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Abstract: Squeeze film dampers are often used to suppress vibration in turbine engines and play an
important role in rotor systems. In this paper, the nonlinear dynamic characteristics of an industrial
turbine engine fitted with squeeze film dampers are investigated with the static eccentricity of the
SFDs. A recently developed time domain technique that combines the finite element method and
the fixed interface modal synthesis method is applied to predict the nonlinear unbalance response of
the industrial turbine engine under different unbalanced and static eccentricity configurations. By
comparing the results obtained using SFDs with and without static eccentricity, it can be concluded
that increasing the static eccentricity of the SFDs promotes non-periodic motion, while an increase
in the unbalance level promotes the jump phenomenon. The efficiency of the rotor system would
improve with an appropriate amount of unbalance applied to compressor IV, resulting in a reduction
in the vibration level. If static sprung eccentricity occurs, the center of the journal orbit would be offset
from the SFD center, rendering it inefficient or even leading to rub impact. Therefore, it is crucial to
control the static eccentricity of the SFDs for optimal performance. The time domain technique is
verified by the experimental results reported in the literature.

Keywords: nonlinear vibration; SFD; modal synthesis method; eccentric; finite element method

1. Introduction

Squeeze film dampers (SFDs) are nonlinear elements used in aero-engine assemblies to
attenuate vibrations and transmit forces. A retainer spring placed in parallel with the oil film
is often used to support the gravity load on the journal. However, there are many practical
situations where there is a significant degree of static eccentricity of the journal within the
bearing housing, such as preloading errors, manufacturing errors, inappropriate assembly,
or partial failures of the retainer spring in service. This offset results in nonlinearity that is
evident by the presence of nonsynchronous frequency components in the vibration. This
paper deals with sprung eccentricity.

Many researchers have attempted to obtain the nonlinear response of eccentric SFD-
supported rotor systems. Tonnesen [1] studied the unbalance response of an eccentric
squeeze-film-damper-mounted rigid rotor, experimentally and theoretically. An offset
synchronous and elliptic orbit was observed in experiments, and a perturbation method
was applied to obtain the nonlinear response. Sykes and Holmes [2] also conducted an
experimental study on a rotor system supported on squeeze film dampers with static mis-
alignment. Subharmonic motions were observed and attributed to the static misalignment
of the squeeze film damper. Zhao et al. [3] investigated the stability of eccentric-squeeze-
film-damper-mounted rotor systems with a trigonometric collocation method. It was found
that nonsynchronous vibration and jump phenomena might arise if the parameters of the
eccentric squeeze film damper are inappropriate. Bonello [4] studied the cavitated eccen-
tric SFD model with the receptance harmonic balance (RHB) method. The study focused
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on the effects of cavitation and found that cavitation might be beneficial in preventing
excessive vibration of the shaft. Recent experimental investigations [5] showed that the
critical speed of the rotor system might increase due to the static eccentricity of the squeeze
film damper, and the theoretical prediction based on short bearing approximation showed
some consistency with the experimental data. Deng et al. [6] developed a non-contact
method to identify the unbalanced mass of a rotor system in 3D space. In comparison with
sensor methods, the relative error of the proposed method decreased from 30.6% and 41.3%
to 2.2%.

Although much work has been conducted, it can be seen that most of the studies
were conducted with rigid rotor systems or simple flexible rotor systems. Additionally,
to alleviate the computational burden, most of the theoretical investigations adopted
frequency domain techniques, such as the harmonic balance method or trigonometric
collocation method. However, as stated in Reference [4], these techniques might yield
results that disagree with the numerical integration method due to a loss of periodicity.
In comparison, time domain techniques yield the actual steady-state response after the
initial transients have died out. All these facts necessitate that more effort should be made
to improve the efficiency of the time domain techniques and thus enable more detailed
models of a flexible rotor system mounted with sprung eccentric squeeze film dampers to
be established and analyzed.

