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Abstract: The relationship between risk factors for de novo hygroma in patients with traumatic brain
injury (TBI) was investigated. We collected data on 222 patients with TBI to determine the risk factors
for de novo hygroma, including sex, age, centrum semiovale perivascular space (CSO-PVS) grade,
trauma cause, hypertension, and diabetes. The importance of the risk factors was analyzed, and the
feature contribution of the risk factors to all patients and each patient was analyzed using predictive
modeling. Additionally, association rule mining was performed to determine the relationship between
all factors, and the performance metrics of the predictive model were calculated. The overall feature
importance was analyzed in the order of age, CSO-PVS, hypertension, and trauma cause. However,
trauma cause, underlying disease, age, and sex as risk factors were different for a specific patient
through the individual feature analysis. The mean area under the curve for the predictive model was
0.80 ± 0.04 using K-fold cross validation. We analyzed the risk factors for de novo hygroma in TBI
and identified detailed relationships. Age and CSO-PVS severity were strongly correlated with de
novo hygroma. Furthermore, according to the results of feature importance analysis and association
rule mining, the significance of the risk factors may vary in each individual patient.

Keywords: CSO-PVS; hygroma; risk factor analysis; explainable predictive modeling; association
rule mining

1. Introduction

Traumatic brain injury (TBI) entails the potential for severe damage to the brain
parenchyma following head trauma [1]. Using the Glasgow coma scale (GCS), TBI is
classified as severe (GCS ≤ 8), moderate (GCS 9–13), and mild (GCS 14–15) [2]. Among
patients who visit the emergency department for clinical examination and evaluation, the
most common degree of head injury is mild TBI [1]. However, various situations in daily
life can cause the trauma, such as traffic accidents, falls, and sports events [3–6]. In TBI,
an external impact applied to the skull by an accelerated object causes brain cell damage.
This is followed by secondary responses that include changes in the cerebral blood flow,
local and systemic inflammation, changes in oxygen transport and metabolism, ischemia,
and apoptosis of neuronal cells [7]. Intravascular thrombosis is common in severe TBI and
contributes to focal ischemia. Generally, TBI can be classified as either focal or diffuse [8].
Focal damage tends to occur at the site of impact, and focal neurological deficits may refer
to the site of damage. Care should be taken in patient observation to identify delayed local
contusion and hematomas, which may occur several days after trauma. In contrast, diffuse
shearing of axons due to rapid deceleration or rotational force occurs in the brain white
matter, gray synapse, corpus callosum, and brainstem, causing non-lateral neurological
defects, such as encephalopathy, or local defects, such as skull fractures [9].

The most widely known hypothesis about the mechanism of the occurrence of sub-
dural hygroma after TBI in a patient is that the arachnoid is ruptured and cerebrospinal
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fluid flows into the subdural space through the arachnoid rupture and is then formed
in isolation [10,11].

In contrast, perivascular spaces (PVS) are fluid structures that surround small blood
vessels in the brain [12]. PVS is an important factor in the mechanism of brain injuries [13–15].
As a result of analyzing risk factors in patients with mild TBI, it was reported that newly
developed hygroma and enlarged centrum semiovale (CSO)-PVS are associated [3].

Chong et al. (2015) reported predictive modeling results for the risk factors for TBI
in children using machine learning [16]. In cases of 39 and 156 age-matched controls, the
road traffic accident, a history of loss of consciousness, vomiting, and signs of base of
skull fracture were found to be the four important risk factors (AUC = 0.98). Raj et al.
(2019) developed a simple and scalable machine learning-based algorithm that can predict
mortality in real time during intensive care after traumatic brain injury [17]. Using a dataset
of 472 patients, machine learning-based logistic regression modeling was developed, and
30-day mortality was predicted using variables based on intracranial pressure (ICP), mean
arterial pressure (MAP), cerebral perfusion pressure (CPP), and Glasgow Coma Scale (GCS).
As a results, the study distinguished survivors from non-survivors with up to 81% and
84% accuracy based on key variables. The receiver operating characteristic curve (AUC)
increased from 0.67 on day 1 to 0.81 on day 5.

