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Abstract: Multimodal Relation Extraction (MRE) is a core task for constructing Multimodal Knowl-
edge images (MKGs). Most current research is based on fine-tuning small-scale single-modal image
and text pre-trained models, but we find that image-text datasets from network media suffer from
data scarcity, simple text data, and abstract image information, which requires a lot of external knowl-
edge for supplementation and reasoning. We use Multimodal Relation Data augmentation (MRDA)
to address the data scarcity problem in MRE, and propose a Flexible Threshold Loss (FTL) to handle
the imbalanced entity pair distribution and long-tailed classes. After obtaining prompt information
from the small model as a guide model, we employ a Large Language Model (LLM) as a knowledge
engine to acquire common sense and reasoning abilities. Notably, both stages of our framework
are flexibly replaceable, with the first stage adapting to multimodal related classification tasks for
small models, and the second stage replaceable by more powerful LLMs. Through experiments,
our EMRE2llm model framework achieves state-of-the-art performance on the challenging MNRE
dataset, reaching an 82.95% F1 score on the test set.

Keywords: multimodal relation extraction; small multimodal guidance; multimodal relation data
augmentation; flexible threshold loss; large language model

1. Introduction

Relation Extraction (RE) aims to identify semantic relations between two entities in a
given sentence, and it is one of the important tasks of Information Extraction (IE) and Knowl-
edge Graphs (KG). KG are the underlying technologies for recommendation systems [1,2],
information retrieval [3,4] and link prediction [5]. Since most of the data information on
the Internet is in multimodal forms such as text and images, multimodal technologies and
communities have seen rapid development recently. MKGs as an interpretable platform
for multimodal data [6] have promoted the development of new technologies, such as
recommendation systems on multimodal knowledge images [7], multimodal analogical
reasoning [8] and multimodal product knowledge image link prediction [9]. The most criti-
cal part of constructing MKGs is ingesting unstructured image-text data. Visual data can
be considered as supplementary information for multimodal knowledge graph completion
(MKGC) tasks [10–12]. Technically, this is achieved through MRE techniques to acquire
triplet information from multimodal data.

MRE significantly expands text-based models by taking images as additional input,
since visual context helps resolve ambiguous polysemous words. As shown in Figure 1,
visual information from images provides supplementary knowledge for complementing,
understanding and reasoning over text. Especially for image-text datasets from Internet
media, short texts and auxiliary images related to the text, pure text alone cannot offer com-
plete and accurate information. Visual context helps resolve ambiguous textual information
and provide explanatory entity information.
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Figure 1. An example of image-text multimodal data from MEGA. For an entity pair appearing in
the text, the accompanying image that supplements the textual information is used to determine the
relation between the entity pair.

In recent years, LLMs have undergone rapid development, demonstrating excellent
capabilities in contextual reasoning, instruction following, and linguistic reasoning. These
models can perform various complex language tasks in a zero-shot manner. Meanwhile,
models like PICa [13], MiniGPT-4 [14], LLaMA-Adapter [15], and Prophet [16] leverage
LLMs as natural language knowledge engines to accomplish advanced language abilities
that smaller models cannot achieve. Inspired by these models, we employ LLMs as
knowledge supplementation and reasoning engines to obtain triplet information that
smaller models fail to capture. Before that, we further adapt the smaller models to fit
the characteristics of media data, addressing insufficient data information and uneven
relation data distribution. The enhanced smaller models are then utilized as a guiding
model to obtain guiding answers for MRE, enabling the LLM engine to function smoothly.
In summary, the contributions of this paper can be outlined as follows:

• We propose a data augmentation method in multimodal relation extraction (MRDA)
by analyzing the characteristics of media datasets, which solves the performance
bottleneck caused by insufficient data in MRE tasks.

• We improve the threshold strategy in multimodal fields and propose the Flexible
Threshold Loss (FTL) to better handle the problems of uneven entity pair number
distribution and long-tail classes.

• For the first time, we introduce LLMs as knowledge engines in MRE, enabling LLMs
to assist MRE by implementing smaller models as guiding models and image-to-text
prompting tasks.

