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Abstract: Neural machine translation has achieved good translation results, but needs further im‑
provement in low‑resource and domain‑specific translation. To this end, the paper proposed to
incorporate source language syntactic information into neural machine translation models. Two
novel approaches, namely Contrastive Language–Image Pre‑training(CLIP) and Cross‑attention Fu‑
sion (CAF), were compared to a base transformer model on EN–ZH and ZH–EN pair machine trans‑
lation focusing on the electrical engineering domain. In addition, an ablation study on the effect of
both proposed methods was presented. Among them, the CLIP pre‑training method improved sig‑
nificantly compared with the baseline system, and the BLEU values in the EN–ZH and ZH–EN tasks
increased by 3.37 and 3.18 percentage points, respectively.

Keywords: neural machine translation; graph neural network; syntax parsing tree; transformer

1. Introduction
Machine translation [1] is the process of automatic translation using computers, and

it is an important research direction in the fields of natural language processing and ar‑
tificial intelligence. Due to extensive differences in grammar, vocabulary, and cultural
background among different languages, and the increasing demand for accuracy and pro‑
fessionalism in translation, traditional rule‑based and statistical methods [2] are no longer
sufficient. Neural machine translation (NMT) [3] offers a more effective solution. Neural
machine translation, trained on large‑scale corpora and deep neural network models, can
bettermeet the requirements of accuracy and expertise in translationwithin specialized do‑
mains.

Each sentence in a language is not a simple list of words, but rather is constrained by
the grammatical structure of the language. Neural machine translation models often over‑
look the syntactic structure information of sentences during translation, leading to issues
such as mistranslation, over‑translation, and omission in the translated results. Therefore,
we believe that incorporating syntactic structure information into neural machine transla‑
tion models can effectively handle ambiguity and complex language structures, resulting
in more accurate translation outputs. The syntactic tree structure is illustrated in Figure 1.

There are many ways to integrate syntactic information into neural machine transla‑
tion: for example, Chen et al. [4] proposed using a bidirectional tree encoder to learn struc‑
tural representations of trees. The tree coverage model enables the model’s attention to de‑
pend on the source‑side syntactic information, thereby enhancing the translation accuracy.
However, this approach can lead to increased complexity in the neural network structure,
resulting in lower training efficiency. Eriguchi et al. [5] proposed a model for perform‑
ing neural machine translation with conversion from strings into trees, which translates
the source sentence into a linearized, lemmatized constituency tree and enriches the out‑
put with syntactic information. The disadvantage of this approach is that the Tree‑LSTM
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network structure is relatively complex. Xin Zheng and Hailong Chen [6] introduced de‑
pendency parsing and Long Short‑Term Memory (LSTM) networks to construct the syn‑
tactic structure information of the source language in a neural machine translation system.
Sufeng Duan et al. [7] proposed a method to linearize syntactic information and incorpo‑
rate it into the input embedding layer, as well as encode the depth of the tree into the
position encoders of the transformer. This approach only requires simple modifications to
the model’s architecture. However, the linearized sequences are often long, resulting in
decreased training efficiency. Tamura and Ma [8] proposed a neural machine translation
method based on neural syntactic distance, which requires a large amount of training data
to effectively train the neural syntactic distance model, and also incurs a high computation
cost in calculating syntactic distance. Bugliarello et al. [9] proposed a novel parameter‑free
local self‑attention mechanism, which has shown good performance in handling long sen‑
tences and low‑resource scenarios. But, the methods of Gong [10] and Bugliarello et al.
require a large amount of training data and are also limited by the parser. Most of these
methods utilize Tree‑LSTM [11], directly encode syntactic information in the tree structure,
or represent the syntactic tree using linearization [12]. While they have an improved trans‑
lation performance, they often require a large amount of training data and incur additional
computational costs.
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We propose two novel methods of integrating syntactic information into NMT. The
first method involves pre‑training using the CLIP [13] model, where the text encoder and
graph neural network are used to extract information from both the text and syntactic
tree modalities, and the obtained information is then passed into the transformer model
for machine translation. The second method involves cross‑attention fusion, where we
use graph neural networks (GNNs) [14] and transformers separately to process syntactic
tree graphs and text data, respectively, and then fuse the two data sources using a cross‑
attention mechanism to complete the machine translation task. Our proposed methods
effectively overcome the drawbacks of the existing approaches.

