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Abstract: Gear failure caused by traveling wave resonance (TWR) generally occurs quite suddenly
and causes catastrophic results in aero-engines. In this study, the TWR characteristics and stress
distribution characteristics of a high-speed bevel gear in an aero-engine are analyzed in detail by
means of experiments and simulations. Based on the acoustic waveguide system and dynamic stress
test system, the TWR fatigue failure monitoring experiment of the central drive bevel gear in an
aero-engine is carried out, and the TWR frequency, dangerous speed, dynamic stress and fatigue
fracture characteristics of a driven bevel gear are obtained. Based on the transient dynamic analysis
method and Hertz contact theory, the stress distribution characteristics of the driven bevel gear,
which cannot be obtained in the test under the condition of TWR, are analyzed. The influence of the
changes in the working temperature and the thickness of the spoke on the TWR characteristics and
the stress distribution characteristics are discussed. The simulation and test results show that the gear
has the problem of stress concentration at the root of the tooth and the back of the spoke plate under
the 4th node-diameter (ND) TWR, and the stress distribution form is consistent with the fracture
form of the test gear, covering 12 teeth. The relationship between the stress at the test monitoring
point and the maximum stress at the tooth root is obtained, and the generality of the relationship is
verified. Based on this relationship, the maximum stress of tooth root, which is difficult to monitor in
the test, is predicted to be 1271.7 MPa. An accurate and convenient means to obtain the maximum
stress at the tooth root of the central transmission bevel gear under TWR is obtained so as to provide
a basis for failure cause analysis and central transmission bevel gear design and lay the foundation
for future research focusing on the propagation of the gear under TWR conditions.

Keywords: aero-engine; bevel gear; traveling wave reonance; stress distribution; fatigue fracture

1. Introduction

In the rotor mechanism of an aero-engine, gear drive plays an important role as its
main transmission mode. The motion and power between any two axes in the space are
transferred by the direct contact of the tooth profile, which has the advantages of large
transmission power, stable and reliable transmission, high efficiency and long service life
in the gear mechanism [1]. Due to the advantages discussed above, gear drive is widely
used in the transmission systems of aero-engines. However, because of the harsh working
environment of high-speed, high temperature and high alternating load, the central bevel
gear has a tendency to fail due to fatigue [2–4]. The forms of gear failure usually include
pitting erosion, tooth-breaking, plastic deformation, etc. [5–8], among which aviation bevel-
gear whole-tooth fracture and block drop fault caused by the propagation of the fatigue
source at the tooth root due to strong vibrational impacts caused by TWR lead to oil cut off,
power cut off, surge stop and even plane crash accidents, which usually occur suddenly
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and have disastrous consequences. Therefore, it is the response of the gear under TWV
conditions that should be studied. However, it is difficult to obtain the dynamic response
of the fatigue source at the tooth root due to the working environment and the structure
of the bevel gear. Therefore, in view of the above reasons, it is particularly significant
and necessary to analyze the characteristics of the bevel gear in aero-engine TWR and
stress distribution accurately through the combination of experiments and simulations
so as to provide a theoretical basis and fault diagnosis of such accidents in aero-engine
gear systems.