• Experiments on the public MNRE dataset demonstrate that our model can effectively
extract multimodal relations from Internet media data, and significantly outperforms
current state-of-the-art models under standard supervised and low-resource settings.

2. Related Work
2.1. Multimodal Relation Extraction

In recent years, an annotated MRE dataset MNRE and baseline models have been
constructed and released, demonstrating that utilizing visual information can improve
Relation Extraction (RE) capabilities for social media text. The authors of MEGA [17] further
corrected the MNRE dataset and proposed a dual image alignment method to capture
aligned information between visual object relations and textual object relations, making
better use of visual object relation information. The authors of FL-MSRE [18] proposed
using few-shot learning methods to extract social relations from text and facial images.

Recently, the authors of RDS [19] separated the image-text dataset of Internet media
into unimodal and multimodal subsets based on reinforcement learning, so that unimodal
models perform better on unimodal subsets while multimodal models perform better on
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multimodal subsets. The authors of HVPNeT [20] first introduced pyramidal features in the
multimodal field, using visual representations as insertable visual prefixes to guide error-
insensitive predictive decisions of textual representations. On this basis, they proposed
a dynamic gated aggregation strategy to realize multi-level multi-scale visual features as
fused visual prefixes. The authors of EEGA [21] were the first to propose jointly performing
MNER and MRE as a joint multimodal entity-relation extraction task (JMERE). In addition
to aligning visual objects and textual entities, they also aligned relations between visual
objects and relations between textual entities. The authors of MKGformer [22] proposed
a Transformer structure that mixes text and image modalities at multi-levels, where the
prefix-guided interaction module (PGI) pre-reduces heterogeneity across modalities, and
the correlation-aware fusion module (CAF) further reduces the model’s sensitivity to
irrelevant information between text and images.

The visual encoders of these models have evolved from early CNNs (e.g., Fast-
RCNN [23], Resnet [24]) to later Vision Transformers (e.g., clip [25]), while most textual
encoders are Transformer [26] models (e.g., bert [27], roberta [28]). These works have
achieved great success. However, they fine-tune pre-trained unimodal models, while
the multimodal parts are trained directly on MRE data. That is, modality alignment is
secondary to MRE. Moreover, our analysis of image-text media data shows that visual
information is more abundant yet noisier than text. This is also evidenced in ALBEF [29],
which indicates that larger visual models are needed to fully utilize visual information.
Therefore, we argue plain small models are insufficient for proper MRE due to dataset
scale limitations and model capacity constraints. Previous models faied to achieve good
modality alignment. To address this, we propose the MRDA and FTL methods, resolving
data volume and relation category distribution problems.

2.2. Vision and Language Pre-Training

Extention of pre-training and fine-tuning schemes to the joint visio-linguistic domain
has produced VLP models, such as Vilbert [30] and VinVL [31]. The pre-training tasks of
these models mainly include masked language modeling (MLM), masked region classi-
fication (MRC) and image-text matching (ITM). During pre-training, multimodal fusion
and alignment of encoded image and text features is achieved, followed by fine-tuning on
downstream visio-linguistic tasks.

In recent years, ViLT [32] authors improved inference speed by lightening the visual
encoder, but at the cost of performance drop. ALBEF [28] authors unified contrastive
learning and fusion learning for multimodality and used momentum distillation to alle-
viate noise issues in large-scale multimodal data. VLMO [33] introduced the Mixture-of-
Modality-Experts (MoME) Transformer with modality-specific expert pools and a shared
cross-attention layer in each block. BLIP [34] combined encoder and decoder to form a
unified multimodal understanding and generation model, further improving performance
via data augmentation and data cleansing. However, most of these models are pre-trained
on image captioning or VQA datasets. Applying current visual language models to MRE
tasks may not lead to good performance.

