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Abstract: Taking smartphone-made videos for photogrammetry is a convenient approach because of
the easy image collection process for the object being reconstructed. However, the video may contain
a lot of relatively similar frames. Additionally, frames may be of different quality. The primary source
of quality variation in the same video is varying motion blur. Splitting the sequence of the frames into
chunks and choosing the least motion-blurred frame in every chunk would reduce data redundancy
and improve image data quality. Such reduction will lead to faster and more accurate reconstruction
of the 3D objects. In this research, we investigated image quality evaluation in the case of human 3D
head modeling. Suppose a head modeling workflow already uses a convolutional neural network
for the head detection task in order to remove non-static background. In that case, features from
the neural network may be reused for the quality evaluation of the same image. We proposed a
motion blur evaluation method based on the LightGBM ranker model. The method was evaluated
and compared with other blind image quality evaluation methods using videos of a mannequin
head and real faces. Evaluation results show that the developed method in both cases outperformed
sharpness-based, BRISQUE, NIQUE, and PIQUE methods in finding the least motion-blurred image.

Keywords: motion blur evaluation; image quality; 3D head reconstruction; close-range photogrammetry;
videogrammetry; smartphone-based photogrammetry; deep learning; convolutional neural networks;
anthropometric measurements

1. Introduction

Image-based reconstruction and modeling of objects [1–3], scene [4–7], or processes [8–11]
is a widely accessible technique in terms of cost for information acquisition [12–14]. Struc-
ture from motion (SfM) is a photogrammetric technique for estimating the 3D structure of
the object from a set of 2D images [15–18]. It is the most popular technique for 3D object
reconstruction. When the camera is positioned relatively close to the object being imaged
(object size and the camera-to-object distance are both less than 100 m [19]), the technique is
called close-range photogrammetry. Smartphone-based close-range photogrammetry is eas-
ily accessible to ordinary users for modeling objects at home [20,21]. There exist a number
of photogrammetry software as free/open-source and commercial packages: free/open-
source applications for SfM [22]: Meshroom [23], COLMAP [24,25], VisualSFM [26], Open-
MVG [27], Regard3D [28], OpenDroneMap (ODM) [29], MultiViewEnvironment (MVE) [30],
MicMac [31]; commercial solutions [32]: Pixpro [33], Agisoft Metashape [34], 3Dflow 3DF
Zephyr [35], Bentley ContextCapture [36], Autodesk ReCap [37], CapturingReality Reality-
Capture [38], PhotoModeler [39], PIX4Dmapper [40], DroneDeploy [41], Trimble Inpho [42],
OpenDroneMap WebODM [43], and Elcovision 10 [44].

One of the applications of close-range photogrammetry is the 3D modeling of the hu-
man head. Several common applications of head 3D reconstruction for home users could be
getting head measurements in order to choose the appropriate size of headwear products or
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trying out head apparel. In general, 3D head modeling can be used in medicine [12,45–57],
psychological research [58–60], forensics [61], anthropology [62–67], industry [68–75], art
and entertainment, virtual/augmented reality, fashion, education, biometrics, marketing,
and social media.

Image-based reconstruction and modeling means that images of the object or scene
are required. Images must be of the highest quality in order to create an accurate model.
Poor-quality images can significantly impact the accuracy and precision of the resulting
3D model [76,77]. One factor that can significantly reduce model quality but can be
controlled is motion blur. Motion blur is the apparent streaking of moving parts (relative
to the frame) of the scene. It results due to the rapid movement of the scene or long
exposure. Motion blur can make the features in an image less distinct and more difficult
to identify, which can lead to modeling errors. It is very convenient to collect images of
the object by using a smartphone to make a video of it. However, the video may contain
a lot of relatively similar frames that do not increase model quality but slow down the
reconstruction process. In order to get rid of unnecessary and lower-quality frames from
the video, images can be compared according to their quality and the best images selected
to be used in photogrammetry. In this case, reference-free image quality evaluation metrics
are required [78–80].

This work proposes a method for detecting/choosing the least motion-blurred image.
When we get images from a single video file, and we want to find an appropriate image for
the photogrammetry, the varying quality-degrading factor is motion blur, so we perform
motion blur evaluation in order to find the highest quality image in the set of images.

The novelty and contributions of this work can be summarized as follows:

• Proposed a method for a video frame quality evaluation by predicting motion blur
level. The proposed method reuses early features of the convolutional neural net-
work (CNN), which is used in the same task (head 3D reconstruction) for human
head detection.

• Presented a dataset construction method/guide for the development of motion blur
evaluation method in video frames or images.

• Performed comparative evaluation of feature sources (feature maps of the convolu-
tional neural network (CNN)) used for motion blur evaluation.

• Presented comparative results of image quality evaluation methods using mannequin
head videos; results show that the created method is effective and performs better than
simple sharpness-based, BRISQUE, NIQE, and PIQE blind image quality metrics in
choosing less motion-blurred (better quality) frames for 3D human head reconstruction
applications.

The problem of choosing the highest quality image via finding the least motion-blurred
image is summarized in Figure 1.