We use an electrical domain corpus for model training, and use the Stanford Parser
for syntax analysis to obtain a syntax tree and convert it into a graph structure. Inspired
by multimodal neural machine translation [15], we use GNNs to extract the grammatical
information of sentences from the syntactic tree graph, and integrate the grammatical infor‑
mation of sentences into neural machine translation. The main contributions of this paper
are as follows:
1. This paper proposes two approaches to incorporate syntactic structure information

into neural machine translation.
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2. This paper compares the proposed method with the standard transformer, and an‑
alyzes the impact of sentence complexity on the translation results of the transla‑
tion model.

3. We adopt a research method of neural machine translation based on an electrical cor‑
pus, which fully utilizes the professional terminology and language conventions in
the field of electrical engineering, in order to meet the practical application require‑
ments. This approach results in machine translation that better aligns with the pro‑
fessional requirements.

2. Related Methods
2.1. Graph Neural Networks

Graph neural networks (GNNs) [14] are a type of deep learning model used for pro‑
cessing graph‑structured data. The core idea of GNNs is to learn representations for each
node by propagating and aggregating information from the nodes and edges of the graph.
GNNs can automatically learn complex relationships between nodes and the global struc‑
ture of a graph without relying on manually engineered feature engineering. Due to their
strong performance, interpretability, and powerful expressive capabilities for graph struc‑
tures, GNNs have recently emerged as a practical method for graph analysis. They are
widely applied in various domains such as social network analysis, recommendation sys‑
tems, image and vision tasks, molecular chemistry, text and natural language processing,
and more.

A graph is composed of many nodes and edges, and each node is defined by its own
characteristics and the characteristics of the nodes connected to it. When we visualize the
syntax tree, it becomes a graph, as shown in Figure 1. The structural information of the
syntax tree can be extracted by traversing the input syntax tree graph structure using a
GNN. Nodes are established to represent each word or piece of punctuation in the input,
and edges represent the relationships between them. GNNs can extract the dependency
relationship between different nodes in the syntax tree and effectively encode the structure
information of the syntax tree into a vector, facilitating better integration into the neural
machine translation model. A graph can be represented by a set V of vertices or nodes and
a set E of edges, namely:

G = (V, E) (1)

where vi belongs toV to represent a node, and eij represents an edge from vj to vi, as shown
in Figure 2. eij =

(
vi, vj

)
∈ E. A is an adjacency matrix and A ∈ Rn×n, when eij ∈ E, then

Aij = 1; when eij /∈ E, then Aij = 0.
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A GNN iteratively updates the feature vectors of nodes. In each iteration, the feature
vector of a node interacts and aggregates information with the feature vectors of its neigh‑
boring nodes to capture the dependency relationships between nodes. The model formula
expression for a GNN is as follows:

In each iteration, for node v, its updated feature vector can be expressed as:

h(t+1)
v = AGGREGATE

{
f (h(t)v + Nv)

}
(2)
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Nv = ∑
j∈Ni

Wj•xj (3)

Among them, h(t)v represents the feature vector of node v after the t‑th round of itera‑
tions, and Nv represents the feature vector set of neighbor nodes of node v. xj represents
the feature vector of the j‑th neighbor node, and Wj is the weight matrix. AGGREGATE
represents an aggregation operation, the purpose being to merge the information of neigh‑
bor nodes into the feature vector of node v to reflect the relationship between node v and
its neighbor nodes. f represents an update function used to update the feature vector of
node v, with which can interact and aggregate information between the feature vector of
node v and the feature vectors of its neighbor nodes. The illustration of GNN aggregation
operation is shown in Figure 3.
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Using multiple iterations, the GNN model can progressively update the feature vec‑
tors of nodes and extract information between different nodes in the syntactic tree.