Some progress has been made in the theoretical research and gear dynamics in re-
lation to gears in aero-engine TWR. Sun et al. [9] studied the vibration characteristics of
rotating, cylindrical thin shells under different boundary conditions by using Fourier series
expansion, taking into account the effects of centrifugal force, Coriolis force and toroidal
tensor caused by rotation, and finally derived the exact frequency expression of any type of
rotating thin cylinders with classical boundary conditions. Cooley et al. [10] studied the
vibration mode and frequency of spur planetary gears in the single vibration mode in a
rotating reference frame and a stationary reference frame. They found that the frequency
content of motion was different between the rotating carrier and the base, which is helpful
when analyzing the experimental measurement results of planetary gears. Wang et al. [11]
used thin shell theory to analyze the frequency response of six different forms of mode
expansion. He proposed a more concise and accurate mode for the expansion method of
TWV and compared the results of the analytical method and numerical method to prove
the reliability of the method. Hu et al. [12] studied the self-excited vibration of spur gears
based on the energy method, proposed a theoretical method for predicting the occurrence
of the self-excited vibration of thin spur gears and described the conditions and loads of
the occurrence of the self-excited vibrations. Kaharaman et al. [13] established a three-
degree-of-freedom dynamic model for a gear-rotor-bearing system, taking into account the
effects of the nonlinearities associated with radial clearances in the radial rolling element
bearings and backlash between a spur gear pair. Afterward, they verified this approximate
bearing model by comparing the steady-state frequency spectra, a criterion used to classify
the steady-state solutions was presented, and the conditions for chaotic, quasi-periodic
and subharmonic steady-state solutions were determined. Raghothama et al. [14] used
the incremental harmonic balance (IHB) method to investigate the periodic motions of a
nonlinear geared rotor-bearing system. The periodic solutions and subharmonic solutions
obtained through the use of the IHB method compared very well with those obtained
through numerical integration. Parker et al. [15] considered more influencing factors, such
as a series of nonlinear factors: component manufacturing error, comprehensive transmis-
sion error, wear error and tooth side clearance, to establish a spur planetary transmission
dynamics model, and studied the natural vibration characteristics of a multistage planetary
gear system based on the established model. Kimme Simon et al. [16] used simulation tech-
nology to undertake a detailed analysis of gear production and processing processes and
studied the influence of gear meshing acoustics during gear processing. Özgüven et al. [17]
established a six-degree-of-freedom nonlinear semidefinite model with time-varying mesh
stiffness, which was developed for the dynamic analysis of spur gears. In the nonlinear
model developed, several factors such as time-varying mesh stiffness and damping, sepa-
ration of teeth, backlash, single- and double-sided impacts, various gear errors and profile
modifications were considered. Numerical examples are given in order to demonstrate
the effect of the shaft and bearing dynamics on the gear dynamics. Li et al. [18] proposed
a new dynamic model considering the influence of time-varying mesh stiffness (TVMS),
and the new model was applicable to the gear system. The result demonstrated that the
amplitudes of vibration and the dynamic mesh force of the proposed model are greater
than that of the traditional model.

In the experimental aspect of aero-engine gear resonance, Luan et al. [19] conducted
TWR monitoring tests and fatigue performance tests on bevel gears and analyzed the
dangerous speed range and sound-pressure energy of the vibration. These tests found that
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the harmonic frequency, forward-traveling wave (FTW) frequency, backward-traveling
wave (BTW) frequency and their combination frequency appeared alternately in the noise
spectrum before the gears experienced fatigue fractures. D.P. Jena et al. [20] designed active
noise-cancellation technology using the least mean square (LMS) adaptive filter based on
finite impulse response (FIR). They verified that acoustic signal analysis could be used as a
suitable non-contact method for the precise identification of gear defects and gear health
monitoring. Chen et al. [21] studied the influence of tooth-root cracks on the dynamic
response of TWR. They found that the amplitude of the dynamic response in both the
frequency domain and the time domain increased with crack expansion, which provided
a possibility for them to be used as indicators of state monitoring and fault diagnosis in
planetary gear systems. Ma et al. [22] studied the influence of the crack propagation path on
time-varying meshing stiffness and vibration response. They found that at the same crack
level, the influence of a rim crack on the vibration response was greater than that of a tooth
surface crack. The vibration level increases with increasing crack depth. Fung et al. [23]
conducted TWV tests on a large hollow shaft of a gas turbine and obtained the fourth
meridian FTW frequency of the shaft through strain gauge signal analysis and inductive
distance detector confidence analysis. Macke et al. [24] carried out two types of correlation
analysis on the TWV of the stationary and rotating cylinder shells of a gas turbine. For stator
shells surrounding rotating blades, the minimum wall-thickness criterion was proposed,
and for rotor shells, the relationship between FTW and BTW was compared with the
corresponding known relationship of the disk. Hu et al. [25] proposed two test methods,
a noise test and a strain gauge test, to obtain the vibration characteristics of bevel gears,
and the feasibility of these methods was verified. Luan et al. [26] used the derived acoustic
measurement method to measure the TWV frequency and speed of the central bevel gear
and verified the accuracy of the acoustic measurement method. Through their tests, they
reached the conclusion that the speed of the 4th ND traveling wave is more dangerous
and should be kept away from the dangerous speed of the 4th ND TWR. Xu et al. [27]
conducted the TWR failure test on the central bevel gear transmission and used tests to
verify the accuracy of the mode solution of plate type bevel gear considering the damping
effect derived by using elastic theory. They drew the conclusion that the traveling wave
resonance response curve is obtained for the row, and its amplitude and wave on the modal
damping ratio, and there are multiple resonance points in the gear’s working speed range,
so the resonance point of k ≤ 4 should be avoided in the gear’s regular working range.

