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Abstract: Object detection in many real applications requires the capability of detecting small objects
in a system with limited resources. Convolutional neural networks (CNNs) show high performance
in object detection, but they are not adequate to resource-limited environments. The combination of
MobileNet V2 and SSDLite is one of the common choices in such environments, but it has a problem in
detecting small objects. This paper analyzes the structure of SSDLite and proposes variations leading
to small object detection improvement. The feature maps with the higher resolution are utilized
more, and the base CNN is modified to have more layers in the high resolution. Experiments have
been performed for the various configurations and the results show the proposed CNN, SSDLiteX,
improves the detection accuracy AP of small objects by 1.5 percent points in the MS COCO data set.
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1. Introduction

Recently, convolutional neural networks (CNNs) show high performance in computer
vision tasks including image classification [1–6], object detection [7–12], and image segmen-
tation [13]. However, the enormous requirement of the storage and computation prohibits
CNNs from being adopted in embedded systems that are power- or resource-limited.
CNNs in such systems should have high performance with the small number of operations
and coefficients.

Many computer vision applications including autonomous vehicles and surveillance
systems are related to object detection. A CNN for object detection is usually constructed
by adding some auxiliary layers to a base CNN for image classification. There are vari-
ous kinds of object detection CNNs, and widely used for resource-limited systems is the
combination of MobileNet V2 and SSDLite [12,14–16]. The network shows an appropri-
ate detection capability with low complexity, but its performance is sometimes not so
satisfactory, especially in detecting small objects.

In this paper, some optimizations will be applied to SSDLite. It has been known that
SSDLite maintains the performance but reduces the complexity compared to the previous
version, SSD (Single Shot Multibox Detector) [11]. However, the detailed changes have not
been analyzed. This paper will compare SSDLite and SSD, discussing the pros and cons
of the difference. The analysis shows that SSDLite does not utilize high resolution feature
maps sufficiently. By utilizing such feature maps, SSDLite can be optimized to have better
performance, especially in detecting small objects, with slightly increased complexity.

This paper is structured as follows. After discussing object detection neural networks
in Section 2, the structures of SSD and SSDLite are compared in Section 3. Experimental
results are presented in Section 4, and conclusions are described in Section 5.

2. Object Detection CNN

A CNN consists of various types of layers including a convolutional layer, a batch
normalization and scaling layer, a pooling layer, an activation layer, and a fully connected
layer, but most of the operations are concentrated in the convolutional layer.
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2.1. Convolutional Layer

The main component of a CNN is the convolutional layer, which is based on a two-
dimensional convolution operation. The layer assumes N input feature maps f i of height
H and width W and produces M output features maps f o of height R and width C with
the kernels of the size K by

f o(m, y, x) =
N−1

∑
n=0

K−1

∑
i=0

K−1

∑
j=0

w(m, n, i, j)× f i(n, S× y + i, S× x + j) + bias(m), (1)

where S is the stride, w() is the weights, and bias() is the bias offset for each output feature
map. The number of coefficients in a convolutional layer is K × K × N ×M, and that of
multiplications is R× C× K× K× N ×M.

MobileNet replaces a normal convolutional layer with a combination of depthwise and
pointwise convolutional layers. The depthwise convolutional layer calculates the output
data by individually applying a K× K size kernel to each input channel as

f o(n, y, x) =
K−1

∑
i=0

K−1

∑
j=0

w(n, i, j)× f i(n, S× y + i, S× x + j) + bias(n). (2)

The pointwise convolutional layer is a 1 × 1 convolution layer.
In Equations (1) and (2), S is the stride, and if S is larger than one, the height and

width of the output feature map is less than those of the input feature map. A pooling layer
performs the maximum or average operation instead of the convolution operation with a
larger-than-one S value, reducing the spatial size too. An image classification CNN usually
reduces the feature map spatial size five times with S = 2, making 1/32 scale feature map
data, and then processes the feature maps with a fully connected layer.