2.2. Transformer
A transformer is a neural network model for sequence‑to‑sequence learning. Since its

introduction by Vaswani [16] and others in 2017, the transformer has achieved great suc‑
cess in the field of natural language processing. It has since expanded to other fields such
as image processing [17–19], speech processing [20,21], and more. Currently, the most
popular ChatGPT [22,23] language model is trained based on the transformer architecture.
The transformer model is unique in that it only uses self‑attention mechanisms and stan‑
dard feed‑forward neural networks, without relying on any recurrent units or convolution
operations. The advantage of the self‑attention mechanism is that it can directly model the
relationship between any two units in the sequence, thus effectively solving the problem
of long‑distance dependence.

Figure 4 shows the structure of a transformer. Both the encoder and the decoder are
composed of several layers with the same structure, but the parameters are not shared.
Each layer of the encoder consists of two sub‑layers, followed by a self‑attention sub‑layer
and a feed‑forward network sub‑layer. Each sub‑layer has a residual link followed by a
layer normalization operation. The decoder also has six layers, but with three sublayers
and an attention sublayer (which computes attention on the encoder output).
Figures 5 and 6 show the difference between the inputs of twodifferent attention sublayers,
respectively. The input of each layer of the encoder and decoder is a sequence of vectors,
and the output is a sequence of vectors of the same size.
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Given a sentence x = {x1, x2, x3, . . . , xL} at the source language end, where L repre‑
sents the length of the input sentence at the source end, there are three weight matrices
to generate the query (Q), key (K), and value (V) after the word embedding layer and
position encoding layer, and the value (V) after the word embedding layer and position
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encoding layer. The dimension of Q and K is L × dk, and the dimension of V is L × dv; dk
and dv represent the size of the query and value, respectively. After obtaining Q, K, and
V, the attention operation can be performed. The attention operation formula is:

Attention(H) = softmax(
QKT
√

dk
) (4)

The sub‑layers between the encoder and the decoder use residual connections, and
the formula for residual connections is:

hl = hl−1 + fsl(hl−1) (5)

Among them, hl represents the output of the first sublayer, and fsl(h(l−1)) represents
the functional function of this layer.

3. Model
3.1. CLIP Pre‑Training Fusion

CLIP (Contrastive Language‑Image Pretraining) is a pretraining model developed by
OpenAI, aiming to build a shared semantic feature space by learning the contrastive re‑
lationship between images and text. The design of CLIP is based on the idea that images
and text should be treated as equally important inputs, and their semantic relationship can
be established via joint training. Traditional computer vision models typically convert im‑
ages into vector representations for tasks like image classification and detection. However,
this approach fails to fully utilize the rich information within images and the interplay be‑
tween images and text. CLIP innovatively treats images and text on equal footing, training
the model to understand their semantic relationship using joint learning.

Figure 7 shows the model architecture of CLIP used in this paper for pre‑training.
The CLIP model consists of two encoders, the text encoder and the graph encoder, which
are responsible for processing text and image data, respectively. The text encoder utilizes a
transformermodel to transform the input text data into a high‑dimensional text feature vec‑
tor (TN) representation. Our graph encoder employs a GNNmodel to learn and represent
the syntactic information within the input graphs and convert it into a high‑dimensional
graph feature vector (IN) representation.
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Next, we use a fully connected layer as the mapping function to map the text feature
vector (TN) and the graph feature vector (IN) to a shared multimodal feature space. We
aim to map them to a feature space of dimension D.
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First, we apply a linear transformation to the text feature vector (TN) to map it to a
feature space of dimension D. This can be achieved using a weight matrix (Wt) and a bias
vector (bt), represented as:

Zt = Wt × TN + bt (6)

Among them, Zt is the intermediate feature vector after linear transformation of the
text feature vector.

Next, we apply the ReLU non‑linear activation function to the intermediate feature
vector (Zt) to introduce non‑linear transformation. This can be expressed as:

At = ReLU(Zt) (7)

Among them, At is the text feature vector after passing the non‑linear activation func‑
tion.