The time domain methods for the nonlinear unbalance response of rotor systems have
been extensively investigated. Glasgow [7] employed the fixed interface modal synthesis
method to reduce the size of the rotor system to obtain better computational efficiency. In
References [8,9], the transfer matrix method was adopted. Wang, W. [10] improved the free
interface modal synthesis method to analyze the dynamic characteristics of a multi-rotor
system. Hsiao-Wei [11] established a dual-rotor system with the finite element method
to investigate the influences of the speed ratio of the rotor system. Ma [12] analyzed the
vibration attenuation effects of the SFD parameters selected by using the multi-objective
optimization method on the dynamic response. Wang [13] investigated numerically the
vibration responses of the rotor system under different rotating speeds and with different
unbalances, and they compared and analyzed the influence of SFD on the vibration of the
rotor system and the change in suppression capability. From all the above references, it can
be seen that the component modal synthesis method is commonly applied to improve the
efficiency of the time domain method.

Mohammed [14] studied the effect of bearing stiffness nonlinearity on the system
dynamics when supported by stiff and soft linear bearings by means of the harmonic
balance method and a continuation scheme. Nan et al. [15] established a new nonlinear
rotor model supported by a rolling bearing. Zhang et al. [16] proposed a nonlinear model
of a multi-disk rigid rotor with looseness and cubic nonlinear supporting and discussed
the individual and coupling effects of these two nonlinearities on the transient and steady-
state responses. Wang [17] considered the preload condition, surface waviness, Hertz
contact and elastohydrodynamic lubrication to study an improved nonlinear dynamic
model of rotor systems supported by angular contact ball bearings. Zharilkassin et al. [18],
using Bogolyubov’s asymptotic method and numerical methods, constructed a gyroscopic
rigid unbalanced rotor with nonlinear cubic damping and nonlinear rigidity of the elastic
support. Li et al. [19] studied the dynamic characteristics of an asymmetric rotor system
supported by axial-grooved gas-lubricated bearings by using the hybrid numerical model.

In the present work, the finite element method and the fixed interface modal synthesis
method are combined to model the flexible rotor system of an industrial turbine engine
mounted with eccentric squeeze film dampers. Then, with this nonlinear model and the
improved Newmark-β method, the nonlinear dynamic characteristics of the rotor system,
with and without static eccentricity, are obtained, analyzed and compared.
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2. Theoretical Modeling
2.1. Nonlinear Forces of the SFD

A recent experimental investigation [5] has demonstrated that the short bearing ap-
proximation of the SFD shows some consistency with experimental data. Therefore, the
short bearing assumption is adopted in this work to incorporate the SFD with the rotor
system. The nonlinear forces of the SFD are given in [20,21]:

f s f d
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tan ψ = y/x. (1e)

x is the horizontal displacement of the journal, and y denotes the vertical displace-
ments. Ij (j = 1, 2, 3) denotes the Sommerfeld integrals. c is the radial clearance. µs denotes
the dynamic viscosity of the film of the SFD. L and R are the length and radius of the
SFD, respectively.

2.2. Equations of Motion and Numerical Algorithm

Using the finite element method, the equation of motion of the nonlinear rotor system
can be expressed as shown below:

M
..
u + G

.
u + Ku = Fnonl + Funb, (2)

M, K and G can be easily obtained using the finite element method. Fnonl denotes the
nonlinear forces exerted by the SFD. Funb denotes the unbalance force vector.

The model consists of second-order nonlinear differential equations. The computa-
tional efficiency depends on both the numerical methods used and the total degrees of
freedom of the rotor system. To strike a balance between accuracy and computational
efficiency, fixed interface modal synthesis is utilized to reduce the dimensionality of the
model and therefore its computational effort.

Equation (2) can be rewritten as:[
MI I MI J
MJ I MJ J

][ ..
uI..
uJ

]
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where uI is the linear DOFs where only unbalance forces act, while uJ represents the
non-linear DOFs or the interface of DOFs in this work.

A detailed description of the modeling and solving process can be found in Reference [21].
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WJ = MJ J An
J + G J J Bn

J + MJ I An
q + G J I Bn

q (5b)

Sq = aMI I + bGI I + K I I (5c)

SJ = aMJ J + bG J J + K J J (5d)

Vq = aMI J + bGI J (5e)

VJ = aMJ I + bG J I (5f)

Fnonl n+1
J = Fnonl n

J

(
un+1

J ,
.
un+1

J

)
. (5g)

In summary, the nonlinear model of the rotor system is established using the fixed
interface modal synthesis method and the finite element method; then, an implicit time
domain method based on the Newmark β method is applied to solve the equations of
motion of the reduced system so that the dynamic characteristics can be obtained.

