integrating both pieces of
AP information, an accuracy improvement of 6.46% is achieved over the accuracy of using
only amplitude information. The CCSP is introduced to the engagement recognition field
to extract spatial features. In addition, the optimal settings for the CCSP are decided. The
CCSP method is extended into three versions by replacing various correlation coefficients,
and the results of these three methods are compared. As shown in Table 5, three methods
achieve similar results, and there is no significant difference among them. Another setting
is the regularization parameter, different settings of α are employed to seek the optimal
value. After validation, α is set to 10−3 to obtain the best accuracy.

In addition, the effectiveness of the proposed method is analyzed by comparing it
with the existing methods. Six methods, including the CSP, FBCSP, CSP+shrinkage LDA,
CCSP, HSS-ELM, and MDMR, are compared with the proposed MDCCSP in engagement
recognition. Results show that the proposed method outperforms existing methods with an
accuracy of 87.74± 5.98%, which achieves an improvement of 4.03% over the second-best
method. The positive predictive value and negative predictive value are, respectively,
88.41± 5.90% and 88.29± 5.60%. These satisfactory experimental results prove the effec-
tiveness of the proposed method.

However, there are still some limitations in this study. First, although the proposed
method integrates multi-domain information, including frequency information, spatial
information, and phase information, and achieves satisfactory improvements, temporal
information is not considered. In the future, integrating temporal-domain information
should be further discussed in order to enhance the efficiency of engagement recognition.
Second, the proposed method can only resolve binary engagement recognition. However,
the realistic situation is often more complex, and multi-class recognition is more practical.
Further study should focus on extending the engagement recognition method into a multi-
class recognition method.

5. Conclusions

In this study, an engagement recognition method MDCCSP is proposed. In order to
overcome the inadequate utilization of EEG signals, information from multi-domains is
integrated, including frequency domain, spatial domain, and phase domain. Specifically,
a filter bank is used to extract information from various frequency sub-bands. Phase
features are acquired through the Hilbert transform, and spatial information is extracted
by a correlation-based CSP. In addition, an SVM is utilized to obtain the results of binary
engagement recognition. In comparison with existing methods, the proposed MDCCSP
achieves the best performance of 87.74± 5.98% with an improvement of 4.03%.
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