Similarly, weperform similar linear transformation andnon‑linear activation function
operations on the graph feature vector (IN) to obtain the intermediate feature vector of
the graph:

Zi = Wi × IN + bi (8)

Ai = ReLU(Zi) (9)

Among them, Zi is the intermediate feature vector after linear transformation of the
graphic feature vector, and Ai is the graphic feature vector after going through the nonlin‑
ear activation function.

Finally, we combine the non‑linearly transformed text feature vector (At) and graph
feature vector (Ai) to obtain the shared multimodal feature vector. This is achieved by a
linear transformation using an additional weight matrix (Wm) and bias vector (bm), repre‑
sented as:

M = Wm × [At : Bi] + bm (10)

Among them, [At : Bi] means splicing the text feature vector and the graphic feature
vector in the feature dimension to obtain a vector with a 2D dimension. M represents the
final multimodal feature vector.

In this way, the GNN model and the transformer model can mutually incorporate
information from both modalities, thereby better capturing the correlations and seman‑
tics between text and graphics. Finally, we fine‑tune the transformer model, which incor‑
porates information from both modalities, for machine translation tasks. This approach
leverages the correlation and semantic information between the text and graphics to im‑
prove the quality and accuracy of machine translation, bringing new ideas and methods
to the development of machine translation technology.

3.2. Cross‑Attention Fusion
The conventional neural machine translation model first encodes the input x of the

source language into a hidden layer vector, then the systemobtains the context information
zt of the source language and the target using the attention mechanism, and finally, the
decoder predicts the output y based on the hidden layer information of the target language,
as shown in Figure 8.
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In this section, wepropose a neuralmachine translation approach called cross‑attention
fusion (CAF), as shown in Figure 9. Cross‑attention fusion is a method that integrates syn‑
tactic structure information into the neural machine translation model to enhance its mod‑
eling capability for both semantic and syntactic information. Specifically, we input the text
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data into a transformer model, where they undergo multiple layers of self‑attention mech‑
anisms and feed‑forward neural network layers, resulting in the output of the transformer
model. Simultaneously, we use the syntactic structure graph as input, and apply the GNN
model to iteratively update the nodes and edges of the graph to obtain the output of the
GNN. Then, we use a cross‑attention mechanism to fuse the output of the GNN with the
linear layer output of the transformer model. To be more specific, we calculate the cor‑
relation scores between the GNN’s output and the transformer linear layer output, and
then use attention weights to perform weighted fusion. Finally, we reinput the result of
the CAF to the linear layer of the transformer model for reprojection, combining the fused
information with the original representation of the transformer model for downstream
tasks. By employing this CAF method, we can fully leverage the transformer model’s self‑
attention mechanism and the GNN model’s ability to model syntactic structure graphs.
This approach integrates the semantic information (transformer model) and the syntac‑
tic information (GNN model) of the text data, allowing their information to influence and
complement each other using cross‑attention fusion, thereby enhancing themodel’s ability
to express and understand the text data. This CAFmethod is similar to the backend fusion
approach in multimodal fusion, as it combines information from different data sources to
improve themodel performance. However, it differs frommultimodal fusion in that it per‑
forms fusion between different representations of the same data source, rather than fusion
across different modalities from different data sources.
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4. Experiments
4.1. Data Preparation

To realize machine translation in the field of electrical engineering, this paper uses all
Chinese and English parallel corpora from the electrical field as data sets. These corpora
mainly come from some Chinese and English materials in the field of electrical engineer‑
ing, including professional books [24,25], literature and some technical forums and official
websites related to the electrical field to ensure the authority, professionalism and accuracy
of the corpus. In the experiment, about 190,000 bilingual parallel corpora were used as the
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training set, and 2000 bilingual parallel sentence pairs were used as the verification set and
test set.

4.2. Experimental Setup and Method
This experiment uses the Ubuntu 18.04, a GPU processor, and machine translation

training on a 2080 graphics card. This article utilizes the open‑source pre‑training model
CLIP for pre‑training (GitHub: https://github.com/openai/CLIP, accessed on 4 April 2023),
while the baseline model employs the current mainstream transformer. The vocabularies
of both Chinese and English are set to 40,000 words. Low‑frequency words not included
in this vocabulary are replaced with “UNK”. Both languages employ Byte Pair Encoding
(BPE) for word segmentation. The dimensions of word embedding and the hidden layer
are both set to 512, while the dimension of the internal FFN (feed‑forward neural network)
layer is set to 2048. The model is trained using the Adam optimizer, and the learning rate
is set to 1× 10−4, β1 = 0.9, β2 = 0.99, ε = 10−9. The model’s random dropout rate is set at
0.1, and the batch size is 64. Beam search, with a search width of 5, is used for decoding.