The outline of the paper is as follows. In Materials and Methods (Section 2), the
proposed method for motion blur evaluation is described; a short description of other
image quality evaluation methods that are used as standard is provided; data collection
and software tools used is reported. Results (Section 3) gives experimental comparison
results of the image quality evaluation methods, and Discussion (Section 4) provides
an interpretation of the findings and practical implications. Finally, Section 5 gives the
conclusions of this work.
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Figure 1. The need for finding the least motion-blurred (highest quality) image from several images
during 3D head reconstruction using a photogrammetry approach. Such a selection process reduces
data redundancy and removes distorted images; therefore, the reconstruction process becomes faster
and the resulting model is more accurate. In self-recorded videos using smartphones, motion blur is
the most affecting image quality factor that can be managed after a video is recorded. So the problem
of choosing the highest quality image becomes a motion blur evaluation problem.

2. Materials and Methods

In this section, we describe a problem of why it is helpful to evaluate motion blur in
images that are being used in the photogrammetric reconstruction of the 3D head model. We
propose a method that exploits early features of the convolutional neural network (CNN),
which performs head localization in images. Additionally, we describe the experimental
data collection and preparation process, the creation of training and testing datasets, and
outline the evaluation process of image quality evaluation methods.

2.1. Motivation and Method for Finding the Least Motion-Blurred Image

Photogrammetric object reconstruction workflow starts with selecting an appropriate
set of images. Images must uniformly cover the space around the object and be of the
highest quality. Image sharpness is the most influential factor in image quality. It is very
convenient to collect image samples using a smartphone by filming the object. However,
taking a video of the object produces oversampling if the camera is moved slowly, or
more frames may be distorted by motion blur if the camera is moved faster in a low-lit
environment. Some frames may be more affected by motion blur due to an accident shake
of a hand or a sudden move. Such frames must be found and removed. Consecutive
frames from the video contain nearly duplicate information, but the motion blur distortions
may differ. So it would be useful to pick the single highest quality frame from the set of
consecutive frames (see Figure 1).

Various factors/settings such as resolution, bitrate, compression, codec, sensor and
optics quality, camera ISO, shutter speed, and shooting style determines the quality of the
images taken with the camera. Most of them are fixed during a single video, except for
shooting style, which can introduce motion blur distortions. So the motion blur can be
singled out as the distortion that affects image quality. In order to pick the image that is of
maximum quality, as an alternative objective, we can aim to find an image that is corrupted
the least by motion blur.
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The solution to the problem of finding the highest quality image in the set of images is
a method that ranks images according to motion blur distortion level and takes the least
distorted image.

2.1.1. Proposed Method

A suitable method would be capable of finding the least motion-blurred image by
evaluating the relevant image region. If the background of the image is not static, the object
(human head, in our case) should be reconstructed using only the part of the image without
the background. Having non-static background is the typical situation when the head is
imaged by a handheld device and the head is not immobilized. So the background can
be eliminated by detecting the region of the head. A head detector is necessary for such
a situation. If the head detector is a convolutional neural network (CNN), it is possible
to reuse activations of the convolutional layers as features for other tasks other than head
detection (Figure 2). Having information about the head’s location in the image, we can
gather only relevant parts of feature maps, i.e., parts that are spatially corresponding to the
area in the input image where the head is located (Figure 3).

Image features that define sharpness or motion blur should be found in lower-level
image details. These image details should be encoded by the early features of the CNN.
Later layers of the CNN encode progressively higher-level structural information about the
object it learned to detect. So we will test the first ten feature maps of the CNN for their
suitability to provide useful features for the motion blur evaluation of the input image. The
CNN head detector [81] used in the experiment is a single-shot detector (SSD) [82] with the
VGG-16 [83] backbone. The model adopted in this research was developed by the authors
of LAEO-Net [84]. Shapes of the feature maps and names of the convolutional layers that
generated these maps are provided in Figure 2 and Table 1.
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Figure 2. Partial structure of the convolutional neural network (CNN) model used for human head
detection. Features from the first 10 feature maps (outputs of convolutional layers) of the VGG-16
backbone were investigated for suitability to predict motion blur level in the presented image. Names
and filter shapes of the convolutional layers are given above the boxes that denote feature maps. The
numbers in the boxes specify the shape of the feature maps.
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Figure 3. A diagram explaining the sampling process of features for image quality (motion blur
level) evaluation that is based on the LightGBM ranker model. At first, a subarray of K-dimensional
feature vectors (part of the feature map) (b) corresponding to the detected head BBox in the input
image (a) is determined. The said region of the feature map describes the image patch containing the
face. The spatial position of the region in the feature map (b) is relatively the same (proportional)
as the position of the head’s bounding box (BBox) in the image (a). Later, only part of the feature
vectors from the region are selected (c): feature vectors randomly sampled for the training dataset
and uniformly sampled for testing/evaluation.