2.2. Object Detection

An object detection CNN can be constructed from a classification CNN in a two-
stage architecture or a one-stage architecture. In the two-stage architecture, the regions of
interest (RoIs) are proposed first and the detection is performed on the proposed regions.
The representative networks are R-CNN [8], Fast R-CNN [9], and Faster R-CNN [10].
The one-stage networks do not have the region proposal stage. They have low detection
capability than the two-stage networks, but can be processed faster. In the category are SSD
series [12,17] and YOLO series [18–20]. To overcome the low performance of the one-stage
networks, feature pyramid structures were proposed like Feature Pyramid Networks [21],
RetinaNet [22], and EfficientDet [23].

Among the various object detection CNNs, the MobileNet and SSD combination is
still widely used in the resource-limited environments because of its low complexity and
fair detection capability. SSD is constructed by adding additional layers to a base image
classification CNN like MobileNet. When the size of the input is 300, the SSD adds four
stages consisting of a 1 × 1 convolutional layer and a 3 × 3 convolutional layer with
the stride of two, reducing the horizontal and vertical size of the data to 1. The object
detection is performed with extracted outputs of the stages, as shown in Figure 1. The
size of the output of the base CNN is modified to be 1/16 scale and 1/8 scale data are
extracted in the middle of the base CNN. The 1/8 and 1/16 scale data are also used for the
object detection. SSDLite is basically constructed by decomposing the 3 × 3 convolutional
layers in the auxiliary stages of SSD into a depthwise convolutional layer and a pointwise
convolutional layer.
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Figure 1. MobileNet V1 and SSD with input image 320 × 320.

3. Comparison of SSD and SSDLite

SSDLite reduced the amount of calculations and coefficients, but the effectiveness of
the applied techniques has not been discussed in detail. This paper will try to find a better
structure by analyzing the difference between SSD and SSDLite.

3.1. Prior Box

In SSD and SSDLite, the location and size of an object are predicted based on the given
prior boxes for each location. SSD extracts the feature maps of six kinds of scales for object
detection, from 1/8 to 1/256. The prior boxes for the first, fifth, and sixth scale feature
maps have the sizes and aspect ratios described as Type 1 in Table 1. For the other scale
feature maps, the sizes and aspect ratios are described as Type 2.

Table 1. Prior Box Types

Type (Size, Aspect Ratio)

Type 1 (1, 1) (
√

2, 1) (1, 2) (1, 1/2)
Type 2 (1, 1) (

√
2, 1) (1, 2) (1, 1/2) (1, 3) (1, 1/3)

Type 3 (1/2, 1) (1, 2) (1, 1/2)

In the table, the size of 1 is the reference size, meaning 0.1, 0.2, 0.37, 0.54, 0.71, and 0.88
times the input image size for the VOC data set. For the MS COCO data set, the reference
sizes are 0.07, 0.15, 0.33, 0.51, 0.69, and 0.87 [11]. The size

√
2 is the geometric mean of the

reference size of the current scale and that of the next scale.
In contrast, SSDLite uses Type 3 prior boxes for the first scale feature maps and Type

2 prior boxes for the other feature maps [24]. The reference sizes are also changed to 0.2,
0.35, 0.5, 0.65, 0.8, 0.95 for the MS COCO data set. From the prior box configurations, it
can be known that SSD uses more various prior boxes than those of SSDLite for the first
extracted feature maps, whose scale is small and resolution is high. The prior boxes of
SSD has the size 0.7 with the aspect ratios of 1, 2, 1/2 and the size 0.10 with the aspect
ratios of 1. SSDLite, however, uses the prior boxes of size = 0.1 and the aspect ratio = 1
and also size = 0.2 and aspect ratio = 2 and 1/2. Instead, SSDLite uses more prior boxes in
large-scale and low-resolution feature maps.