In terms of simulation, the rotating disk was first studied [28–32], and Tian et al. [28]
proposed an artificial damping method, which can be effectively used to identify the modal
parameters of large structures and other rotating systems with relatively low excitation
energy. Tobias et al. [29] studied the vibration of the rotating disk, especially vibrations in
the form of standing waves. The results showed that there might be nonlinear standing
waves in the rotating disk in a wide speed range, depending on the force applied. As its
velocity increases, the wave eventually collapses and, in the process, becomes a traveling
wave, slowly accelerating in the direction of the disk’s rotation as its amplitude drops.
Southwell et al. [31] calculated the natural frequency of a disk of uniform thickness, and
the study showed that when the disk rotates around its axis at any given speed, the natural
frequency will increase. Honda et al. [32] analyzed the steady-state response of a stationary
disk to the uniform motion of a concentrated harmonic force on a concentric circle path.
The damping response of the structure in the form of a series of characteristic functions
is obtained. The effect of the axisymmetric defect on modal response was discussed in
detail, especially the vibration mode. The results showed that the defect has a great
effect on the response near resonance but little effect on the response outside of resonance.
Uppaluri et al. [33] proposed a FEM to separate TWR frequencies within the working speed
range from a large number of natural frequencies of gears and analyzed the influence of
centrifugal curing and structural damping on dynamic responses. Liu et al. [34] calculated
the time-varying mesh stiffness (TVMS) by using the loaded tooth-contact analysis method
(LTCA) and simulating the flexible gear foundation using a shell element and a Timoshenko
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beam element. The consequences of which demonstrate that during the operation of a
spur gear system, angular misalignment produces axial excitation, which excites the nodal
diameter vibration of gear foundations, and the traveling wave resonance phenomenon
appears at nodal diameter vibration resonance speed. Huangfu et al. [35] established a
dynamic model for a rigid–flexible coupling helical gear rotor system and analyzed the
influence of centrifugal stiffening, rotational softening and the gyro effect on the dynamic
characteristics of a thin-rim helical gear rotor system. Wang et al. [36] developed a dynamic
analytical model by considering the sun, carrier, and planets as rigid bodies, which are
coupled to an elastic continuum ring that has bending, extensional and shear deformations.
Carmignani et al. [37] established a three-dimensional finite element model for bevel
gears, numerically simulated the TWV characteristics of bevel gears, obtained the natural
frequency mode of gears and stress distribution during TWR and evaluated the reliability
of the gear structure. Talbert et al. [38] studied the influence of TWR on the load modulation
of helical gear tooth surfaces and obtained the FTW resonance frequency of the gear’s 3rd
ND accurately using a strain test. Feng et al. [39] used FEM to analyze the contact stress of
spiral bevel gears under two different operating conditions: with and without cracks. The
simulated results showed that cracks accelerate the variation in the contact stress of the
meshing process of spiral bevel gears, showing that it is practicable to diagnose structural
damage in spiral bevel gears according to the variation in contact stress. Although a great
deal of research work has been carried out on gear dynamic responses by many scholars,
the stress distribution on the tooth root at traveling wave resonant rotational speed, whose
variation is caused by different factors, has not been studied yet. Sha et al. [40] studied
the 4th TWR of the central bevel gear in the aero-engine by the method of combination
of simulation and experiment. And the stress concentration at the root of the gear has
been discovered.

In this paper, based on the traveling wave resonance response law of the central trans-
mission bevel gear of an aero-engine, by adopting a combination of numerical simulation
calculation and test analysis, the traveling wave resonance characteristics of a driven bevel
gear and the stress distribution were evaluated. (I) It is the maximum stress at the tooth
root that cannot be measured accurately, which was predicted after the reliability of the
simulation model was verified. (II) The effects of the working temperature and web thick-
ness on the traveling wave resonance of the central transmission bevel gear are analyzed.
(III) The reason for the block-dropping fault is revealed by using the simulation results.