After the head is detected in the image, the corresponding spatial region can be located
in the feature map. Features from this region can be used to score an image for motion blur
level in the head’s region of an image. All features from the region or just a subset of features
could be used. As the spatial size of feature maps reduces twice after each max-pooling,
the region that corresponds to the head region also gets smaller. In order to equalize the
number of features from different feature maps and to decrease the amount of training
data, we chose to sample 50 features from the region for the train set and 100 features for
the test set. The sampling pattern was different as well. For the training, features were
sampled from the region randomly (see Figure 3c). This strategy additionally should work
as overfitting prevention by impeding the model from catching some patterns in the data
related to facial features. Feature sampling for testing is performed using a uniform pattern
(see Figure 3c). Differences in feature vectors from the same or near similar face locations
will ultimately describe mostly quality-related image patterns because quality-unrelated
image patterns are near constant.

The method will be picking the least motion-blurred image from the set of images;
therefore, rank-1 performance (right image is returned as top-1 prediction) is important,
but not the absolute predicted score of image quality. A ranking algorithm in this situation
solves the problem. We chose the LightGBM ranker model for learning to score images
according to their motion blur distortions. Traditional gradient boosting decision tree
was used, which is implemented in Python’s lightgbm package as LGBMRanker class.
LambdaRank was used as an objective function. During the construction of the gradient
boosting model, the maximum tree leaves for the base learners parameter (num_leaves)
was set to 41, boosting learning rate (learning_rate) was set to 0.02, and the number of
boosted trees to fit (n_estimators) was set to 10,000. The collection and construction of the
training set are described in Section 2.3.

After the ranker model is trained, the key steps of the image quality evaluation using
the proposed method are the following:

1. Detection of the head region (BBox) (the BBox found in the head’s background removal
step is reused).

2. BBox is transferred from the image coordinates to the selected feature map (refer to
Figure 2) coordinates, i.e., BBox coordinates are scaled using the factor how the spatial
size of the feature map is smaller than the spatial size of the image (refer to Figure 3).

3. Limiting the feature map of the L-th convolutional layer to the region corresponding
to the detected head BBox, we get a subarray of K-dimensional feature vectors.



Appl. Sci. 2023, 13, 1264 6 of 18

4. A subset of 100 feature vectors is uniformly sampled from the subarray of K-dimensional
feature vectors for testing/evaluation. For comparison, a subset of 50 feature vectors
is randomly sampled for training data.

5. Sampled features are provided as inputs for the LightGBM ranker model during the
inference (image quality assessment). For comparison, sampled features together
with the outputs (ranking information) are given to the LightGBM ranker model
during training.

6. Making a decision: a higher score indicates less motion blur (better quality).

Table 1. Summary of the CNN’s first 10 feature maps that were investigated for suitability to provide
useful information for prediction of image quality. The number of channels of the feature map
determines the dimensionality of the sampled feature vector.

Layer ID/No. Layer Name Feature Map Shape

[N × M × K] 1

FM1 Conv 1-1 512 × 512 × 64
FM2 Conv 1-2 512 × 512 × 64
FM3 Conv 2-1 256 × 256 × 128
FM4 Conv 2-2 256 × 256 × 128
FM5 Conv 3-1 128 × 128 × 256
FM6 Conv 3-2 128 × 128 × 256
FM7 Conv 3-3 128 × 128 × 256
FM8 Conv 4-1 64 × 64 × 512
FM9 Conv 4-2 64 × 64 × 512

FM10 Conv 4-3 64 × 64 × 512
1 (rows × columns × channels).

2.1.2. Standard Methods

Performance of the proposed image quality evaluation method’s variants was com-
pared to the standard methods—fast image quality evaluation using image sharpness as
a proxy [85], a method used in the previous study [86], and no-reference image quality
metrics (BRISQUE [78], NIQE [79], PIQE [80]). All these methods compute some quality
value without a comparison of the image of interest to some reference image. In a situation
when we want to find the least motion-blurred (highest quality) image in a group of images
that are slightly different (consecutive frames), we do not possess an image that could serve
as a reference.

Image Sharpness as Image Quality Proxy

This method was used for the measurement of image sharpness, which was used as an
estimate of image quality. The image quality evaluation was required in order to perform
the selection of a suitable subset of frames to be passed to the 3D head reconstruction
algorithm [86].

The key steps of the image sharpness evaluation method were:

1. Detection of the head region (BBox);
2. Determination of region of interest (RoI) parameters: RoI is a square and its size is the

smaller edge of the head’s BBox;
3. Cropping the RoI from the image and resizing it to 256 × 256 px image patch;
4. Filtering the cropped and resized patch using a Laplacian of Gaussian (LoG) filter

(3 × 3 filter size, σ = 0.5);
5. Calculating the variance of the filtered patch;
6. Making a decision: a larger variance represents a higher image sharpness, hence less

motion blur.
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No Reference Image Quality Metrics

This group of image quality evaluation methods does not require a reference image to
analyze the target image and is also called blind methods. Blind methods use statistical
features of the image to assess the image quality. Three methods were included in the
pool of image quality evaluators: BRISQUE [78], NIQE [79], and PIQE [80]. Matlab Image
Processing Toolbox implementation of these methods was used in experiments [87].