Weutilize the case‑insensitive BLEU [26] value as themain automatic evaluation index
to evaluate the translation quality based on n‑gram accuracy calculation, as follows:

Countclip(n‑gram) = min{Count(n‑gram),MaxRe f Count(n‑gram)} (11)

Pn =
∑C∈{Candidates} ∑n‑gram∈C Countclip(n‑gram)

∑C′∈{Candidates} ∑n‑gram′∈C′ Count(n‑gram′)
(12)

BP =

{
1 if c > r
e(1−r/c) if c ≤ r

(13)

BLEU = BP × exp[(∑N
n=1 wn log Pn)] (14)

In the formula, n‑gram represents the number of times that n‑gram phrases appear
in the machine translation results. In this paper, n = 4, r is the length of the reference
translation and c is the length of the machine translation.

5. Result Analysis
5.1. Comparison of Fusion Methods

In this paper, we use the transformer [27] as the baselinemodel, and themodel + CLIP
pre‑trained by the transformer and GNN is implemented first. The experimental results
are shown in Table 1. Compared to the baseline model for the EN–ZH task, the translation
model using CLIP pre‑training shows an increase in the BLEU value of 3.37 percentage
points, while the translationmodel using CAF shows an increase of 1.31 percentage points.
Similarly, compared to the baselinemodel for the ZH–EN task, the translationmodel using
CLIP pre‑training shows an increase in the BLEU value of 3.18 percentage points, while
the translation model using cross‑attention fusion shows an increase of 1.03 percentage
points. By comparing these three translation models, we can observe that the model pre‑
trained with CLIP achieves the best performance. Whether in the EN–ZH or ZH–EN trans‑
lation tasks, the CLIP‑pretrained translation model consistently outperforms the model
with CAF bymore than two percentage points in terms of the BLEU score. We hypothesize
that the information obtained after CLIP pre‑training can more fully reflect the syntactic
and semantic information of the sentence.

https://github.com/openai/CLIP
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Table 1. Experimental results of +CLIP and CAF models in EN–ZH and ZH–EN.

Model
EN–ZH ZH–EN

BLEU ∆ BLEU ∆

Transformer [27] 34.54 ‑ 29.23 ‑
+CLIP 37.91 ↑ 3.37 32.41 ↑ 3.18
CAF 35.85 ↑ 1.31 30.26 ↑ 1.03

Where: ∆ is the BLEU score improved by the +CLIP model and the CAF model compared to the transformer
model. ↑ represents “increase”.

Analyzing the experimental results as shown in Table 1, we can draw the follow‑
ing conclusions:
(1) The +CLIP model outperforms the CAF model. We explore the reasons behind the

superior performance of the +CLIP model by comparing its differences with the CAF
model in the machine translation task:
(a) Different data processing approaches: The CAF method utilizes a GNN to

process syntactic tree graph data and employs a transformer model to han‑
dle textual data. Finally, a cross‑attention mechanism is used to fuse them
together. But, the +CLIP method leverages the CLIP model for multimodal
pretraining, mapping both textual and visual data into the same multimodal
feature space. This ability to fusemultimodal features enables the CLIPmodel
to better understand andmodel the relationship between syntactic tree graphs
and text, capturing the semantic information of sentencesmore effectively and
thus achieving a better performance in machine translation tasks.

(b) Different feature fusion approaches: CAFutilizes a cross‑attentionmechanism
to fuse the syntactic tree graph and textual data. However, +CLIP achieves fea‑
ture fusion usingmultimodal pretraining. This fusion approachmaps the vec‑
tor representations of text and images into the samemultimodal feature space,
allowing better utilization of this feature space containing information from
both modalities during fine‑tuning. The use of this shared feature space may
contribute to improved generalization and representation capabilities, thereby
enhancing the machine translation performance.