2. Theoretical Formulation
2.1. Modal Analysis

A multi-degree-of-freedom system vibrates at a certain natural frequency during free
vibration, similar to a single-degree-of-freedom system. Unlike a single-degree-of-freedom
system, a multi-degree-of-freedom system has multiple natural frequencies. Under this
premise, a method is sought to decompose the free vibration into the superposition of
several simple harmonic vibrations. Its kinetic equation is as follows in Equation (1) [26]:

[M]
{ ..

x(t)
}
+ [C]

{ .
x(t)

}
+ [K]{x(t)} = {0} (1)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix,
{ ..

x(t)
}

is the node acceleration vector,
{ .

x(t)
}

is the node velocity and {x(t)} is the node displace-
ment vector.

At any given moment t, the equation can be regarded as a series of statics equilibrium
equations taking inertial forces [M]

{ ..
x(t)

}
and damping forces [C]

{ .
x(t)

}
into account. The

equation of its physical meaning is as follows in Equation (2) [26]:

m× a + c× v + k× x = F(t) (2)
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Its derivative form is shown as follows in Equation (3) [26]:

m× d2x
dt2 + c× dx

dt
+ k× x = F(t) (3)

For the equation of a second-order inhomogeneous differential equation, the first step
in solving this equation is to assume that F(t)= 0 and convert them into homogeneous
second-order differential equation, whose eigenvalue and eigenvector can be solved. The
eigenvalues obtained are arranged in order from small to large, which is the natural
frequency of each order, and the eigenvector corresponding to the eigenvalues is the
vibration mode of each order. From the solution process, it is shown that there can be no
external load in the modal calculation.

2.2. Hertz Contact Theory

German physicist Heinrich Rudolf Hertz proposed the basic equations between con-
tacts based on elasticity and derived the famous Hertz formula in 1882 [41,42]. The four
assumptions of Hertz contact theory are as follows:

1. The contact area is a linear elastomer, which meets Hooke’s law.
2. The contact area is homogeneous and completely smooth, regardless of the friction

between the two objects.
3. The geometrical dimension of the contact area is much smaller than the radius of

curvature of the contact surface.
4. The contact surface has only vertical contact force with distributed action.

Any contact that meets the above assumptions is called a Hertz contact. When the
contour of the surface near the contact surface is approximately a quadratic parabola, and
the size of the contact surface is much smaller than the size of the object and the radius
of the relative curvature of the surface, the results are consistent with the actual results
obtained by Hertz’s theory. In the Hertz contact problem, because the deformation near
the contact area is strongly constrained by the surrounding medium, each point is in a
state of triaxial stress, and the distribution of contact stress is highly local and decreases
rapidly with increasing distance from the contact surface. In addition, the contact stress is
nonlinear to the applied pressure and is related to the elastic modulus and Poisson’s ratio
of the material.

For gear meshing, the spur gear is usually in the meshing area of a single pair of teeth
near the node, and the force on the teeth is large; thus, the pitting corrosion first appears
near the node. Therefore, the contact fatigue strength of the node is usually calculated. For
example, the contact diagram of two cylinders represents the contact of a pair of involutes
spur cylindrical gears at the node. In order to simplify the calculation, it is replaced by a
pair of cylinders with parallel axes. The radii ρ1 and ρ2 of the two cylinders are equal to the
curvature radii of the tooth profiles at the joints, respectively. According to elasticity, when
a pair of cylinders with parallel axes contact each other and are subjected to pressure, the
line contact will change into a plane contact. The contact surface, where the contact stress
is generated, is a long and narrow rectangle, with the maximum contact stress located on
the middle line of the contact area. The equation of contact stress is shown as follows in
Equation (4) [41]. The Hertz contact model is shown in Figure 1.