3. Numerical Results and Discussion
3.1. Model Introduction

The industrial turbine engine studied in this paper is shown in Figure 1a. A is SFD I,
and B is SFD II. The coordinate system is shown in Figure 1b, where s ox, oz are horizontal
axes and oy is a vertical axis.
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Figure 1. Model diagram: (a) structural diagram of the industrial turbine engine; (b) cross-section of
the industrial turbine engine; (c) structure diagram of the SFD.

The structure of the SFD is shown in Figure 1c. 1 is the shaft; 2 is the squirrel cage; 3 is
the bearing; 4 is the bearings bracket. C1 and C2 denote the oil film gap. When C1 6= C2, it
means that the rotor system has static eccentricity.

The industrial turbine engine is a single rotor system. It includes two supports and
five disks. The front and rear supports of the rotor system are supports I and II, respectively.
The squirrel cage + rolling bearing + SFD support scheme is adopted for supports I and
II. The five disks comprise three stages: the axial compressor—compressors I, II and III,
one centrifugal compressor—compressor IV, and one turbine. The operating range for the
engine is 0–4712 rad/s and the continuous operating speed is 3665 rad/s.

Model parameters of the rotor system are listed in Tables 1–3. Stiffness coefficients of
the elastic supports are listed in Table 1. The parameters of the SFDs are listed in Table 2.
The inertia properties of the blades for each disk are listed in Table 3.

The Young’s modulus of the turbine disk is 176 GPa, and the mass density is 8300 kg/m3.
For the rest of the rotor system, the Young’s modulus is 196 GPa, and the mass density is
7810 kg/m3. The 40 modes in the normal modal matrix φk were retained for the application
of the modal synthesis method. For the Newmark-β method, α = 0.25 and β = 0.5.

Table 1. Stiffness of elastic supports (squirrel cage) in industrial turbine engine.

Support I Support II

Stiffness (N/m) 1.92 × 107 2.75 × 107

Table 2. Parameters of SFDs in industrial turbine engine.

SFD I SFD II

Radius R/mm 39.00 38.75
Length L/mm 20.30 7.20

Radial clearance c/mm 0.07 0.09
Dynamic viscosity µs/10−3Pa·s 5.12
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Table 3. Inertia properties of blades for each disk.

Compressor I Compressor II Compressor III Compressor IV Turbine

Mass (kg) 0.17 0.36 0.28 1.269 2.12
Polar moment of inertia

(×10–3 kg·m2) 4.35 1.15 0.79 9.03 10.00

3.2. Critical Speeds Analysis

The Campbell diagram of the rotor system is presented in Figure 2. Two critical
speeds, 1588 rad/s and 3276 rad/s, can be identified from the Campbell diagram. The
corresponding mode shapes for the critical speeds are shown in Figure 3. From Figure 3,
it can be seen that the first mode, Figure 3a, is a cylindrical mode, while the second one,
Figure 3b, is a conical mode. Furthermore, Figure 3 implies that the rear end of the rotor
would have a greater amplitude of vibration than the front end when passing through the
first critical speed, while the reverse is true when passing through the second one.
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3.3. Without Sprung Eccentricity

With the method described in Section 2, the finite element model of the rotor system is
established with 189 beam elements to simulate the shaft and 5 mass elements to simulate
the blades of each disk. Then, the steady-state unbalance response of the rotor system
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is obtained when the rotor speed is in the range of 1000–4500 rad/s and the step size is
10 rad/s. The first step uses zero initial conditions. The remaining steps use the results of
the previous step as the initial conditions.

Figures 4–7 present the bifurcation diagram, the waterfall diagram and the frequency
response of the rotor system without static sprung eccentricity under different unbalanced
configurations. Here, ei,i = 1, 2, 3, 4, 5 represent the eccentric distance of compressors I, II,
III, IV and the turbine disk respectively. Thus, the unbalanced force on the rotor would
be the mass of the disk × ei × square of the rotor speed. Also, the unbalance is applied
to only one disk each time. For each disk, 10 different unbalanced configurations were
considered with ei = 0.1, 0.2, 0.3 · · · 0.9, 1.0 mm. However, it was found that the results
were quite similar if e1, e2 and e3 had adopted the same value, which is the same for e4 and
e5. Therefore, only the results of e2 and e4 are presented and analyzed in this work.