In addition, a study that predicted the mortality of TBI patients was reported by
Hsu et al. (2021) [18]. Although patient prognostic factors (GCS) were used in machine
learning for mortality prediction, there is a limitation to identifying causal relationships
between risk factors. However, machine learning studies on the de novo of subdural
hygroma and related risk factors in TBI patients have not been reported. Since subdural
hygroma is a cause of serious complications in patients with TBI, a substantial approach to
the association of risk factors related to patient outcome prediction is required. Moreover,
a predictive model study is required for a patient-specific prediction for each patient. In
this study, we analyzed the importance of risk factors for de novo hygroma, including
age, CSO-PVS, and underlying disease, in patients with mild TBI and the risk factors for
individual patients using artificial intelligence techniques. Additionally, we attempted
to identify the relationship between trauma episodes, underlying diseases, and de novo
hygroma factors in patients with mild TBI.

2. Materials and Methods
2.1. Patient Dataset Preparation

To evaluate the risk factors for de novo hygroma, including age, CSO-PVS severity, and
underlying diseases, among patients with TBI who visited our institution from January 2013
to November 2016, (1) brain magnetic resonance imaging (MRI), including T2-weighted
imaging, was performed; and (2) patients without a history of trauma or diseases, such
as stroke, tumor, or degenerative disease (e.g., dementia or Parkinson’s disease) were
selected as the inclusion criteria. Here, a patient with mild TBI is defined as (1) a loss of
consciousness (LOC) < approximately 30 min; or (2) an initial GCS score of 13–15; and (3) a
posttraumatic amnesia (PTA) < 24 h. Among these patients with mild TBI, a dataset of
222 patients was collected, and the patients classified the severity of CSO-PVS.

Several basic demographic characteristics and risk factors were evaluated in patients
with mild TBI. We collected data on the incidence of highly CSO-PVS with age, sex,
hypertension, and diabetes at the time of admission. The Institutional Review Committee
of Inje University Ilsan Paik Hospital approved this study, including the review and
publication of information obtained from patient records (IRB No. 2017-04-029). As
all patient data were anonymized and de-identified before analysis, the requirement of
informed consent for the use of patient medical data was waived.

2.2. Predictive Modeling and Statistical Analysis

To analyze the risk factors affecting de novo hygroma, the analysis was performed ac-
cording to the architecture shown in Figure 1. First, an analysis of variance was performed
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to analyze the statistical significance of risk factors (p-value < 0.05). Second, a XGBoost
classifier model was established for predictive modeling. The training and test sets were
split into 80:20. Third, Shapley additive explanation (SHAP) influence scoring was analyzed
to quantify the contribution between risk factors. Additionally, partial dependence analysis
was performed to analyze the relationship between factors. Furthermore, association rule
mining was used to investigate the association rule between de novo hygroma and highly
affected factors, such as CSO-PVS severity and underlying diseases, throughout extract-
ing electronic medical record data for the patients. Performance indicators of predictive
modeling were calculated by the area under the curve (AUC).
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Figure 1. Research diagram for the composite analysis of the risk factors for de novo hygroma in
patients with traumatic brain injury using predictive modeling and association rule-mining.

2.3. SHAP and Association Rule Mining

In this study, SHAP and association rule mining were used to analyze the characteris-
tics and relationships of the risk factors related to the results.

First, SHAP was derived from game theory, which calculates the importance of players
who influence the game outcome [19,20]. This method emerged to overcome the black-
box limitation of an unknown model structure in machine learning modeling and can be
applied to enable white-box modeling. It is called an explainable artificial intelligence
(XAI) technique because it can infer the correlation of the output to the input value. We
detected the explanatory outcome for the risk factors of the model using a tree explainer in
the XGBoost classifier model [21,22].

Second, association rule mining is a technique that identifies relationships between
different items in a case [23]. Association rules are built by retrieving data for if–then
patterns for two or more entities and defining which relationships are the most important
using specific criteria for support and confidence [24]. In this study, an a priori algorithm
was used, and the metrics of the algorithm were as follows: (1) Support is how often an
item appears in a given case; (2) Confidence is defined as the number of times an if–then
statement is found to be true in a case; (3) Lift can be used to compare the expected confi-
dence with the actual confidence. Thus, lift shows the number of times an if–then statement
is expected to be true; (4) Conviction represents the degree to which the consequence
depends on the preceding items; and (5) Leverage calculates the difference between the
observed frequency in which items appear together and the expected frequency in case
they are independent.
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For programming development, Scikit-learn 1.2.0, SHAP 0.41.0, Mlxtend 0.20.0, and
Statsmodels 0.13.2 modules were used in Python 3.9.12 environment.