σH =

√√√√√√ Fn

(
1
ρ1
+ 1

ρ2

)
πL
(

1−µ2
1

E1
+

1−µ2
2

E1

) = ZE

√
En

Lρε
(4)

where σH is the contact stress, Fn is the normal force, L is the length of the contact line,
ρE is the comprehensive radius of curvature, µ1 and µ2 are the Poisson’s ratios of the
two contact objects.
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2.3. Principle of Traveling Wave Resonance

There are usually three modes of vibration for a wheel structure with a central axis and
no rotation: node-circle (NC), ND and composite, as shown in Figure 2. Additionally, bevel
gears are prone to ND vibrations. The ND vibration is superimposed by two cosine waves
with the same shape. The one that rotates along the gear is called the forward wave, and
the one that rotates against the gear is called BTW. During the propagation of ND vibration,
the periodic fluctuation of each point on the wheel as the wave passes by is called TWR [3].
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After any point on the spoke plate of the gear rotates θ Angle, the corresponding point
phase angle on the mode expansion line of the joint diameter m rotates mθ. Then, the
vibration displacement of the corresponding point on the expansion line perpendicular to
the direction of the spoke plate can be expressed as follows [19]:

y = B(r) cos mθ cos ωt (5)

where y is the transverse vibration displacement of the spoke plate of the gear, in mm;
B(r) is a function of the transverse amplitude of the gear on the radius r of the gear indexing
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circle, in mm. When the gear rotates relative to the coordinate system, it can be expanded
in an exponential form and a triangular form, respectively, as in Equation (6) [19]:{

y = 1
2 B(r)

[
cos(mθ)ejωt + cos(mθ)e−jωt]

y = 1
2 B(r)[cos(mθ −ωt) + cos(mθ + ωt)]

(6)

t can be seen from the above formula that the nodal vibration displacement of the gear spoke
plate can be decomposed into two vibrations with equal amplitude and opposite rotations.
The resonant frequencies of the forward and BTWs correspond to their m-diameters, as
follows [19]: {

fF = fd +
mnF
60

fB = fd − mnB
60

(7)

where fF is the FTW resonance frequency, in Hz, fB is the BTW resonance frequency, in Hz,
fD is the dynamic frequency, in Hz, of the gear pitch diameter type resonance, nF is the
FTW resonant rotational speed, as r /min, and nB is the BTW resonant rotational speed, as
r /min.

During the modeling of the FEM model, it is necessary to set the TWR rotational speed
N of the driven bevel gear and the torque T of the gear shaft since the frequency of the
excitation force is equal to the vibration frequency of the FTW and BTW of the gear. By
transforming Equation (6), the expression of the rotational speed of the driving gear when
the driven gear experiences TWR is as follows [19]:

N2 =
60 fd

i× (z2 ± m)
(8)

where the FTW signal is “−”; The BTW signal is “+”; z2 is the number of teeth of driven
bevel gears; m is the number of pitch diameters; N2 is driven bevel gear speed; i is the
gear ratio; fd is the dynamic frequency of the driven bevel gear. A static frequency is used
instead of a dynamic frequency in the calculation.

The formula for calculating the torque T of a driven bevel gear is as follows [19]:

T1 = 9.55× 106 P
N1

(9)

where P is the output power of the rotating shaft, in kW, which is 200 kW, and N1 is the
speed of the driving gear, as r/min.

3. Fatigue Test of High-Speed Bevel Gear in Aero-Engine

In order to reproduce the failure of a gear falling out during aero-engine use on the
component tester and analyze the cause of its fracture, prefabricated defective gear C and
normal gear B were selected in the test, and fatigue tests were carried out on the two kinds
of gears, respectively, at the speed of 4th ND TWV to study the fatigue fracture state of
the two kinds of gears. The test was divided into two processes. The first process was
to observe the change of excitation frequency when the 4th ND TWV resonated near the
speed of the 4th ND traveling wave pushed from the slow train. In process 2, the failure
recurrence test of the gear dropped block was carried out by staying near the resonant
speed of the 4th ND for a long time. The stress data, noise signal and speed signal during
the test were recorded. The noise signal test system is shown in Figure 3.

In the test, strain gauges are pasted on the surface of the small end spoke plate of the
driven bevel gear close to the tooth root, and the number of strain gauges is four, numbered
1#, 2#, 3#, and 4#. Among them, there are eight teeth between measuring points 1# and 2#
and nine teeth between other measuring points. The strain gauges are one centimeter from
the root of the tooth. The layout of measuring points is shown in Figure 4.
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Figure 4. Diagram of strain gauge patch position.