2.3. Multimodal Tasks Using LLM

The developing large language models (LLMs) have shown powerful general knowledge
understanding and logical reasoning abilities. An increasing number of works leverages
LLMs for vision-language tasks, notably by training visual encoders and other extra structures
to adapt LLMs. Recently, LLaVA [35] authors constructed image-text-related instruction
tuning datasets to extend LLMs to multimodal domains. mPLUG-Owl [36] authors adopted
a modular training idea to transfer LLMs into a large multimodal model, and proposed a
comprehensive test suite OwlEval for visually grounded instructions.

InstructBLIP [37] authors proposed a visual language instruction tuning framework
to enable general models to solve various vision tasks through a unified natural language
interface. Although these models excel in image captioning and VQA, they do not perform
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well on specialized downstream tasks like MRE, since the datasets are mostly for image
captioning or VQA. Also, instruction tuning requires additional MRE instruction datasets.
Therefore, we propose that in the field of MRE, prompts for large model few-shot learning
can be constructed through the guidance of small models so as to enable large models as
assisting knowledge engines to complete the complex task of MRE.

3. Methodology

This section introduces our EMRE2llm framework, which consists of two stages: small
model guidance and LLM knowledge enhancement. The first stage trains a small model
tailored for MRE to obtain guiding information. The training model is based on pure
Transformer [26] cross-attention mechanisms to achieve multimodal learning for MRE.
The second stage transforms the guiding information from the first stage into prompts to
address modality disconnection and task disconnection issues, and finally realizes LLM
knowledge enhancement (GPT-3 [38] is used here). The overall EMRE2llm framework is
shown in Figure 2.

Figure 2. The EMRE2llm framework mainly consists of two stages: small model guidance and
LLM knowledge enhancement. In the small model guidance stage, we enhance the small model
through multimodal relation data augmentation (MRDA) and flexible threshold loss (FTL). In the
LLM knowledge enhancement stage, first, the context guidance from small model outputs and
small model guidance information are obtained; then, caption guidance information is generated by
processing images with a caption generation model; finally, the task description guidance is combined
to be fed into the LLM. The LLM knowledge enhancement stage can process data that the small
model stage fails to handle, which requires additional knowledge bases for supplementation and
further reasoning.

3.1. Small Multi-Model Guidance

LLMs suffer from severe hallucination or overgeneration issues [39], so the usage of
large models alone cannot achieve good performance on subtasks. Small model guidance
not only provides relation category confidence scores for the LLM to refer to, but also
compensates for the LLM’s uncertainties. Both visual and textual modules use pure
Transformer models [40], with cross-attention for modality interaction. Here, we choose
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MKGformer [22] as the baseline. For the MRE task, we propose MRDA and FTL to further
enhance the small model, aiming to address insufficient datasets and imbalanced relations.

The small model uses Transformer-based architecture for both visual and textual mod-
ules. Specifically, the Image Encoder and Text Encoder use the encoder architectures from
BERT [27] and the first K layers of CLIP [25], respectively, while the Modality Interaction
uses their last L-K layers containing cross-attention interactions. Based on the Transformer
architecture with L stacked layers, each layer contains multi-head self-attention (MHA),
feed forward network (FFN), layer normalization (LN) and residual connections. We adopt
the M-Encoder architecture from MKGformer [22] to implement the Modality Interac-
tion part, reducing modality heterogeneity by incorporating the prefix-guided interaction
module (PGI) into self-attention. In the self-attention layer, visual queries and textual
keys/values are operated to aggregate textual information into the visual Transformer
side. MHA performs the attention function in parallel over Nh heads, where each head is
separately parameterized by Wq , Wk , Wv ∈ Rd×dh to project inputs to queries, keys, and
values. Given the input sequence vectors x ∈ Rn×d, the attention heads headMt and headMv

for text and vision are formulated as

headMt = Attn(xtWt
q, xtWt

k, xtWt
v), (1)

headMv = Attn(xvWv
q , [xvWv

k , xtWt
k], [x

vWv
v , xtWt

v]). (2)

3.1.1. Multimodal Relation Data Augmentation

Data augmentation is a necessity for improving data efficiency and addressing insuffi-
cient data volume. Due to the image-text coupling constraints in multimodality, previous
works like ViLT [32] only used RandAugment [41] for image augmentation, and CLIP [25]
just randomly resized cropping.