Each metric has its own strengths when analyzing different types of images. Compar-
ing the performance of these different metrics on the validation image set could be the way
of choosing the best metric for a particular dataset.

A short description of the used blind image quality evaluation methods:

• BRISQUE—Blind/Referenceless Image Spatial Quality Evaluator [78]. BRISQUE is a
model that is trained on databases of distorted images, and it employs an "opinion-
aware" approach that assigns subjective quality scores to the training sets.

• NIQE—Natural Image Quality Evaluator [79]. The NIQE model is trained on undis-
torted images, therefore it can assess the quality of images with arbitrary distortions
and does not rely on human opinions when measuring image quality. However, this
system does not score images based on the subjective quality scores of viewers; hence,
the NIQE score might not be as accurate in predicting human perception of quality.

• PIQE—Perception-based Image Quality Evaluator [80]. The PIQE algorithm is un-
supervised, meaning it does not require a trained model. It is also opinion unaware.
PIQE is suitable for measuring the quality of images with arbitrary distortion. Mostly
it performs similarly to NIQE.

The key steps of the image quality evaluation using blind methods:

1. Detection of the head region (BBox);
2. Determination of region of interest (RoI) parameters: RoI is a square and its size is the

shorter edge of the head’s BBox;
3. Cropping the RoI from the image and resizing it to 512 × 512 px image patch;
4. Providing the patch as input for the BRISQUE, NIQE, or PIQE method;
5. Making a decision: a smaller score indicates better perceptual quality.

2.2. Evaluation of the Methods Used for Determination of the Less Motion-Blurred Image

Evaluation of the proposed and standard methods for finding less motion-blurred
(better quality) images was performed using testing data. A description of testing dataset
preparation is presented in Section 2.3.

At the beginning of the photogrammetry pipeline, we want to select only necessary
and of the highest quality images for the object reconstruction (see Figure 1). Picking the
highest quality image (which, in our case, we defined as having the least motion blur
distortions) from a set of images means sorting these images according to their quality
and choosing the best one. The test set is constructed so that the method should pick
an image from a pair of images. The method assigns some ranking scores to the images,
and the appropriate image is chosen. Our current method gives a higher score for less
motion-blurred images; the sharpness-based method also gives a higher score for less
motion-blurred images. Blind image quality evaluation methods BRISQUE, NIQE, and
PIQE provide a smaller score as indicators of better perceptual quality (less motion blur).

The test set is constructed from original images I1 and their augmented versions I2, I3,
I4, and I5. All augmented versions are gradually increasingly affected by motion blur. For
the evaluation of the methods, all possible combinations of I1–I5 images were generated.
Images that are closer by distortion parameters are harder to differentiate into better and
worse according to image quality. The harder pairs are I1–I2, I2–I3, I3–I4, and I4–I5. The
easier pairs are I1–I3, I1–I4, I1–I5, I2–I4, I2–I5, and I3–I5.
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2.3. Data Preparation

The proposed method is based on the machine learning algorithm LightGBM ranker
(gradient boosting decision tree), so the development of the method requires training and
testing data. Both training and testing datasets contain real and augmented data (real data
after augmentation). For both sets, augmentation allows for the simulation of gradually
increasing motion blur. Controlled augmentation of the training data helps to increase the
robustness of the developed quality evaluation method. Test data augmentation is used to
simulate real situations where the method will be used to find the highest quality or least
motion-blurred image from the selected set of images.

Real images were extracted from videos that were collected and used in the previous
experiment [86], where the methodology for the improvement of 3D head reconstruction
was developed, and it was used to propose changes for the general-purpose 3D reconstruc-
tion algorithm. Details regarding video collection are presented in the mentioned work,
and here we give a short summary.

Smartphone Samsung Galaxy S10+ standard Camera App was used to take videos.
In total, 19 videos were captured, varying in acquisition conditions, such as changing
the orientation of the smartphone, changing lighting conditions, and stationary or varied
backgrounds. The average length of videos was 51.5 ± 16.7 s. The movement pattern of the
camera was simulating an effort to make a selfie—zigzagging sideways and moving slowly
from top to bottom, making sure all sides of one’s head are captured.

From the set of 19 videos, 15 videos were used for training and four videos for
testing. After frame extraction, the training set contained 10,100 initial/original images,
and 50,500 images after augmentations. The test set contained 3253 initial images and
16,265 images after augmentations.

The construction of training and test datasets by augmenting the original image is
explained in Figure 4. As mentioned before, augmentation of datasets is needed to simulate
gradually increasing motion blur distortions. Randomness in the simulation of motion blur
effects provides better generalization properties of the LightGBM ranker. Augmentation
of test data is needed to simulate real situations where the single best frame should be
selected from the consecutive frames.

Training data augmentations included only simulations of the linear motion of a
camera. The angle of motion was selected randomly, allowing any possible movement
direction. The length of the camera motion was 5, 10, 15, and 20 pixels. It is 0.13%,
0.26%, 0.39%, and 0.52% from the largest image dimension. The mentioned motion lengths
in Figure 4 are marked as MB1 (motion blur 1), MB2, MB3, and MB4.