3. Results
3.1. Patient Demographic

Table 1 shows the demographic analysis and statistical significance verification results
for a dataset of 222 patients. Risk factors, including sex, age, hygroma, trauma causes, and
underlying diseases, were selected and analyzed. Among these factors, the severity of
trauma caused was slip down, in-car TA, bicycle TA, and hitting accident in this particular
order. All factors showed statistical significance for the hygroma except for the hypertension
and cause of trauma (p < 0.05) using ANOVA method.

Table 1. Analysis of demographics for the development of de novo subdural fluid collection in
patients with mild traumatic brain injury.

Group Category Mean ± STD or n
(%) p-Value †

Age years 50.55 ± 18.82 <0.001

Sex
Male 142 (63.96%)

0.015
Female 80 (36.04%)

Trauma cause

Slip down 66 (29.73%)

0.815

In-car TA 41 (18.47%)

Bicycle TA 34 (15.32%)

Hitting 24 (10.81%)

Out-car TA 22 (9.91%)

Fall down 21 (9.46%)

Syncope 14 (6.30%)

Hypertension, n (%)
Yes 56 (25.23%)

0.116
No 166 (74.77%)

Diabetes, n (%)
Yes 35 (15.77%)

0.001
No 187 (84.23%)

CSO-PVS, n (%)
High-degree 91 (40.99%)

<0.001
Low-degree 131 (59.01%)

Hygroma *
Development 54 (24.32%)

-
Non-development 168 (75.68%)

Abbreviations: STD, standard deviation; TA, traffic accident; CSO-PVS, centrum semiovale perivascular space.
Note: Symbol, * is the target variable and † was performed using an analysis of variance (ANOVA).

3.2. Feature Importance Analysis for the Entire Dataset and Individual Case

Feature importance analysis was performed for the entire dataset and individual
cases, as shown in Figure 2. The overall feature importance indicated that age, CSO-
PVS, hypertension, and trauma cause were significant risk factors for de novo hygroma
(Figure 2A). Individual feature importance analysis for a 66-year-old man with underlying
hypertension and CSO-PVS due to a slipping-down accident (Figure 2B) showed that age,
CSO-PVS, and underlying disease positively impacted the de novo hygroma status. Cohort
feature importance analysis of sex is shown in Figure 2C. The tendency is the same all
groups, except for sex. Figure 2D shows another cohort feature importance analysis for
CSO-PVS. Age and CSO-PVS severity were shown to be strongly important risk factors.
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Figure 2. Feature importance analysis for the entire dataset and for each case: (A) overall feature
importance indicates that age, CSO-PVS, trauma cause, and hypertension were important risk
factors for de novo hygroma; (B) individual feature importance analysis for a 66-year-old man with
hypertension, diabetes, and CSO-PVS due to a slipping-down accident indicates that age and CSO-
PVS positively impacted the de novo hygroma status, and underlying disease and sex also positively
impacted the de novo hygroma; (C) cohort feature importance for sex—the tendency is the same in
all groups, except for sex; and (D) another cohort feature importance analysis for CSO-PVS. Age and
CSO-PVS severity were strongly important risk factors. (HTN, hypertension; DM, diabetes).

3.3. Dependency between CSO-PVS Severity and Age

The feature importance was analyzed for the risk factors using a heatmap and individ-
ual feature analysis using partial dependence analysis (Figure 3). Among the risk factors,
age and CSO-PVS severity highly impacted the de novo hygroma status (Figure 3A). The
dependence analysis results show the relationship between CSO-PVS severity and age, as
shown in Figure 3B. Most patients aged more than 86 years had a high correlation (62%)
with CSO-PVS severity for the development of hygroma. Also, patients who had no or
mild CSO-PVS severity showed lower dependency (mean 18.03%) over the entire age, but
patients who had high CSO-PVS severity showed higher dependency across age groups
(mean 37.97%).