These multimodal data augmentations are far from sufficient. Additionally, using
traditional image augmentation techniques such as randomly adjusting cropping, flipping,
and changing colors can cause mismatch between text and image information, leading to
the inability of text to keep up with changes in image information. Therefore, we adopt
a method similar to MixGen [42], augmenting data via image fusion and text concatena-
tion without breaking image-text semantics. Image fusion through overlapping retains
positional and color information of the original images, while text concatenation can seam-
lessly fuse textual information without changing semantics. For multimodal relational
data, relation category fusion is performed by text concatenation as well, i.e., the relation
information also doubles correspondingly for the generated image-text pairs with doubled
information volume, as shown in Figure 3.

Figure 3. Our proposed Multimodal Relation Data Augmentation (MRDA) generates new image-text
data by fusing images and concatenating texts and relation sequences for any image-text pair.

For an image-text dataset with N pairs, images and texts are denoted as I and T,
respectively; then, for any two given image-text pairs (Ii, Ti) and (Ij, Tj) where i, j ∈
{1, ..., N} and i 6= j, the formulation for generating a new sample (Ik, Tk) is

Ik = λ · Ii + (1− λ) · Ij, (3)
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Tk = concat(Ti, Tj), (4)

Rk = concat(Ri, Rj). (5)

3.1.2. Flexible Threshold Loss

MRE is essentially a multi-label classification problem with images as additional
information, where the output probability range P(r|es, eo) is [0, 1]. Thresholding is required
to convert probabilities into relation labels. In the field of MRE, most methods use a fixed
global threshold, i.e., binary cross-entropy loss. However, using the same global threshold
for different entity pairs cannot classify well, and different relations have unequal data
volumes, so global thresholding cannot enable fair learning. Especially for image-text
datasets from Internet media, global thresholding fails to handle imbalanced entity pair
number distributions and long-tail classes.

Our FTL draws inspiration from ATLOP’s [43] clever threshold class TH setting, where
the positive–negative split for each entity pair (es, eo) is determined by the special threshold
class TH . The logit for (es, eo) greater than the logit for TH is predicted as positive, otherwise
it is predicted as negative. Of course, this threshold class TH is learned in the same way as
other classes.

Specifically, we divide the labels for an entity pair T = (es, eo) into two subsets: the
positive subset PT and the negative subset NT . If T has a positive relation, it must be in PT ,
otherwise PT is empty. The negative subset NT contains non-positive relations, NT = R\PT .
Unlike ATLOP’s [43] unified computation, we compute the probabilities P(ri|(es, eo)) and
P(rTH |(es, eo)) separately for each relation ri and the threshold relation rTH of the entity
pair. To address the long-tail issue, we modify ATLOP’s [43] loss by incorporating focal
loss [44] to balance the positive logits. The formulas are as follows:

P(ri|(es, eo)) =
exp(logit(s,o)

ri )

exp(logit(s,o)
ri ) + exp(logit(s,o)

TH )
, (6)

P(rTH |(es, eo)) =
exp(logit(s,o)

rTH )

∑rj∈NT∪{TH} exp(logit(s,o)
rj )

, (7)

LRE = ∑
ri∈PT

(1− P(ri|(es, eo)))
γlog(P(ri|(es, eo))) + P(rTH |(es, eo)). (8)

In the above loss function, γ is a hyperparameter that aims to pay more attention to
classes with low confidence. That is, if P(ri|(es, eo)) is low, the loss contribution from the
relevant class will be higher, which enables better optimization for long-tail classes.

3.2. Large Language Models for Knowledge Augmentation

LLMs [45–48] have shown impressive capabilities in contextual learning. Although the
performance of LLMs on downstream subtasks is still far below the supervised baselines,
LLMs possess powerful external knowledge bases and reasoning abilities that small models
lack. We filter out the non-deterministic results obtained by the small model, which
require reasoning and assistance from external knowledge bases. That is, we further obtain
knowledge-enhanced results through LLMs [16].