3.2. Scale of Extracted Feature Maps

In SSD, the base CNN is modified to have the scale of 1/16 at the last convolutional
layer, and then the 1/8 scale and 1/16 scale feature maps are extracted to be used for the
objected detection. In addition, the feature maps of four scales, 1/32, 1/64, 1/128, and
1/256, are generated by the auxiliary stages and they are also used for the object detection,
as shown in Figure 1. In SSDLite, on the contrary, the base CNN scale is not modified
and the 1/16 scale and 1/32 scale feature maps are extracted from the base CNN. The
auxiliary stages generate 1/64, 1/128, 1/256, and 1/512 scale feature maps, as shown in
Figure 2. Compared to SSD, SSDLite uses large-scale data rather than small-scale data, so
the performance of extracting small-sized objects may deteriorate. In addition, the number
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of output channels in the last layer is 256 for SSD and 128 for SSDLite, of which the effect
will be examined via an experiment.
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Figure 2. MobileNet V2 and SSDLite with input image 320 × 320.

3.3. Reduction Method of Spatial Size

In CNN, the spatial size of feature maps can be reduced using a strided convolutional
layer or a pooling layer. Both SSD and SSDLite use a convolutional layer with the stride
of two for this purpose. However, SSD uses a 3 × 3 convolutional layer with zero pad
without the stride if reducing the spatial size in half is equivalent to reducing it by two (for
example, from 5-by-5 to 3-by-3). SSDLite always uses a 3 × 3 convolutional layer with the
stride of two.

In addition to the difference of SSD and SSDLite, it is also considerable to use a pooling
layer. In the early CNNs, a pooling layer is commonly used, but a convolutional layer with
a stride is prevalent in the modern CNNs. Some studies, however, told that a pooling layer
has a advantage, especially in hardware implementation [25,26]. It would be needed to
analyze which one is better in the view of performance and complexity.

3.4. Fully Connected Layer Substitution

An image classification CNN usually has a few fully connected layers at the end
to collect the information and make a decision. SSD replaces the fully connected layers
with convolutional layers. For example, the fc6 and fc7 fully connected layers of VGG16
are replaced with a 3 × 3 convolutional layer and a 1 × 1 convolutional layer. The fc6-
replacement layer uses a dilation of six to have a larger receptive field. However, SSDLite
does not include such layers. Using such layers can increase the complexity, but may also
improve the detecting capability.

3.5. Bottleneck in Auxiliary Stage

An auxiliary stage in SSD consists of a 1 × 1 convolutional layer and a 3 × 3 con-
volutional layer. To decrease the complexity, the 1 × 1 convolutional layer reduces the
number of channels, which is restored in the succeeding 3 × 3 convolutional layer as
shown in Figure 3a. In the figure, each box represents a convolutional layer or a depthwise
convolutional layer, and p0 and s2 mean the pad of zero and the stride of two, respec-
tively. SSDLite transforms the 3 × 3 convolutional layer in the auxiliary stage into a
3 × 3 depthwise convolutional layer and a 1 × 1 pointwise convolutional layer. An auxil-
iary stage in SSDLite, therefore, consists of a 1× 1 convolutional layer reducing the number
of channels, a 3 × 3 depthwise convolutional layer with the reduced number of channels,
and a 1 × 1 convolutional layer restoring the number of channels, as shown in Figure 3b.
This structure, however, does not conform to the inverse bottleneck concept of MobileNet
V2, where the channels are expanded before a 3 × 3 depthwise convolutional layer. This
paper will examine an auxiliary stage consisting of a 3 × 3 depthwise convolutional layer
and a 1 × 1 convolutional layer in Figure 3c, which maintain the number of channels with
the slight increase in complexity.
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Figure 3. Auxiliary stage of (a) SSD, (b) SSDLite, and (c) SSDLiteX.

3.6. Layers in 1/8 Scale

MobileNet V2 consists of seven bottleneck sequences, each of which has one to four
convolutional blocks. The third to sixth bottleneck sequences are described in Table 2. In
the table, t, c, n, and s are the channel number expansion factor, the number of output
channels, the number of convolutional block repetitions, and the stride.