(c) Semantic understanding capability: The +CLIP approach achieves cross‑modal
semantic understanding of text and images usingmultimodal pretraining, cap‑
turing the semantic correlations between them. However, the CAF method
focuses on a semantic understanding of the sentence structure and dependen‑
cies. It utilizes aGNN to process syntactic tree graph data and employs a trans‑
former model to handle textual data, aiming to better understand the struc‑
tural composition anddependency relationshipswithin sentences. While both
methods possess semantic understanding capabilities, their emphasis and im‑
plementation differ, leading to variations in their performance.

These differences in feature fusion, semantic understanding and implementation con‑
tribute to the superior performance of the CLIP model:
(2) By comparing the translation results of the two EN–ZH and ZH–EN language pairs,

it can be seen that the effect of syntactic information fusion is more obvious in EN–
ZH. The main reason is that English is more complex in syntactic structure than Chi‑
nese. The syntactic structure of Chinese is mainly expressed based on the position
and order of words, while English pays more attention to the expression of gram‑
matical relationships, such as the relationship between subject and object, and the
relationship between subordinate clauses and main clauses. Therefore, adding syn‑
tactic information to English translation can better capture the syntactic structure of
the source language and help improve the translation accuracy and fluency.
Comparedwith the baseline systems in Table 1, it can be seen that integrating syntactic

information into neural machine translation can indeed improve the translation accuracy
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of themodel, which also demonstrates the effectiveness of the two approaches proposed in
this paper for incorporating syntactic information into neural machine translation models.

5.2. Comparison of BLEU Values of Different Sentence Lengths
We assume that longer sentences contain more information, and we divide sentence

length into six groups by intervals of 10. We compare the baseline model, +CLIP and CAF,
using the BLEU scores to evaluate the translation quality across different sentence lengths.
The results are presented in Figures 10 and 11.
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Figures 10 and 11 demonstrate that the two methods proposed in this paper achieve
better translation results than the baseline model for both the EN–ZH and ZH–EN tasks.
Analyzing the experimental results reveals that syntactic information plays a crucial role in
machine translation, particularly for longer and complex sentences. It provides the model
with additional contextual information and grammar rules, aiding in a better understand‑
ing of sentence structure, resolving ambiguities and polysemy and guiding the model to
generate more accurate and grammatically appropriate translations that align with the tar‑
get language’s rules and conventions.

5.3. Ablation Experiment
To explore the specific effects of the two proposedmethods, two ablation experiments

are designed in this paper. The first is to retain the fusion method of cross‑attention un‑
changed, and compare the effect of using CLIP pre‑trained data on the translation results.
The second is to use CLIP pre‑trained data by comparing the effect of simple average fu‑
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sion and our cross‑attention fusion method on the translation results. The principle of the
average fusionmethod is to simply average the output of the transformer and the output of
the GNN to predict the probability distribution of the target vocabulary. The model struc‑
ture diagram of average fusion is similar to Figure 9, just replacing the cross‑attention part
with the average fusion function. The two comparison models in the first ablation experi‑
ment are AF + CLIP and CAF. The former uses both CAF and +CLIP, while the latter only
uses CAF without +CLIP. The two comparison models in the second ablation experiment
are CAF + CLIP and AF + CLIP. The former utilizes CAF and +CLIP, and the latter utilizes
average fusion and +CLIP. The experimental results are shown in Table 2.

Table 2. Experimental results of two ablation experiments.

Model
EN‑ZH ZH‑EN

BLEU ∆ BLEU ∆

CAF 35.85 ‑ 30.98 ‑
CAF + CLIP 31.87 ↓ 3.98 25.35 ↓ 5.63
AF + CLIP 30.89 ↓ 5.05 24.75 ↓ 6.23

Where: ∆ is the BLEU score reduced by the CAF + CLIP model and the AF + CLIP model compared to the CAF
model. ↓ stands for “lower”.