3.2.1. Introduction to the GPT-3.5

GPT-3 [38], one of the most outstanding LMMs, is an autoregressive language model
pretrained on massive datasets with powerful zero-shot capabilities. In contextual reason-
ing, few-shot learning formulates new downstream tasks as a text sequence generation
task on top of the frozen GPT-3 model. The GPT-3.5 series is trained using instruction
learning and reinforcement learning from human feedback (RLHF) to guide the model,



Appl. Sci. 2023, 13, 12208 7 of 14

which connects a few examples of a task with the input as a prompt, and does not require
parameter updates. However, it is noteworthy that such effective few-shot learning requires
an enormous model as support. We utilize the few-shot ability of LLMs in our second
stage. Although the results may not be as good as continuing to train the LLMs on vertical
domains and task-specific tuning, this increases the flexibility and convenience of our
framework, with the focus being on ways to elicit the potential capabilities of LLMs under
insufficient resource conditions.

In the few-shot inference process of LLMs, for a frozen GPT-3.5 model with input
sample x and target y, the generation condition is composed of the context examples
Ek = {e1, e2, ...en} and the prompt information pro, denoted as p(x, Ek, pro) . For a yi at
some time step from the model output Yk = {y1, y2, ..., yn}, we have

yi = argmax
y‘

i

p(y‘
i|p, y<i). (9)

Here, we chose the two most advanced GPT-3.5 models: text-davinci-003 and GPT-3.5-
turbo. Although GPT-3.5-turbo is an improvement over text-davinci-003, optimized for
chat applications, according to our experiments, GPT-3.5-turbo is more unstable compared
to text-davinci-003 for the MRE task. This is reflected in issues like ambiguous answers
and redundant information.

3.2.2. Prompt Construction

The prompt input consists of a task description prompt, a caption prompt, a context
prompt and a small model prompt, as shown in Figure 4. The task description prompt intro-
duces the MRE task and reasoning ideas, instructing the LLM to first judge entity category
information, and then infer relations based on the caption and small model prompts. The
caption prompt is generated by describing the image multiple times using BLIP2 [49] and
concatenating as direct image information conversion. The small model prompt provides
relation category and confidence scores, serving as auxiliary information for GPT-3.5 to
determine relations. Of course, not all data are used as prompt information, because GPT-
3.5 is an autoregressive language model for text generation. Its direct application to MRE
tasks introduces discrepancies, leading to poor performance on simple instances. We select
difficult samples with low confidence scores from the small model as inputs to GPT-3.5 for
knowledge enhancement.

Figure 4. The guidance information fed into the LLMs consists of task description guidance, caption
guidance, context guidance, and small model guidance to guide GPT-3.5 in predicting answers for
uncertain data.

4. Experiments

Next, we introduce specific details of the experimental settings, including the training
stage of the augmented small model and the invocation stage of GPT-3.5. Then, we
evaluate the effectiveness of the whole model on the MNRE dataset, and finally conduct
comprehensive ablation experiments.
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4.1. Datasets

We evaluate on MNRE, currently the primary dataset for MRE. The text and image
posts are crawled from Twitter, containing 15 k samples and 9 k images with 23 relation
categories. The multimodal relation extraction MNRE dataset consists of the multimodal
entity extraction datasets Twitter15 [50] and Twitter17 [51], as well as real data crawled
from Twitter. The topics of these data include music, sports, and social events, and can be
divided into 23 types of relational information, as shown in Figure 5.

Figure 5. The relation categories and quantity per category in the MNRE dataset.

The statistics on the number of sentences, entities, and images in the multimodal
dataset are shown in Table 1.

Table 1. The statistics on sentences, entities, etc., in the MNRE dataset.

Dataset Sentence Entity Image

MNRE 9201 30,970 9201

We use MKGformer [22] as the small MRE model to generate small model guidance.
To improve the small model’s performance on insufficient and imbalanced data, we incor-
porate MRDA and FTL. Data augmentation happens during small model training. Since
the image dataset is obtained via object subimages from RCNN [52] and visual grounding,
the augmentation corresponds to random overlapping images, concatenating texts and
relations for the one-to-many image-text case within the same batch. FTL addresses prob-
lems of fixed threshold and class imbalance by building on ATLOP’s [43] idea of using a
threshold class TH for splitting.