3.4. Association Rule between De Novo Hygroma and CSO-PVS Severity

Figure 4 shows the hierarchical relationship between CSO-PVS severity and other risk
factors. The red lines show cases that have de novo hygroma with high-grade CSO-PVS.
However, blue lines show those that did not have de novo hygroma with high-grade
CSO-PVS.



Appl. Sci. 2023, 13, 1243 6 of 12Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 12 
 

 
Figure 3. Feature importance heatmap and individual feature analysis using partial dependence 
analysis: (A) among the risk factors, age and CSO-PVS severity highly impacted the de novo hy-
groma status. Red and blue are positive and negative impact, respectively, and the color fading is 
the difference in intensity of impact change.; and (B) dependence analysis result between CSO-PVS 
severity and age. Most patients aged more than 86 years had a high correlation (62%) with CSO-
PVS severity for the development of hygroma. Patients who had no or mild CSO-PVS severity 
showed lower dependency (mean 18.03%) over the entire age, but patients with high CSO-PVS se-
verity showed higher dependency across age group (mean 37.97%). Note: trauma cause indices: 1, 
slip down; 2, out-car traffic accident; 3, syncope; 4, hitting; 5, bicycle traffic accident; 6, in-car traffic 
accident; 7, slip down; f(x), model function (y) of contribution for x; HTN, hypertension; DM, dia-
betes. 

3.4. Association Rule between De Novo Hygroma and CSO-PVS Severity 
Figure 4 shows the hierarchical relationship between CSO-PVS severity and other 

risk factors. The red lines show cases that have de novo hygroma with high-grade CSO-
PVS. However, blue lines show those that did not have de novo hygroma with high-grade 
CSO-PVS. 
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analysis: (A) among the risk factors, age and CSO-PVS severity highly impacted the de novo
hygroma status. Red and blue are positive and negative impact, respectively, and the color fading
is the difference in intensity of impact change.; and (B) dependence analysis result between CSO-
PVS severity and age. Most patients aged more than 86 years had a high correlation (62%) with
CSO-PVS severity for the development of hygroma. Patients who had no or mild CSO-PVS severity
showed lower dependency (mean 18.03%) over the entire age, but patients with high CSO-PVS
severity showed higher dependency across age group (mean 37.97%). Note: trauma cause indices:
1, slip down; 2, out-car traffic accident; 3, syncope; 4, hitting; 5, bicycle traffic accident; 6, in-car
traffic accident; 7, slip down; f(x), model function (y) of contribution for x; HTN, hypertension;
DM, diabetes.
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Table 2 shows the results of the correlation analysis on the red and blue lines shown
in Figure 4. De novo hygroma was found to increase CSO-PVS severity (lift = 1.81). The
reliability of the dependency relationship for the two variables was 0.74. Additionally, it
was analyzed to be useful for predicting whether this relationship occurs (conviction = 2.28).
In contrast, in the relationship between the underlying disease (hypertension and diabetes)
and CSO-PVS severity, conviction < 2, which decreased the predictability of occurrence.
However, the reliability of the dependency relationship also decreased.

Table 2. Association rule mining analysis of the relationship between CSO-PVS severity and other
risk factors.

Consequents Support Confidence Lift Leverage Conviction

Hygroma
de novo

CSO-PVS
severity 0.18 0.74 1.81 0.08 2.28

Hypertension CSO-PVS
severity 0.13 0.50 1.22 0.02 1.18

Diabetes CSO-PVS
severity 0.11 0.69 1.67 0.04 1.88

3.5. Performance Measurement for the Predictive Model

A performance metric was analyzed for AUCs for both the predictive model and
conventional logistic regression model (Figure 5). The predictive model was cross-validated
using K-fold (K = 5). As a result, the mean AUC was calculated as 0.80 ± 0.04. Performance
of the conventional logistic regression model showed an AUC of 0.80 for the logistic
regression model shown in Figure 5A,B, respectively.
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4. Discussion
4.1. De Novo Hygroma with Mild TBI Using a Machine Learning Technique