The following conclusions can be reached from Figures 4–7:

(1) From Figure 4, the bifurcation diagrams of support I, it can be seen that although
the unbalanced configurations are different, the rotor executes periodic motion with
period one in 1000–4500 rad/s.

(2) Figure 4d shows an obvious break point at 3250 rad/s while the dots in Figure 4a–c
form an almost continuous curve. The break point implies the occurrence of a jump
phenomenon caused by the nonlinear interaction between the rotor and the SFD. By
examining Figures 5d and 6f, the waterfall diagram and the frequency response curve
corresponding to Figure 4d, it is confirmed that the jump phenomenon does occur at
3250 rad/s for e4 = 1.0 mm.

(3) Increasing ei would lead to a larger response, although the relationship between ei and
the response is nonlinear, as shown in Figure 7. Also, by comparing Figure 5a,b, it can
be found that as ei increases from 0.1 to 1 mm, the response of support I increases by
approximately five times. The same phenomenon can also be observed in Figure 5c,d
or Figure 6a,b.

(4) Due to the nonlinearity of the SFD, the rotational speed at which the peak response
occurs can be different from the critical speeds identified from the Campbell diagram,
as shown in Figures 2 and 6. Two critical speeds, 1587 rad/s and 3274 rad/s, can be
identified from the Campbell diagram shown in Figure 2. However, in Figure 6a, it can
be seen that the peak response of the rotor system occurs at 1610–1680 rad/s, which
is very close to 1587 rad/s. Also, Figure 6a shows that at approximately 1600 rad/s,
the vibration amplitude of the turbine disk is the largest while that of support I is
the smallest, which means that the operating deflection shape of the rotor system at
about 1600 rad/s coincides with the mode shape shown in Figure 3a. This is also the
situation for 3000–3500 rad/s, as shown in Figures 3b and 6a.

(5) The peak response speed range is related to the amount of unbalance, as shown in
Figures 6 and 7. Figure 7 shows the horizontal response of support I under different
unbalanced configurations. From Figure 7a, it can be seen that as e2 increases from 0.1
to 1.0 mm, the corresponding peak response speed increases from 1600 to 2200 rad/s.
By comparing Figure 6a,b, it can be seen that the peak response speed range shifts to
1800–2200 rad/s in Figure 6b, which is much larger than that shown in Figure 6a.

(6) The jump phenomenon is closely related to the SFD and the amount of unbalance,
as shown in Figures 6 and 7. From Figures 6c–h and 7b, it can be seen that the jump
phenomenon occurs when e4 ≥ 0.7 mm.

(7) The operating deflection shape of the rotor system under a continuous operating
speed of 3663 rad/s is greatly influenced by the amount and the axial location of the
unbalance, as shown in Figure 6a,c. Figure 6a, e2 = 0.1 mm, shows not only that the
vibration level of support I is larger than the other parts of the rotor system around
3600 rad/s but also that the operating deflection shape coincides with the second
mode shape presented in Figure 3b. However, when e4 = 0.1 mm, Figure 6c shows
that the vibration level of support II is the largest around 3600 rad/s. By comparing
Figure 6a,c, it can be seen that the vibration level of the rotor system at e4 = 0.1 mm
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is much smaller than that at e2 = 0.1 mm. This indicates that the response of the
rotor system is much more sensitive to the unbalance of compressor II compared to
compressor IV.
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3.4. The Influence of Sprung Eccentricity

In order to evaluate the influence of the static sprung eccentricity, the nonlinear
dynamic characteristics of the rotor system under different static sprung eccentricities were
computed and analyzed. The parameters for computation were the same as described in
Section 3.3. The results are presented in Figures 8–15. In these figures, esx = x01/c1 is the
normalized static sprung eccentricity for support I, in which x01 is the static offset in the
x direction for support I and c1 represents the radial clearance of the SFD for support I.

The following conclusions can be reached from Figures 8–15:

(1) The periodicity of the motion of the rotor system is prone to be affected by the
static sprung eccentricity, as shown in Figure 8. The bifurcation diagrams shown in
Figure 8a,c,e,g suggest that for the same unbalanced configuration, quasi-periodic
and chaotic motion are prone to occur at larger static sprung eccentricity. For the rotor
system studied in this work, the operating speed regime within which the periodicity
is strongly affected is 2500–3800 rad/s. Furthermore, by comparing Figure 8a–h, it can
be seen that a larger unbalance would be beneficial in suppressing the non-periodic
motion of the rotor system. Figure 8e shows an obvious bifurcation at 2800 rad/s,
while Figure 8f indicates that the rotor system executes periodic motion in the whole
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operating speed range. The same conclusion can also be reached by comparing
Figure 8g,h.