Augmentation of test data included the same motion blur distortions but additionally
were altered by affine transformation (“AT” in the Figure 4). The parameters of the affine
transformation were constant for all transformations of the same initial image but were
generated randomly for different initial/original images. The affine transformation was
applied cumulatively to the initial image generating four new spatially altered images.
This imitates consecutive frames in the video when the camera is moving while taking
video. The affine transformation was composed of rotation and X- and Y-translations.
Rotation was uniformly sampled from the interval [−0.55, 0.55] degrees. Translations were
uniformly sampled from the [−15, 15] pixels range.

Datasets contained all I1–I5 images. However, training and test set exploited images
differently. Training of the LightGBM ranker model needs the ranked list of images. The
training algorithm received features that were extracted from a list of images ordered in
increasing motion blur distortions and grouped by image ID (initial image name). Ranks
were provided as targets, with the highest rank assigned to I1 and the lowest to I5. The test
set is composed in a way that the developed method should make pairwise comparisons,
i.e., select the less motion-blurred (higher quality) image from an image pair. All possible
combinations of I1–I5 images were generated for the test set. Images that are closer by
distortion parameters are harder to differentiate into better and worse according to image
quality. The harder pairs are I1–I2, I2–I3, I3–I4, and I4–I5.
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In the exact same way, the test set of real face images was prepared. The test set
contained 2976 initial images and 14,880 images after augmentations. The source of real
face images was a subset of IMDB-WIKI dataset [88,89]—IMDB cropped images from the
first three subfolders, and whose shorter side was longer than 500 pixels.
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Figure 4. Construction of the training (a) and test (b) datasets by augmenting original image. Here
I1—original image; I2, I3, I4, I5—augmented images; AT—affine transformation of the image; MB1–
MB4—motion blurring from the lowest (#1) to the highest (#4) level.

2.4. Software Used

The software tools and programming languages used in this research are as follows:

• MATLAB programming and numeric computing platform (version R2022a, The Math-
works Inc., Natick, MA, USA) for the implementation of the proposed algorithm
(except for training LGBMRanker model), and for data analysis and visualization;

• SSD-based upper-body and head detector (https://github.com/AVAuco/ssd_people
accessed on 15 September 2022) [84], for the detection of heads and as a source of
features for the image similarity sorting;

• Python (version 3.9.10) (https://www.python.org), (accessed on 15 September 2022) [90],
an interpreted, high-level, general-purpose programming language. NumPy, SciPy,
and LightGBM packages were used for the machine learning applications (LGBM-
Ranker tool).

3. Results

The results of the experimental comparison of the image quality evaluation methods
are summarized in Table 2. Images are of the mannequin head. Results are listed for
separate image pair types, for harder image pairs combined (image pairs that are the most
similar according to the motion blur level), and for overall results. Harder image pairs are
highlighted with a dark background.

Our proposed method has ten variants (#1–#10)—they differ by the feature map
sequence number from which the features were sampled for motion blur evaluation. The
“FMx” part in the title of the method designates the source map of the features (see Table 1).
Other methods were sharpness (#11), which was used in the previous research [86] to
pick the sharpest image from the set. The three remaining methods (#12–#14) are well-
known in reference-free (blind) image quality evaluation tasks. The top performing method
quite consistently was our proposed LightGBMRanker-based using features from the

https://github.com/AVAuco/ssd_people
https://www.python.org
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sixth convolutional layer (Conv 3-2). Actually, a very similar performance was found
for LightGBMRanker-based methods that use features from the fifth (Conv 3-1) to ninth
(Conv 4-2) convolutional layers. All these methods outperformed all methods used for
comparison as standard methods.

An additional experiment was performed to test the potentiality of feature pooling
from different feature maps. The results of the experimental comparison of the image qual-
ity evaluation methods using combined features from two feature maps are summarized in
Table 3. The table presents the average results of harder image pairs and all image pairs.
The experimental setup was analogous to the previous experiment. The top-performing
method is the one that uses features from the sixth and ninth feature maps. In general, big-
ger improvements can be observed when features from Conv 3 and Conv 4 convolutional
blocks are combined, i.e., one from Conv 3 (Conv 3-1, Conv 3-2, or Conv 3-3) and one from
Conv 4 (Conv 4-1, Conv 4-2, or Conv 4-3).

Another experiment was conducted using images of real faces. This experiment was
identical to the first one. Results are presented in Table 4. In this case, our proposed method
remained the top performing, with slight changes to the top positions of the variants of the
proposed method. In this situation, the #8 variant is leading instead of the #6, which was at
the top when images of a mannequin head were used.

A graphical summary of the methods’ experimental comparison results presented in
Tables 2–4 is shown in Figure 5.