In the field of neuroscience, studies are also being published that can expand the
interface by adding new specific factors and defining the relationship between symptoms
and diseases using machine learning technology [25–28]. Advances in this field are rapidly
accelerating as improvements in neurological diagnosis and surgical treatment for the
diagnosis and management of patients with TBI reduce mortality and improve patient
care [8]. The cause of trauma in patients with TBI is epidemiologically diverse, including
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battlefield injuries, traffic accidents, sports-related injuries, work-related accidents, head
injuries in a criminal situation, and life injuries [8,9]. Studies have reported that an enlarged
PVS is a radiological marker for patients with mild TBI [3,15,29–31]. Regarding PVS
research using machine learning, studies using medical images are the main focus. Most
studies have used a neural network for labeled images of enlarged PVS to detect and
quantify the enlarged perivascular space on an MRI [32]. Particularly, in a study on risk
factors using machine learning, Huang et al. performed PVS dilation using a convolutional
neural network using T2 MR images of PVS in healthy elderly patients. In conclusion, it
was reported that intracranial volume was associated with deep white matter PVS volume
(p < 0.001) and that intracranial arterial diameter was related to cardiac matter PVS volume
(p = 0.032) [33]. In contrast, our study was characterized by analyzing patient-specific risk
factors contributing to enlarged PVS using explainable artificial intelligence techniques.
In this study, the SHAP explainer was used to change the structure of a model that was
difficult to interpret from a black-box model to a white-box one by applying explainable
artificial intelligence techniques [34]. In this study, the overall feature importance was
presented (Figure 2A). At this time, factors, such as age, CSO-PVS, and hypertension, were
analyzed as major factors influencing the development of de novo hygroma, followed by
trauma cause, sex, and diabetes. However, in the individual feature importance analysis,
the severity of the CSO-PVS factor had a negative impact on the development of hygroma,
and simultaneously, the contribution was the third smallest, and hypertension, trauma
cause, and sex also showed the same impact (Figure 2A,B). Therefore, Figure 2B not
only shows the priority of the risk factors contributing to the development of de novo
hygroma but also indicates that the contribution to a specific patient is different, which
provides a hint to the medical team for individual treatment of patients (e.g., consideration
of the underlying diseases) (Figure 2B). In contrast, an analysis of a patient cohort was
also possible, and it was found that the order of hypertension was different for factors
contributing to the development of de novo hygroma (Figure 2D). Moreover, most patients
aged more than 73.44 years had a high correlation (79.6% to 80.2%) with CSO-PVS severity
for the development of hygroma. However, patients who had no or mild CSO-PVS had
lower dependency (1.2%–55.5%) over the entire age, as shown in Figure 3B.

4.2. Data Mining Approach for Investigating the Causal Relationship

The concept of association rules became known to several researchers through the
work of Agrawal et al. [23]. In other words, priorities are created to develop related rules
by scoring and quantifying the rules for factors that exist in a specific dataset or database.
This approach, applying association rules, based on a patient’s past clinical history and
current condition indicators, can be useful for doctors to treat patients [24,35,36]. A doctor’s
diagnosis and treatment must go through a very complex decision-making process, and
errors that may occur in the final result of treatment may be included. Association rule
mining is used to identify the causal relationship between symptoms for various external
factors medically and to refer to the information of the combination of quantified causal
relationships in the decision-making process that helps treatment [37,38]. Ho et al. used
an association rule data mining method to analyze coexisting complications after TBI [37].
At this time, the mortality risk among post-TBI patients was evaluated based on variables,
such as age, sex, clinical characteristics, length of stay, length of intensive care unit stay,
length of noninvasive ventilation, and the Charlson comorbidity index score. Consequently,
we identified that the most common post-TBI complication association analysis included
acute respiratory failure and pneumonia due to upper respiratory tract infection. However,
according to Ho et al., a shortcoming of the study was that the severity assessment based on
the GCS and LOC used in our study was not considered. Therefore, our study is meaningful
because it examined risk factors, including the cause of failure and severity, in patients
with mild TBI in the field of neuroscience.
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4.3. Cause of Trauma Analysis from the Perspective of TBI