(2) The static sprung eccentricity would lead to the occurrence of the 0X and 2X frequency
components in the waterfall diagram, as shown in Figure 9. This phenomenon has
also been reported in Reference 4. Comparing Figure 5, Figure 9, it can be seen
that the larger the static sprung eccentricity, the larger the amplitude of 0X, 1X and
2X. However, Figure 9g,h indicate that a larger unbalance would suppress the 0X
component. Figure 9b,d,f,h also suggest that the 0X component would fluctuate under
larger static sprung eccentricity.

(3) The amplitude of the 1X component increases with an increasing amount of balance
while that of the 0X component decreases, as shown in Figures 10–13. On the one
hand, Figures 10a, 11a, 12a and 13a show that the amplitude of the 0X component
decreases with an increasing amount of balance; on the other hand, by comparing
these figures, it can be seen that the larger the static sprung eccentricity, the larger
the amplitude of the 0X component. In Figure 10a, the maximum amplitude of the
0X component with e2 = 0.1mm and esx = 0.1 is approximately 1.4 × 10−5 m; in
Figure 12a, the maximum amplitude of the 0X component with e2 = 0.1 mm and
esx = 0.3 is approximately 4.2 × 10−5 m.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 25 
 

rad/s, while Figure 8f indicates that the rotor system executes periodic motion in the 
whole operating speed range. The same conclusion can also be reached by compar-
ing Figure 8g,h. 

(2) The static sprung eccentricity would lead to the occurrence of the 0X and 2X fre-
quency components in the waterfall diagram, as shown in Figure 9. This phenome-
non has also been reported in Reference 4. Comparing Figures 5 and 9, it can be 
seen that the larger the static sprung eccentricity, the larger the amplitude of 0X, 1X 
and 2X. However, Figure 9g,h indicate that a larger unbalance would suppress the 
0X component. Figure 9b,d,f,h also suggest that the 0X component would fluctuate 
under larger static sprung eccentricity. 

(3) The amplitude of the 1X component increases with an increasing amount of balance 
while that of the 0X component decreases, as shown in Figures 10–13. On the one 
hand, Figures 10a–13a show that the amplitude of the 0X component decreases with 
an increasing amount of balance; on the other hand, by comparing these figures, it 
can be seen that the larger the static sprung eccentricity, the larger the amplitude of 
the 0X component. In Figure 10a, the maximum amplitude of the 0X component 
with 𝑒ଶ = 0.1 mm and 𝑒௦௫ = 0.1 is approximately 1.4 × 10−5 m; in Figure 12a, the 
maximum amplitude of the 0X component with 𝑒ଶ = 0.1 mm and 𝑒௦௫ = 0.3 is ap-
proximately 4.2 × 10−5 m. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Cont.



Appl. Sci. 2023, 13, 13325 14 of 25

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 25 
 

  
(e) (f) 

  
(g) (h) 

Figure 8. Bifurcation diagram of support I in 1000–4500 rad/s: (a) 𝑒ଶ = 0.1 mm, 𝑒௦௫ = 0.1; (b) 𝑒ଶ =1.0 mm, 𝑒௦௫ = 0.1; (c) 𝑒ଶ = 0.1 mm, 𝑒௦௫ = 0.2; (d) 𝑒ଶ = 1.0 mm, 𝑒௦௫ = 0.2; (e) 𝑒ଶ = 0.1 mm, 𝑒௦௫ = 0.3; 
(f) 𝑒ଶ = 1.0 mm, 𝑒௦௫ = 0.3; (g) 𝑒ଶ = 0.1 mm, 𝑒௦௫ = 0.35; (h) 𝑒ଶ = 1.0 mm, 𝑒௦௫ = 0.35. 