Table 2. Method comparison results of selecting a less motion-blurred image from a pair of images.
Images are of the mannequin head. Values in the table are the percentages of selections that were
correct. Images in the pairs are the following: I1—original image; I2—AT+MB1 (original image
altered by affine transformation + motion blur #1); I3—AT×2+MB2 (original image altered by the
previous affine transformation twice + motion blur #2); I4—AT×3+MB3; I5—AT×4+MB4. The best
performance in each comparison group (column) is highlighted in red. The dark background of the
cells highlights comparison results of harder image pairs, i.e., image pairs that are the most similar
according to the motion blur level.

Results of Selecting a Less Motion-Blurred Image from a Pair [% Correct Selections]Method I1-I2 I1-I3 I1-I4 I1-I5 I2-I3 I2-I4 I2-I5 I3-I4 I3-I5 I4-I5 Avg. of Hard Overall
1. FM1-LightGBM 66.7 84.8 94.1 97.0 78.5 91.2 95.6 80.2 90.3 77.3 75.7 85.6
2. FM2-LightGBM 81.4 96.6 99.4 99.9 92.8 98.7 99.5 93.8 98.7 92.0 90.0 95.3
3. FM3-LightGBM 93.1 99.5 100 100 98.9 99.9 99.9 99.0 99.6 97.1 97.0 98.7
4. FM4-LightGBM 96.8 99.9 100 100 99.1 99.9 100 99.4 100 98.3 98.4 99.3
5. FM5-LightGBM 97.1 99.9 100 100 99.7 100 100 99.8 100 99.6 99.0 99.6
6. FM6-LightGBM 98.1 100 100 100 99.7 100 100 99.9 100 100 99.4 99.8
7. FM7-LightGBM 96.3 99.9 100 100 99.6 100 100 99.9 100 99.9 99.0 99.6
8. FM8-LightGBM 98.2 99.9 100 100 99.2 100 100 99.9 100 99.8 99.3 99.7
9. FM9-LightGBM 98.3 99.9 100 100 99.4 99.9 100 99.9 100 99.9 99.4 99.7

10. FM10-LightGBM 97.1 99.7 99.9 100 98.3 99.8 99.9 99.6 99.9 99.7 98.7 99.4
11. Sharpness 95.6 98.2 98.5 98.2 98.0 98.5 98.3 94.5 96.2 91.4 94.9 96.7
12. BRISQUE 68.9 87.6 94.8 97.4 90.6 96.6 98.0 96.8 98.0 96.5 88.1 92.5
13. NIQUE 96.8 98.2 98.9 99.4 97.7 97.4 98.5 66.4 76.8 69.8 82.7 90.0
14. PIQUE 85.6 98.3 99.4 99.9 95.7 98.9 99.2 92.3 95.7 82.5 89.0 94.8
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Table 3. Comparison results of proposed method variants for selecting a less motion-blurred image
from a pair of images using pooled features from two different feature maps. Images are of the
mannequin head. Values in the table are the percentages of selections that were correct. The table
presents the average results of harder image pairs and all image pairs. The best performance is
highlighted in red. The dark background of the rows highlights the comparison average results of
harder image pairs, i.e., image pairs that are the most similar according to the motion blur level.

Feature MapFeature Map FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10
Avg. of
Hard 89.91 96.13 98.21 99.17 99.22 99.10 99.01 99.24 98.71

FM1 Overall 95.33 98.28 99.25 99.66 99.68 99.63 99.57 99.69 99.42
A 96.27 98.14 99.16 99.41 99.15 99.17 99.42 98.95FM2 O 98.38 99.21 99.65 99.76 99.65 99.66 99.77 99.57
A 98.30 99.28 99.45 99.39 99.41 99.51 99.17FM3 O 99.29 99.70 99.78 99.75 99.76 99.80 99.65
A 99.56 99.58 99.54 99.64 99.67 99.52FM4 O 99.82 99.83 99.81 99.86 99.87 99.81
A 99.32 99.47 99.68 99.74 99.58FM5 O 99.72 99.79 99.87 99.89 99.82
A 99.37 99.67 99.81 99.72FM6 O 99.74 99.86 99.92 99.89
A 99.65 99.71 99.66FM7 O 99.86 99.88 99.86
A 99.38 99.26FM8 O 99.73 99.68
A 99.19FM9 O 99.66

Table 4. Method comparison results of selecting a less motion-blurred image from a pair of images.
Images are of real faces. Values in the table are the percentages of selections that were correct. Images
in the pairs are the following: I1—original image; I2—AT+MB1 (original image altered by affine
transformation + motion blur #1); I3—AT×2+MB2 (original image altered by the previous affine
transformation twice + motion blur #2); I4—AT×3+MB3; I5—AT×4+MB4. The best performance in
each comparison group (column) is highlighted in red. The dark background of the cells highlights
comparison results of harder image pairs, i.e., image pairs that are the most similar according to the
motion blur level.