To reproduce the failure of a gear falling out during engine use on a component tester
and analyze the cause of its fracture, the test selected the two states of gear, one is the
prefabricated defective gear, which is the defective indentation wheel of the hardness tester
(an indentation pit with a diameter of about 1 mm is pressed by the hardness tester at
the fillet of the tooth root at the pinion end face), and the other is the perfect normal gear
without defects. The fatigue tests of the two gears were carried out, respectively, under the
vibration speed of the 4th ND to study the fatigue and fracture state of the two gear wheels.
The test is divided into two stages: the first stage is to push on the slow train to near the
4th ND resonant rotational speed; the second stage is to stay near the 4th ND resonant
rotational speed for a long time until the tooth-breaking fault occurs, which will make a
loud noise. The stress measurement system connection diagram is presented in Figure 5.
The Photographic image of the test bench is shown in Figure 6.
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The time-speed-sound pressure diagram of the fracture process of the prefabricated
defective gear is shown in Figure 7.
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Figure 7. Time-speed-sound pressure diagram of prefabricated gear fracture process.

The results of the fatigue test are as follows: It is shown in Figure 6 that when the time
is 374.5 s, noise sound pressure reaches its maximum, the gear is in the 4th ND TWR, and
then the resonance speed is placed under pressure, first slowly, due to the cracks in the gear
at this time, so the gear stiffness decreased, leading to the 4th ND of the resonance frequency
and the rotation speed change, and then the speed is reduced to find the resonance point of
the 4th ND. When running for 934 s in the 4th ND resonance, the gearbox made explosive
sounds, marking the occurrence of gear fatigue fracture as the pressure dropped suddenly.
After the test stopped, it was found that 12 whole teeth of the driven bevel gear, one of
them connected to the spoke plate, had broken. The schematic diagram of the fractured
fault is shown in Figure 6. However, the new and intact gear was tested using a 4th ND
TWR fatigue test, and the number of vibration fatigue cycles was over 108, and the gear
was still intact. It shows that the new refined gear will not break even if it works in the
resonant rotational speed range of BTW of the 4th ND, but if the gear has an initial defect
and works in the resonant rotational speed range of BTW of the 4th ND, the gear will break.

The noise spectrums are shown in Figure 8. The noise spectrum of the FTW resonance
of the 3rd ND is depicted in Figure 8a, the noise spectrum of the FTW resonance of the
3rd ND is shown in Figure 8b, fF3 is the frequency of the FTW resonance of the 3rd, fB4
is the frequency of the BTW resonance of the 4th. It is clearly demonstrated that the
resonant rotational speed range of the FTW of the 3rd ND is wide, and fF3 = 8715 Hz,
N2 = 11,126 r/min, P = 169.6 Pa, while the BTW of the 4th ND is narrow, fB4 = 8715 Hz,
N2 = 11,126 r/min, P = 169.6 Pa.
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4. Modal Analysis of Driven Gear
4.1. Establishment of 3D Model of Driven Gear

The gear material was carburized gear steel, as used in aero-engines, and its main
physical parameters of driving and driven bevel gears are shown in Table 1. The parameters
of the driving and driven bevel gears are shown in Table 2, and the dimension drawing of
the active bevel gear and driven bevel gear is shown in Figure 9.

Table 1. Physical parameters of gears.

T/◦C E/GPa µ ρ/(kg/m3)

20 215 0.38
7.86 × 103100 213 0.39

200 210 0.41

Table 2. Geometric parameters of gears.

Parameters Driving Driven

Teeth 35 47
Reference circle/mm 135.625 182.175
Tooth thickness/mm 21.064 20.940

Module 3.875
Addendum coefficient 0.85

Top clearance coefficient 0.188
Normal angle/(◦) 20
Spiral angle/(◦) 35
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According to the geometric size of the gear, the engagement model of the active bevel
gear and driven bevel gear was established using UG software, as shown in Figure 10.
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4.2. Modal Analysis and Result Verification of Driven Teeth

Modal analysis of gears is a process of describing the dynamic characteristics of gears
according to the inherent characteristics of the gear structure. Due to the fact that the driven
spoke plate is prone to block-falling and fracturing in the test, research into driven bevel
gears is carried out.