  
(a) (b) 

  
(c) (d) 
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Figure 9. Waterfall diagram of support I in 1000–4500 rad/s: (a) e2 = 0.1 mm, esx = 0.1;
(b) e2 = 1.0 mm, esx = 0.1; (c) e2 = 0.1 mm, esx = 0.2; (d) e2 = 1.0 mm, esx = 0.2; (e) e2 = 0.1 mm,
esx = 0.3; (f) e2 = 1.0 mm, esx = 0.3; (g) e2 = 0.1 mm, esx = 0.35; (h) e2 = 1.0 mm, esx = 0.35.
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Figure 13. Horizontal response of support I in 1000−4500 rad/s with e2 = 0.1− 1.0 mm, esx = 0.35:
(a) 0X; (b) 1X.

(4) Figure 14a indicates that the further the distance between the components of the rotor
and the static eccentric SFD, the smaller the amplitude of the 0X frequency component.
From Figure 14a, it can be seen that the amplitude of the 0X component for support II
is the smallest, while that of support I is the largest. Figures 6a and 14b show that the
operating deflection shape around 3665 rad/s coincides with the second mode shape
shown in Figure 3b with and without static sprung eccentricity.
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(5) Due to the static sprung eccentricity, the center for the orbit of support I would be
offset from the center of the SFD and thus make the SFD ineffective or even lead to
the occurrence of rubbing impact, as shown in Figure 15a. Figure 15 presents the orbit
and the spectrum of support I with e2 = 0.1 mm, esx = 0.35 and ω1 = 3600 rad/s. It
can be seen from Figure 15a,b that the amplitude of the orbit is much smaller than the
static runout there, which means that the oil film was barely squeezed. In addition,
2X and 3X components can be observed in the spectrum.
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3.5. Validation with Experiment Results

The rotor model from Reference [22] is modeled to validate the method presented in
Section 2. Detailed configurations of the rotor system can be found in Reference [22].

The rotor model diagram is shown in Figure 16. This test rig is used to study the
dynamic characteristics of a co-rotating and counter-rotating dual-rotor system with four
or five supports. The additional supports in Figure 16 are removed because this paper
focuses on a four-support counter-rotating dual-rotor system. The rotor system consists
of four supports and four discs, of which each rotor has two discs. Each shaft is driven
by a separate motor, so the rotation speed of the inner and outer rotors can be different
with a speed ratio of −1.65. The angular acceleration for the inner rotor during run-up and
run-down is approximately 1.05 rad/s. The operational ranges for the inner and outer rotor
are 0–232 rad/s and 0–382 rad/s, respectively. The excitation is only due to the residual
unbalance of the rotors.

Figure 17 is the counter-rotating coaxial system in this paper. The model parameters of
the rotor system are listed in Tables 4–8 contains the geometric dimensions and information
in each test. Table 5 contains the stiffness coefficients of the elastic supports. Tables 6 and 7
show the parameters of the intermediate bearing and SFDs. Table 8 shows the unbalanced
configuration and inertia properties of each disk.
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Table 4. Dimension and elements information of the rotor system.

Node No. Axial Location (m) Bearing/Disk Element No. Outer Diameter (m) Inner Diameter (m)

1 0 1 0.018 0.00
2 0.08143 2 0.018 0.00
3 0.16286 3 0.018 0.00
4 0.24429 4 0.018 0.00
5 0.24909 5 0.018 0.00
6 0.25479 6 0.018 0.00
7 0.28879 7 0.018 0.00
8 0.32279 8 0.018 0.00
9 0.35879 Disk no.1 9 0.018 0.00
10 0.38369 10 0.018 0.00
11 0.40859 11 0.018 0.00
12 0.43349 12 0.018 0.00
13 0.43869 Bearing no.1 13 0.018 0.00
14 0.44479 14 0.022 0.00
15 0.54752 15 0.022 0.00
16 0.65025 16 0.022 0.00
17 0.75298 17 0.022 0.00
18 0.85571 18 0.022 0.00
19 0.95844 19 0.022 0.00
20 1.06117 20 0.022 0.00
21 1.06517 Bearing no.4 21 0.022 0.00
22 1.06867 22 0.022 0.00
23 1.08867 23 0.022 0.00
24 1.10867 Disk no.2 24 0.022 0.00
25 1.14274 25 0.022 0.00
26 1.17681 26 0.022 0.00
27 1.21088 27 0.017 0.00
28 1.21488 Bearing no.2 28 0.014 0.00
29 1.21838 29 0.014 0.00
30 1.23038 End of inner rotor
31 0.64200 30 0.035 0.03
32 0.66065 31 0.035 0.03
33 0.67930 Bearing no.3 32 0.035 0.03
34 0.68650 33 0.038 0.03
35 0.71170 34 0.038 0.03
36 0.73690 35 0.038 0.03
37 0.76210 Disk no.3 36 0.038 0.03
38 0.80784 37 0.038 0.03
39 0.85358 38 0.038 0.03
40 0.89932 39 0.038 0.03
41 0.94506 40 0.038 0.03
42 0.99080 Disk no.4 41 0.038 0.03
43 1.01430 42 0.038 0.03
44 1.02030 43 0.070 0.03
45 1.03330 44 0.060 0.03
46 1.06030 45 0.060 0.03
47 1.06430 Bearing no.4 46 0.060 0.03
48 1.07380