For LLM knowledge enhancement, we use GPT-3.5 text-davinci-003 and GPT-3.5-turbo
with sampling temperature set to zero to remove randomness. For prompt data construction,
we use CAPTION_N = 3 and EXAMPLES_N = 10 by default. The caption model is
obtained by further fine-tuning BLIP2_OPT on COCO. Nucleus Sampling is used for decoding.
The random context examples are extracted from the train set, similar to the prediction process,
but requiring additional variables to mark whether the train predictions are correct to enable
uniform sampling. We note that when the descriptive prompt is good enough to compensate
for task disconnection, random context examples provide little gain.
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4.2. Overall Performance

We compare our EMRE2llm model against several baselines and recent models for
MRE. These models can be categorized into text-only models and image-text models, to
demonstrate the superiority of our model.

First, text-only traditional models are used to demonstrate the indispensability of vi-
sual information in multimodality. We select two representative text RE models: PCNN [53]
and MTB [54], a BERT-based RE pre-training model.

Second, we select previous SOTA models on image-text datasets. UMT [55] uses multi-
modal Transformers with an auxiliary entity span detection module. BERT + SG [17] connects
BERT-derived text representations with scene image features. VisualBERT [56] is a single-
stream pretrained visual language model. MEGA [17] employs dual image alignment to
capture correlations between textual and visual objects.

Finally, we conduct a comparison with the latest SOTA models. EEGA [21] first proposes
the joint extraction task JMERE of multimodal entities and relations, representing text and
images as two images and aligning visual and textual objects. HVPNeT [20] proposes a
dynamic gated aggregation strategy to realize multi-level multi-scale visual features as fused
visual prefixes. MKGformer [22] uses pure Transformer architecture with PGI and CAF
cross-attention techniques to jointly learn textual and visual information.

Table 2 shows the results of our EMRE2llm model and other models on the MNRE
dataset, also contrasting our enhanced small model EMRE2llm_nollm. The EMRE2llm_nollm
model is our enhanced small model in the first stage. Its output is processed simply based
on the confidence scores, which means the relation labels are directly assigned according to
the predicted probability values for each category.

Table 2. Performance comparison of various baseline models on the MNRE dataset. Here, MKGformer*
is our re-implemented result. Even compared to the 81.95 F1 of MKGformer in the original paper, our
EMRE2llmt has noticeable gains. The best scores are bolded.

Modality Methods
MNRE

Precision Recall F1

Text
PCNN [53] 62.85 49.69 55.49

MTB [54] 64.46 57.81 60.86

Text + Imag

UMT [55] 62.93 63.88 63.46

BERT + SG [17] 62.95 62.95 62.80

VisualBERT [56] 57.15 59.48 58.30

UMGF [2] 77.51 76.01 76.75

MEGA [17] 64.51 68.44 66.41

EEGA [21] 78.27 78.91 78.59

HVPNeT [20] 83.64 80.78 81.85

MKGformer* [22] 80.83 79.06 79.94

EMRE2llm_nollm(ours) 84.34 80.78 82.52

EMRE2llmt(ours) 85.06 80.94 82.95

In order to better utilize the prompt information from small models and guide GPT-3.5,
we adopt confidence screening strategies and context guiding strategies. Specifically, the
confidence screening strategy divides the confidence scores of the relations predicted by
the small model into intervals using the γ hyperparameter to obtain data with uncertain
small model correctness. This ensures the effectiveness of the small model on data without
excessive external knowledge bases while avoiding the hallucination problem of large
models as much as possible, and dealing more with data with diffuse factors. For the
context guiding strategy, we select context example data consisting of part of the training
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data, with specific implementation methods including manually selected fixed numbers
and random sampling. Both help guide GPT-3.5’s understanding of the relation extraction
task to some extent.