Appl. Sci. 2023, 13, 1814 13 of 27

Modal analysis was conducted using the ANSYS Workbench, and the constraints were
set as fixed constraints on the shaft, including constraints on the rolling bearings and the
keys on the gears. A hexahedral mesh was divided using the mesh-division method, and
the overall mesh of the driving gear model was refined to 1 mm. The number of grids
obtained is 332,324, and the quality of grids is 0.8023, among which 60,432 are SOLID186
high-order units and 271,892 are SOLID187 high-order units. The FEM model is shown in
Figure 11, and the constraint settings of the driven bevel gear are shown in Figure 12. A
fixed constraint was applied to surface A, B, C and D.
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Figure 12. Constraint setting of driven bevel gear. (a) constraint diagram; (b) constraints in FEM
model.

The ambient temperature was set to 20 ◦C, and the first 18 modes were extracted, from
which the modes of the 1st NC, 2nd ND, 3rd ND and 4th ND were selected. The static
frequency of the 1st NC to the 4th ND obtained by simulation are shown in Table 3, and
the mode diagram of vibration is shown in Figure 13.

Table 3. Static frequency of vibration mode.

Vibration Mode First Second Third Fourth

Frequency/Hz 3474 4509 7986 12,783
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From the point of view of the vibration mode, the simulation results are in accordance
with the general form of the vibration mode, and the results are reliable.

The simulation values are compared with the static frequency values of the 3rd ND
and 4th ND modes obtained by the test. The comparison between the simulation results
and the experimental results is shown in Table 4.

Table 4. Comparison of static frequency simulation and test results.

Vibration Mode Frequency Test
Results/Hz

Simulation
Results/Hz Relative Error/%

Third 7964 7986 0.2
Fourth 13,420 12,783 4.7

The table shows that the deviation between the experimental value and the simulation
value is 0.2–4.7%, indicating that the simulation analysis is reliable.

4.3. Analysis of Influencing Factors of Inherent Characteristics

In the actual process, the inherent characteristics of gears are affected by the working
environment and their own structure. By changing the working temperature and spoke
thickness, the driven bevel gear is simulated and analyzed.

4.3.1. Analysis of the Effect of Working Temperature on Traveling Wave Resonance

Different working temperatures were used to obtain the static frequency values of the
vibration modes at 0 ◦C, 50 ◦C, 100 ◦C, 150 ◦C and 200 ◦C, as shown in Table 5. According
to the data in the table, the static frequency variation curve of the 1st NC, 2nd ND, 3rd ND
and 4th ND with temperature is drawn as shown in Figure 14.

Table 5. Static frequency of vibration mode in different temperatures.

T f1/Hz f2/Hz f3/Hz f4/Hz

0 3473 4509 7995 12,766
50 3471 4501 7977 12,738

100 3467 4488 7948 12,690
150 3466 4471 7909 12,629
200 3464 4456 7872 12,568
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Figure 14. TWR characteristics of gears with different vibration mode at different temperatures.

Figure 11 shows that the static frequency value decreases with the increase in tempera-
ture, and the higher the ND number, the more obvious the change. When the temperature
changes from 0 ◦C to 200 ◦C, the frequency of the 1st NC vibration mode of the gear
decreases by 9 Hz, with the frequency of the 2nd ND decreasing by 43.5 Hz, the 3rd ND
decreases by 123.7 Hz and the 4th ND decreases by 198 Hz, respectively.

Under actual working conditions, the gear has a 3rd ND or 4th ND of traveling wave
resonance, so it is necessary to predict the resonance speed to avoid working for a long
time under the resonance speed. Since there is little difference between the static frequency
and the dynamic frequency, the static frequency is used instead of the dynamic frequency
to predict the resonant frequency of the forward wave, the resonant frequency of the BTW
and the resonant speed of the traveling wave, and the influence of the temperature on
the prediction results are studied. The spoke plate thickness of 10.28 mm was taken as
an example when the operating temperature is 0 ◦C, 50 ◦C, 100 ◦C, 150 ◦C and 200 ◦C,
respectively, the predicted speed and frequency of the 3rd ND vibration mode are shown in
Table 6, and the predicted speed and frequencies of the 4th ND vibration mode are shown
in Table 7.

Table 6. TWR speed and frequencies of 3rd predicted by static frequency in different temperatures.