By analyzing the experimental results shown in Table 2, the following can be obtained:
(1) The translationmodel CAF + CLIP that uses both cross‑attention fusion and CLIP pre‑

training cannot effectively improve the performance of themodel, butwill cause a sig‑
nificant decline in the quality of the translation. This paper argues that the reason for
this result is that the characteristics of CAF and +CLIP are not suitable for simultane‑
ous use. The core of CAF is to fuse syntactic tree graph data and text data to improve
the translation ability of the model. Its main advantage is that it can use the relation‑
ship between words in the syntactic tree graph data to improve the model’s ability
to understand the semantics of sentences. However, this approach may be replaced
by CLIP pre‑trained models that have learned rich semantic representations from
multiple vision and language tasks using large‑scale self‑supervised learning. Using
CAF and CLIP pre‑trained models at the same time may lead to redundant informa‑
tion fusion, which affects the performance of the model. In addition, the CAF + CLIP
model needs to process a large number of parameters during training, which may
cause overfitting and increase the training time, thus affecting the performance of the
model. Therefore, models pre‑trained using cross‑attention fusion or CLIP alone can
better utilize their respective advantages and improve the performance of the model.

(2) After using CLIP pre‑training, the difference between the translation model using
cross‑attention fusion and the translation model using average fusion is not signifi‑
cant. However, in general, the translationmodelwith cross‑attention fusion performs
better. The reason may be that cross‑attention fusion can better utilize the informa‑
tion interaction between different models, thus improving the representation ability
of the model. In the simple average model, the information of different models is
simply averaged and fused, and the interactive information between different mod‑
els cannot be fully utilized. In cross‑attention fusion, each model can better under‑
stand the information of other models by paying attention to other models, thereby
avoiding information conflicts between different models and improving the model
performance. CAF can also avoid information conflicts between different models. In
simple average models, information from different models may collide, resulting in
poor model performance.
To sum up, when performing text translation tasks, it is necessary to select an appro‑

priate model structure and pre‑training technology according to the characteristics and
requirements of the task to improve the translation quality. At the same time, it is neces‑
sary to pay attention to the interaction between differentmodel structures and pre‑training
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techniques to avoid excessive introduction of redundant information, which will lead to a
decrease in translation quality.

6. Conclusions
This paper proposes two effective methods for integrating source‑side syntactic in‑

formation into neural machine translation models. The first method is based on CLIP
pre‑training technology, which utilizes advanced natural language processing techniques
to extract both text and syntactic tree information and propagate them to a transformer
model to complete machine translation tasks. In English–Chinese and Chinese–English
translation tasks, this method results in BLEU score improvements of 3.37 and 3.18 per‑
centage points, respectively. The second method is the adoption of cross‑attention fusion,
which can better capture the relationship between the vocabulary in the syntactic tree and
improve the model’s understanding of the sentence semantics. In English–Chinese and
Chinese–English translation tasks, this method results in BLEU score improvements of
1.31 and 1.03 percentage points, respectively. The paper performed ablation experiments
by integrating the two proposedmodels, but unfortunately, the resultswere unsatisfactory.
Furthermore, this paper also investigates the impact of different sentence lengths on the
translation results, providing important reference for researchers. These research results
are of great significance in advancing machine translation technology and improving the
quality of machine translation models.

However, this study has certain limitations. Specifically, it is confined to English‑to‑
Chinese and Chinese‑to‑English translation tasks, necessitating further research on trans‑
lation tasks involving other languages. Additionally, the study solely focuses on integrat‑
ing source‑side syntactic information and does not address how to incorporate target‑side
syntactic information into the translation model. In translation tasks, target‑side syntactic
information may also have an impact on the translation results, requiring further inves‑
tigation. In the future, our research direction will focus on incorporating rich syntactic
information of the target language into neural machine translation models and further ex‑
panding the experimental scope to cover more languages. Additionally, we will explore
how to integrate syntactic analysis of multimodal information such as visual and audio
data to enhance the performance of our models in multilingual translation tasks. The goal
of this research direction is to improve the translation quality and accuracy of machine
translation models by leveraging the complementarity of syntactic information and multi‑
modal data, in order to meet diverse language translation needs.
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