4.3. Ablation Studies

We conduct ablation studies on our model using the default settings in Section 4.2
to further demonstrate the efficacy of each module. This includes the impact of data
augmentation parameters for MRDA, the thresholding and long-tail enhancement effects
of FTL, and the selection of prompting ratios for GPT-3.5.

4.3.1. Enhancement Strategies for MRDA

We adopt random concatenation within the same batch and test the impact of different
augmentation degrees. As shown in Table 3, augmenting half of the data works best, i.e.,
preserving equal original data for training. Since prediction uses raw test data, augmenting
half for training retains real data characteristics while providing augmentation; hence, it is
the most suitable.

Table 3. Experiments of applying MRDA to MKGformer-based models on the MNRE dataset. By
comparing different augmentation degrees, the better parameter setting is obtained. The best scores
are bolded.

Method = MKGformer_MRDA (batch = 64)
MNRE_F1

Test Val

num = 16 80.54 76.92
num = 32 81.32 77.18
num = 64 81.10 76.42

4.3.2. The Efficacy of FTL

In Table 4, we compare vanilla MKGformer, MKGformer with TH thresholding, and
our proposed FTL on the MNRE dataset, validating the superiority of FTL.

Table 4. Comparison of the phenotype of MKGformer on the MNRE dataset without data aug-
mentation, with TH threshold data augmentation, and with our proposed FTL. The best scores
are bolded.

Method
MNRE_F1

Test Val

MKGformer_MRDA 81.32 77.18
MKGformer_MRDA + TH_threshold loss 81.00 76.91

MKGformer_MRDA + FTL 82.36 77.51

4.3.3. LLM Knowledge Enhancement

To enable fair comparison, we implement our proposed MRDA and FTL on top of
MKGformer, and compare the benefits of LLM knowledge enhancement under the same
dataset. As shown in Table 5, by comparing different uncertainty data ratio hyperparame-
ters, the good stability of small models on significantly correct data is verified, while the
fact that large models complement the limitations of small models under the assistance
of external knowledge bases is also confirmed. As the table shows, it can be seen that the
uncertainty and instability of large models lead to relatively lower scores on MRE tasks
without the assistance of large models. The uncertain data of small models under test
confidence scores below 0.47 need further assistance from large models.
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Table 5. Demonstration of the effect of LLM knowledge enhancement and the appropriateness of
confidence scores. The best scores are bolded. We divide the confidence score intervals of the relations
predicted by the small model using the γ hyperparameter and use grid search to obtain the optimal γ

hyperparameter. Below, we only show some representative parameter values for illustration.

Method acc micro_f1

EMRE2llm_nollm 91.51 82.52
γ < 0.4 91.64 82.68
γ < 0.47 91.57 82.79
γ < 0.5 91.45 82.31
γ < 0.7 90.33 80.36

only llm 85.56 73.60

5. Conclusions

In this paper, we introduce a new MRE framework EMRE2llm. Specifically, the
first stage further enhances the ability of small models to deal with data scarcity, fixed
thresholds, and long-tail distributions, achieving state-of-the-art performance of small
models for MRE. The second stage better leverages GPT-3.5 to resolve examples that small
models cannot solve, which often require common sense reasoning and external knowledge
base capabilities, through the guiding information generated by small models as well as
other prompt information like image-to-text. We conduct extensive ablation experiments on
the MNRE dataset, a major MRE dataset, to demonstrate the effectiveness of each module,
and show that EMRE2llm outperforms all existing state-of-the-art methods.

Moreover, our framework can be extended to other classification tasks handled by
small models, as the two stages have no strong coupling and can be flexibly replaced
iteratively. For example, in the key phrase extraction task, we can use a well-designed
small model (such as the common BERT-CRF) to output confidence scores for each phrase
category, which can serve as our first stage. The second stage can then directly use our
method of prompting GPT-3.5, such as the design of Prompts. The advantage of such a
framework is that it can better handle samples that require external knowledge bases and
complex reasoning. Of course, our second stage utilizes the few-shot ability of LLMs. If we
need the LLM to be more effective in the vertical domain of this task, we need to continue
training the LLM, but this would cause a loss of the flexibility of our framework.
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