The third bottleneck sequence receives 1/4 scale data, the feature map size is reduced at
the first convolutional block of the sequence, and then the data are processed via two more
convolutional blocks, as described in the left side of the first row in the table. Therefore, the
1/8 scale data are processed via two and a half convolutional blocks in the sequence. The
1/8 scale data are reduced to 1/16 scale data at the first convolutional block of the forth
sequence and they are processed via three more convolutional blocks of the forth sequence
and three convolutional blocks of the fifth sequence. The 1/16 scale data are processed via
six and a half convolutional blocks in the forth and fifth sequences, with much more layers
than those for the 1/8 scale data. The small number of layers in 1/8 scale can degrade the
capability of detecting small objects. This paper will try the modification where the scale is
changed from 1/8 to 1/16 at the first convolutional block of the fifth sequence rather than
the forth sequence. In the modified version, 1/8 scale feature maps are processed via six
and a half convolutional blocks, as shown in the right side of Table 2.

Table 2. MobileNet V2 Structure.

Input Operator t, c, n, s Input Operator t, c, n, s
... ...

562 × 24 bottleneck 6, 32, 3, 2 562 × 24 bottleneck 6, 32, 3, 2
282 × 32 bottleneck 6, 64, 4, 2 282 × 32 bottleneck 6, 64, 4, 1
142 × 64 bottleneck 6, 96, 3, 1 282 × 64 bottleneck 6, 96, 3, 2
142 × 96 bottleneck 6, 160, 3, 2 142 × 96 bottleneck 6, 160, 3, 2

... ...

4. Experimental Results

In order to measure the effects of various changes mentioned in the previous section,
experiments were performed applying various settings. The configurations are named as
SSDLiteX and described in Table 3 with the related subsections. The configuration C0 has
the same setting as SSDLite does. In C1, the prior boxes of the SSD type are applied as
described in Section 3.1, and object detection is also performed from the 1/8 scale data as
described in Section 3.2. C2 applies no-padding instead of strides to reduce the horizontal
and vertical sizes in some additional layers. C3 uses a pooling instead of a convolutional
layer with stride and C4 uses the fc6 layer. SSD uses the fc6 layer, a 3 × 3 convolutional
layer with a dilation of six and the fc7 layer, a 1 × 1 convolutional layer. In this paper, the
fc7 layer is not used, and the fc6 layer is separated into a depthwise convolutional layer
with the dilation of one and a pointwise convolutional layer with 512 output channels. In
C5, the auxiliary stage structure of Section 3.5 is used. Two kinds of base CNNs are used:
the original MobileNet V2 and the modified version with more 1/8 layers described in
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Section 3.6. Figure 4 shows the CNN structure where the configurations C1–C5 are used
with the modified MobileNet V2.

Table 3. SSDLiteX Configurations.

Configuration Explanation Subsection

C0 SSDLite -

C1 C0 + Prior box of SSD and using 1/8 scale data Sections 3.1
and 3.2

C2 C1 + Reduction by no-padding and 256 channels on the last Sections 3.2
and 3.3

C3 C2 + Reduction by pooling Section 3.3
C4 C3 + Adding fc6 layer Section 3.4
C5 C4 + Less 1 × 1 convolution Section 3.5
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Figure 4. MobileNet V2 and SSDLiteX with input image 320 × 320.

4.1. Ablations Study of Detection Capability

Table 4 shows the ablation study results for the configurations described in Table 3
with the original MobileNet V2 base CNN and the modified version of more 1/8 scale layers.
As the properties of Table 3 are added, the accuracy increases. The accuracy increases much
when the configuration changes from C0 to C1 and from C3 to C4. Using the modified
version of MobileNet V2 also leads to accuracy enhancement. The configuration C1 applies
more prior boxes and more layers for the small-scale feature maps. The modification of
MobileNet V2 is also related to the placement of more layers for small-scale feature maps.
This implies the importance of utilizing small-scale feature maps.