Results of Selecting a Less Motion-Blurred Image from a Pair [% Correct Selections]Method I1-I2 I1-I3 I1-I4 I1-I5 I2-I3 I2-I4 I2-I5 I3-I4 I3-I5 I4-I5 Avg. of Hard Overall
1. FM1-LightGBM 58.7 75.1 86.2 92.2 70.4 83.6 90.9 71.8 83.4 70.9 67.9 78.3
2. FM2-LightGBM 63.7 88.4 96.4 98.9 84.3 96.9 99.1 87.9 96.9 87.5 80.8 90.0
3. FM3-LightGBM 66.7 97.0 99.7 99.9 97.3 99.8 100 98.3 99.7 96.3 89.7 95.5
4. FM4-LightGBM 79.2 97.8 99.8 100 97.5 99.8 99.9 97.8 99.2 94.8 92.3 96.6
5. FM5-LightGBM 95.1 99.6 99.9 100 99.3 99.9 100 99.8 100 99.7 98.5 99.3
6. FM6-LightGBM 96.0 99.8 100 100 99.9 100 100 100 100 100 99.0 99.6
7. FM7-LightGBM 98.1 100 100 100 99.9 100 100 100 100 100 99.5 99.8
8. FM8-LightGBM 99.2 100 100 100 99.9 100 100 100 100 100 99.8 99.9
9. FM9-LightGBM 98.9 100 100 100 100 100 100 100 100 100 99.7 99.9

10. FM10-LightGBM 94.4 99.7 100 100 99.6 99.9 100 99.9 100 99.8 98.4 99.3
11. Sharpness 82.5 88.0 89.6 90.0 90.8 91.4 91.6 90.7 90.9 87.9 88.0 89.3
12. BRISQUE 81.5 95.5 98.1 99.0 95.2 98.1 99.0 97.4 98.6 97.1 92.8 95.9
13. NIQUE 65.0 98.3 99.9 99.9 99.8 100 100 98.7 99.2 86.9 87.6 94.8
14. PIQUE 67.9 87.7 95.8 98.3 81.3 95.2 98.2 86.4 95.5 86.2 80.4 89.2
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Figure 5. Graphical summary of all the experimental results of methods comparison. The results are
the percentage of correct selections of a less motion-blurred image from a pair of images. Images
of a mannequin head and of real faces were used. The chart gives the average performance of the
methods tested using all image pairs (overall) and harder image pairs. Harder image pairs are image
pairs that are the most similar according to the motion blur level.

4. Discussion

We proposed a method for image quality evaluation of specialized content images.
This quality score is required to be able to point to the best-quality image from the set of
images. The problem of choosing the best quality images appears during the photogram-
metric reconstruction of the human 3D head model when images are collected by making a
video of your own or someone else’s head. In this case, some frames are redundant and
can be dropped to speed-up reconstruction. Some frames can be motion blurred when the
lighting is dimmer and the camera moves faster. Therefore, we would like to pick frames
that are the least motion-blurred. A simple solution would be to split the frame sequence
into chunks and take a single best-quality frame from each chunk. This procedure would
reduce data redundancy as they were covering a small region in space and improve data
quality as better quality images were left. The described reduction of frame count will lead
to faster and more accurate reconstruction of the head 3D model.

The proposed method reuses features from one of the early convolutional neural
network (CNN) layers. This CNN already has its purpose in 3D head reconstruction—it
detects the human head. Head detection (in general—object detection) allows for the
head’s background to be masked. Background masking is required when it is not static and
consequently deteriorates and slows down the photogrammetric reconstruction workflow.
So there is no overhead in extracting required features. Experiments showed that early
features of CNN are useful in scoring images according to their quality.

We chose to infer some image quality scores as the inverse of motion blur level. Because
images were collected via single-take video, many of the image quality-defining factors
are fixed: same camera optics, camera sensor, environmental video-taking conditions, and
camera settings (ISO, shutter speed). The one factor that strongly influences image quality
and in most cases changes is motion blur. It depends on the speed of camera movement,
and it is not simple to guarantee the camera’s stable and adequately slow movement while
making a video with a smartphone by hand. So the best quality image in the image set is
the image with the least motion blur.

The proposed method for image quality evaluation is based on inferring motion blur
level from the early features of a CNN-based head detector, using a LightGBM ranker
model. The model was trained on synthetically expanded (augmented) real images of a
mannequin’s head—augmentation simulated motion blur of various levels and directions.
From the one original image via augmentation, four additional images of increasing motion
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blur lengths were generated. These images were passed to CNN for head detection, and
features (activations) from the first ten convolutional layers were collected for the training
of the LightGBM ranker model. Features from separate feature maps were used with
separate models, so we compared the usefulness of features from different feature maps.

Absolute values of image blurriness are unknown as the ground truth blurriness
of the initial image is unknown. The following images, which were generated from the
original by simulating motion blur of random direction but fixed length, can be ordered in
increasing order of blurriness. So the solution to train the machine learning model was to
train the LightGBM ranker model. It does not require an absolute ground truth value of the
image property that should be predicted, but only a ranking order. Using this model in
inference mode provides a possibility to rank a group of new images according to motion
blur distortions in the images and a way to find an image with the lowest motion blur.