Research on the head injury for subdural hygroma in the 1970s focused on the occur-
rence and treatment of hygroma rather than focusing on the diversity of causes of brain
injury [39]. Oka et al. judged head injury based on LOC and classified symptoms including
headache and vomiting. Additionally, the generation of subdural fluid was observed, and
a review for appropriate image acquisition or surgical treatment was performed [39]. In the
2000s, studies considering more complex TBI-related factors were published. For example,
based on MRI findings, Orrison et al. found a statistical relationship between the number
of bouts and lateral ventricle size in 100 boxers and martial arts fighters. Relationships
were identified, and a study was conducted to determine whether hitting through years
of fighting was related to creating an enlarged PVS (p = 0.0388) by inducing pathological
changes in players [31]. In the 2020s, research is being conducted to identify risk factors,
treatment, and clinical results for posttraumatic hydrocephalus, and as part of this study,
patients with mild TBI (mean GCS score = 14.84) were targeted, and the causes of the
trauma were analyzed. Hitting is the fourth most severe among trauma causes (Table 1).
Although the severity of damage among various causes of TBI is different, understanding
the dependence of hygroma and trauma events can be attempted by analyzing the risk
factors using explainable predictive modeling.

However, our future research can include more precise risk factors through examin-
ing the pathophysiology of TBI, including biochemical, genetic, genomic, and proteomic
markers of inflammation, through which individual predictive diagnosis studies can
be conducted.

4.4. XAI for Clinical Applications

Transparency and trust in artificial intelligence models are key factors in providing
convincing results for researchers and users in an application called a clinical decision
support system (CDSS) [40–42].

In the fields of neurosurgery and neuroscience, explainable artificial intelligence
techniques are being actively studied [43,44]. In other words, XAI helps to overcome
the limitations of simple numerical result analysis using existing statistical techniques by
providing reasoning grounds for decisions necessary for the diagnosis and treatment of
patients [27,28,45–47]. Therefore, healthcare professionals note the CDSS, which can utilize
the clinical usefulness of XAI. The improvement of the patient’s quality of life is provided
by minimizing the possibility of human error that may occur in the patient’s diagnosis and
treatment process and is guaranteed by providing the best treatment prognosis when the
cause of the disease is diversified.

4.5. Limitation of This Study

A machine learning approach is more flexible when applied to samples using a large
size or big data, but this study used patient follow-up data collected at a single institution
in a certain period. Hence, the nature of the relatively small sample size (n = 222) and the
homogeneous patient population (patients of a single nationality with no racial diversity)
should be considered entire analysis results. However, recognizing these limitations,
cross-validation was applied for the performance validation. In the case of assessment for
CSO-PVS severity, it was measured and rated on an axial T2-weighted MRI [48]. Enlarged
PVSs were defined as the sharp structure of cerebrospinal fluid (CSF) signal intensity that
followed the orientation of perforating arteries. Thus, after assessment of all relevant MRI
slices, the unilateral section of the slice with the highest number of PVSs was recorded. To
validate the authors’ hypothesis, PVS severity in the centrum semiovale was categorized
and PVS severity was interpreted by two board-certified neurosurgeons. At this step,
Cohen’s kappa value (0.78) was calculated to test reliability for the evaluation of CSO-PVS.
Thus, this process for data curation should be addressed. As a result of comparison with
the performance of conventional statistical techniques, mean AUC and AUC using machine
learning were 0.80 + 0.04 and 0.80, respectively (Figure 5). In other words, numerical
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comparisons between performance metrics in machine learning and conventional statistical
models are within almost the same range of each performance metric. It is judged that a
more meaningful comparison will be possible if a larger size of data is used in a further
study. More specifically, the importance of this study was, first, to identify various risk
factors (age, gender, CSO-PVS severity, underlying disease, and cause of trauma) associated
with de novo hygroma in individual TBI patients for patient-specific customized treatment
as a feasibility study using explainable predictive modeling. Second, the study aimed to
address the probability of prediction results by deriving the correlation of each prognostic
factor as the clinical decision support system (CDSS).

5. Conclusions

We analyzed patient risk factors for de novo hygroma in patients with TBI and identi-
fied detailed relationships for patient-specific customized treatment as a feasibility study
using an explainable predictive model. Although this study has limitations in using a
small sample size, potential bias, and single institutional population, it was confirmed
that age and CSO-PVS severity showed a strong correlation with the development of de
novo hygroma. Furthermore, the importance of the risk factors may vary in each patient
according to the results of the feature importance analysis and association rule mining. In
our future research, more diverse types of risk factors can be included for the development
of more precise patient-specific customized treatments through pathophysiology analysis,
including biochemical, genetic, genomic, and proteomic markers of inflammation.
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