Table 5. Stiffness of elastic supports (squirrel cage) in the test rotor system.

Support I Support II Support III Support IV

Stiffness (N/m) 1.45 × 106 2.21 × 105 9.29 × 105
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Table 6. Parameters of the intermediate bearing in the test rotor system.

Radius of Inner
Ring (mm)

Radius of Outer
Ring (mm) No. of Rollers Contact Stiffness

(N/m3/2)
Radial

Clearance (µm)

9.37 14.13 9 7.055 × 109 6

Table 7. Parameters of SFDs in the test rotor system.

Inner Rotor Outer Rotor
Support I Support II Support III

Radius R/mm 25 18 35
Length L/mm 15 15 20

Radial clearance c/mm 0.1 0.1 0.08
Dynamic viscosity µs/10−2Pa·s 1.0752

Table 8. Unbalanced configuration and inertia properties of disks.

Inner Rotor Outer Rotor
Disk 1 Disk 2 Disk 3 Disk 4

Unbalance (×10−5 kg·m2) 2 4 1 2
Mass (kg) 2.3386 2.3386 3.2590 1.6303

Polar moment of inertia (kg·m2) 0.00815 0.00815 0.01561 0.00661

Figure 18 is borrowed from Reference [22] for comparison with the results obtained by
the method in this work, which can be seen in Figure 7. By comparing Figures 18 and 19, it
can be seen that the numerical results of this work show a great agreement with those in
Reference [22], which has demonstrated the validity of the method presented in this paper.
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4. Conclusions

A recently developed time domain technique has been applied to an industrial turbine
engine fitted with squeeze film dampers to study the nonlinear dynamic characteristics of
the rotor system and the influence of static eccentric SFDs. The conclusions are listed below:

(1) The periodicity of the motion of the rotor system is prone to be affected by the
static sprung eccentricity. Without the sprung eccentricity, the rotor would execute
periodic orbital motion under different unbalanced configurations. However, the
jump phenomenon can be observed when e4 ≥ 0.7 mm. With sprung eccentricity,
obvious bifurcation, which indicates non-periodic motion, can be observed from the
bifurcation diagram.

(2) Due to the nonlinearity of the SFDs, the rotational speed at which the peak response
occurs can be different from the critical speeds identified from the Campbell diagram.
The peak response speed range would shift under different unbalanced configurations.

(3) The operating deflection shape of the rotor system at a continuous operating speed
of 3663 rad/s is strongly influenced by the amount and the axial position of the
unbalance. This indicates that the response of the rotor system is much more sensitive
to the unbalance of compressor II than compressor IV.

(4) The static sprung eccentricity would lead to the occurrence of the 0X and 2X frequency
components in the waterfall diagram. The amplitude of the 1X component increases
as the amount of balance increases, while that of the 0X component decreases. The
larger the static sprung eccentricity, the larger the amplitude of 0X, 1X and 2X.

(5) The further the distance between the components of the rotor and the static eccentric
SFD, the less affected the components are by the static eccentricity of the SFD.

(6) Due to the static sprung eccentricity, the center for the orbit of support I would be
offset from the center of the SFD and thus make the SFD inefficient/ineffective or
even lead to the occurrence of rub impact.
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Therefore, we propose to improve the structure of the spring butt-bearing seat and add
a centering surface between them. The thickness of the spokes of the cage in the vertical
direction can also be optimized to reduce the influence of the rotor’s own gravity.
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