Features from the feature maps were sampled from the region that corresponds to the
detected region of the head. The bounding box (BBox) of the head in the input image is
scaled down the spatial position in the feature proportionally according to the size ratios of
the feature map and input image. After finding a region in the feature map that corresponds
to the head position, we randomly sample features from that region. Sampling randomly
allows for reducing the possibility of overfitting the model to features specific to some facial
regions. So it works as a regularization strategy. During inference, features are sampled
uniformly in the corresponding head region. Each feature vector is passed to the LightGBM
ranker model, and the outputs from the same image are averaged to get a final score that is
used to select an image with the largest one.

The results of the first experimental comparison (images of the mannequin head) of
image quality evaluation methods show that our proposed method outperformed standard
methods: sharpness-based, BRISQUE, NIQUE, and PIQUE. The best-performing variant,
FM6-LightGBM of the proposed method, achieved 99.8% rank-1 accuracy, so it reliably
finds a less motion-blurred (higher quality) image from the two images in the test set.
This method variant was consistently the best performing in almost all pairwise image
comparison tests. The variant is based on features from the 6th convolutional layer (Conv 3-
2). The only place where it was a runner-up was the first category, where the method
must differentiate between I1–I2 images. These images are from a harder comparison
set because their quality differs the least. The I1 image is the original image, and the I2
image is the original image affected by the smallest motion blur compared to all images
in this experiment. It may be that minor motion blur distortions do not significantly
affect image quality. Additionally, the original images were not reviewed to remove lower
quality frames, so the minor additional distortions could be that are not imposing quality
degradation of the original image. The I1–I2 comparison category was the hardest for all
methods, so the lower initial quality of the frames could be the reason.

Additional experiments were performed to compare the methods using images of
real faces and to test the potentiality of fusing features from different feature maps. The
experiment using images of real faces shows that our proposed method remained the
top-performing. There were slight changes in the top positions for the variants of the
proposed method—in the situation of real faces, the #8 variant (features from Conv 4-1
convolutional layer) is leading instead of the #6 (features from Conv 3-2 convolutional
layer), which was in the top when images of mannequin head were used. This shift is
probably due to the change in the overall quality of images but not due to the change from
mannequin face to real faces. Images of the mannequin were collected by us at 2–3 times
higher resolution than images of real faces from the IMDB-WIKI dataset. To perform similar
experiments, images of real faces were upsampled to be of similar resolution to the images
of the mannequin head. Consequently, images of real faces contain less higher-frequency
components, which are detected in earlier feature maps. The case of lower levels of higher-
frequency components additionally explains why the performance of the sharpness-based
method dropped in this case.
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Experiments on feature pooling from different feature maps show that feature com-
bination is beneficial and increases the performance of our proposed method. In general,
greater improvements can be observed when features from Conv 3 and Conv 4 convo-
lutional blocks are combined, i.e., one from Conv 3 block (from Conv 3-1, Conv 3-2, or
Conv 3-3 convolutional layers) and one from Conv 4 (from Conv 4-1, Conv 4-2, or Conv 4-3
convolutional layers). Selecting features from the same convolutional block typically does
not provide any improvement. It makes sense because features from different scales bring
more different information.

Each method that was used as a standard may have its own strengths when analyzing
different types of images. Comparing the performance of these different metrics on the
validation image set could be the way of choosing the best metric for a particular task
or dataset.

The performance of the proposed method could potentially be improved by combining
features from more than two feature maps. However, such a design will lead to the
increased complexity of the ranker model due to the increased number of input features.
It is likely that the dimensionality of the feature vector could be reduced without loss
of accuracy.

Further experiments could be done to test the proposed method on natural images.
The same method should be able to pick the least motion-blurred image from the group
of images. Even the same CNN model could be used as a feature extractor, but features
should be sampled from the full area of the feature maps. CNNs trained on natural images
(e.g., ImageNet data) could serve as universal feature extractors.

5. Conclusions

Photogrammetric reconstruction of 3D objects requires images of high quality. If we
have a large collection of images, it would be useful to drop some frames to reduce data
redundancy and eliminate lower-quality images. It would increase reconstruction speed
and reconstruction accuracy. A tool for finding better quality images in a group of images
would help to reduce said image collection. The most quality-affecting factor in the group
of images (frames) that were taken via a single video shot is motion blur. We proposed
and experimentally compared the developed method to the other image quality evaluation
methods: sharpness-based, BRISQUE, NIQUE, and PIQUE. The proposed method uses
activations of one of the early layers of the human head detection CNN model as input
features. The model is already doing its job in the 3D head reconstruction workflow for
background removal, so the extraction of features has no overhead (features are being
reused). The proposed method is based on the LightGBM ranker model. The experimental
comparison showed that the developed method outperformed other well-known image
quality evaluation methods used in the comparison. Additionally, an experimental compar-
ison shows that features from the fifth to ninth feature maps provided the top results for
motion blur evaluation.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
SSD Single Shot Detector
FM Feature Map
BBox Bounding Box
RoI Region of Interest
LoG Laplacian of Gaussian
AT Affine Transformation
MB Motion Blur
SfM Structure from Motion
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