Table 4. Ablation study of MS COCO AP (%).

Configuration Original More 1/8 Layers

C0 21.06 21.73
C1 21.11 22.39
C2 21.12 22.51
C3 21.18 22.36
C4 21.62 22.80
C5 21.52 22.86

Table 5 analyzes the detection capability in detail. The configuration C5 with the
original base MobileNet V2 improves the detection capability of medium objects and the
base MobileNet V2 with more 1/8 layers has similar effects. The C5 configuration and the
structure improvement have a synergy effect, leading to much higher detection capability
of small and medium objects, as shown in the last row of the table.
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Table 5. Detection accuracy analysis.

Configuration APsmall APmedium APlarge

Original + C0 0.024 0.156 0.384
Original + C5 0.021 0.166 0.382

More 1/8 + C0 0.024 0.162 0.386
More 1/8 + C5 0.039 0.187 0.390

4.2. Trade-Off with Complexity

Table 6 compares the complexity of the configurations. The weight amount of C1
is much smaller than that of C0. This seems to be due to the decrease in the number
of additional layers by utilizing more data from the base CNN. The configuration C2
has slightly more weights than C1 because of the channel number increase at the last
auxiliary layer. The weight amount increase at C4 is due to the addition of the fc6 layer.
The configurations C2 to C5 have more weights than C1 but still less weights than C0. All
of the proposed configurations show a lesser weight amount and higher accuracy than
SSDLite. If we compare two cases, SSDLite with the original MobileNet V2 and SSDLiteX
C5 with the modified MobileNet V2, the accuracy is increased by 8.5%, with a weight
amount decrease by 3%. Figure 5 illustrates the two ablation studies of the accuracy and
the weight amount. It also compares the combination of MobileNet V3 and SSDLite [27],
which has more weights and similar accuracy.

Table 6. Ablation study of complexity.

Configuration Original More 1/8 Layers
Weight Computation Weight Computation

C0 4.28 M 0.79 G 4.28 M 1.02 G
C1 3.80 M 1.17 G 3.87 M 1.28 G
C2 3.85 M 1.17 G 3.92 M 1.28 G
C3 3.85 M 1.17 G 3.92 M 1.28 G
C4 4.01 M 1.19 G 4.08 M 1.30 G
C5 4.09 M 1.18 G 4.15 M 1.29 G
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Figure 5. Number of weights and MS COCO AP for the configurations.

The amount of computation and the number of MAC operations show a slightly
different aspect as shown at the third and fifth column. Basically, 1/8 scale layers have a
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larger horizontal and vertical size than 1/16 scale layers, so they require more calculations.
Therefore, C1, which extracts and uses 1/8 scale data from the base CNN, increases the
amount of computations compared to C0. With the same reason, the modified MobileNet
V2 with more 1/8 scale layers requires more computations. C4, in which the fc6 layer was
additionally placed, also increases the amount of computations compared to the others. As
the amount of computation increases, however, the performance of object detection also
improves as shown in Table 4.

The proposed SSDLiteX configurations improve the detection capability with a lesser
number of weights and an increased amount of computation. In an environment with
a CNN accelerator, the convolutional layer processing is bound by the external DRAM
communication rather than the computation capacity [28]. In such environments, the
small weight amount of the proposed SSDLiteX will suggest a good trade-off between the
complexity and the object detection performance.

5. Conclusions

This paper proposed a variation of SSDLite, SSDLiteX, to resolve its weaknesses.
SSDLite comes from SSD, but the effects of the modifications have not been analyzed.
This paper compares SSD and SSDLite and reveals SSDLite has a weakness in detecting
small objects. CNN structures utilizing small-scale and high-resolution feature maps are
proposed to improve the detecting ability of small objects with a reduced number of weights
and a slightly increased number of operations. Experimental results show that the MS
COCO AP on small objects increases by a 1.5 percent point. Small object detection is one of
the weak points of compact CNNs where SSDLiteX can be a practical solution.
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