T/◦C f3f/Hz f3b/Hz f3/Hz n3F/(r/min) n3B/(r/min)

0 7995 8332 7659 11,164 9401
50 7977 8314 7641 11,139 9380

100 7948 8284 7611 11,097 9345
150 7909 8246 7573 11,044 9300
200 7872 8208 7535 10,991 9255

Table 7. TWR speed and frequencies of 4th predicted by static frequency in different temperatures.

T/◦C f4f/Hz f4b/Hz f4/Hz n4F/(r/min) n4B/(r/min)

0 12,766 15,445 12,325 18,400 14,626
50 12,738 15,417 12,297 18,359 14,593

100 12,690 15,369 12,249 18,290 14,539
150 12,629 15,308 12,188 18,202 14,469
200 12,568 15,247 12,127 18,115 14,399
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4.3.2. Effect of Spoke Plate Thickness on Travelling Wave Resonance Characteristics

In order to reduce weight and save materials, spoke plate structures are commonly
used in aviation gears. The initial thickness of the spoke plate of the driven bevel gear is
17.28 mm. Because the back of the wheel is slotted, the thickness of the spoke plate of the
gear model is 10.28 mm, and the fixed temperature is 20 ◦C. The thickness of the spoke
plate was changed to 6.28 mm, 7.28 mm, 8.28 mm, 9.28 mm, 10.28 mm, 11.28 mm and
12.28 mm, which were divided by the initial thickness of the spoke plate of the driven bevel
gear to obtain a dimensionless thickness and observe the influence of spoke plate thickness
on the static frequency simulation value. The results are shown in Table 8. Additionally, the
trend of the static frequency changing with the spoke plate thickness is shown in Figure 15.

Table 8. TWR characteristics of gears with different vibration at different thickness of spoke plate.

Thickness/% f1/Hz f2/Hz f3/Hz f4/Hz

36.3% 2747 3565 6885 11,360
42.1% 2892 3767 6970 11,599
47.9% 3033 3972 7168 11,866
53.7% 3167 4176 7366 12,165
59.5% 3293 4378 7827 12,500
65.3% 3412 4580 8116 12,876
71.1% 3523 4779 7964 13,294
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Figure 15. TWR characteristics of gears with different vibration mode at different thickness of
spoke plate.

It can be seen that as the thickness of the spoke plate increases, the static frequency
of each vibration mode increases, and the higher the pitch diameter number is, the more
obvious the static frequency value increases. At 20 ◦C, when the spoke plate thickness
changes from 6.28 mm to 12.28 mm, the frequency of the 1st NC vibration mode of the
gear increases by 776.3 Hz, that of the 2nd NC vibration mode of the gear increases by
1213.1 Hz, that of the 3rd NC vibration mode of the gear increases by 1079.3 Hz and that of
the 4th NC vibration mode of the gear increases by 1934.5 Hz.

The working temperature was set at 20 ◦C, the thickness of the gear structure was
17.28 mm, and the thickness of the original model spoke plate was 10.28 mm, accounting
for 59% of the total thickness of the gear structure; the spoke plate thickness was changed
to 6.28 mm, 7.28 mm, 8.28 mm, 9.28 mm, 10.28 mm, 11.28 mm and 12.28 mm, respectively.
The dynamic frequency is approximately equal to the static frequency, and the resonant
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rotational speed and resonant frequency of the BTW and FTW of the 3rd NC and 4th ND
are predicted. The results are shown in Tables 9 and 10.

Table 9. The change of 3rd ND TWR speed at different thickness of spoke plate.

Thickness/% f3f/Hz f3b/Hz f3/Hz n3F/(r/min) n3B/(r/min)

36.3% 6885 7222 6549 9614 8096
42.1% 6970 7307 6634 9732 8195
47.9% 7168 7504 6831 10,008 8428
53.7% 7366 7703 7030 10,285 8661
59.5% 7827 8163 7490 10,928 9203
65.3% 7964 8301 7628 11,120 9364
71.1% 8116 8452 7779 11,332 9542

Table 10. The change of the 4th ND TWR speed at different thickness of spoke plate.

Thickness/% f4f/Hz f4b/Hz f4/Hz n4F/(r/min) n4B/(r/min)

36.3% 11,360 11,696 11,023 16,373 13,014
42.1% 11,599 11,936 11,263 16,718 13,289
47.9% 11,866 12,203 11,530 17,103 13,594
53.7% 12,165 12,502 11,829 17,534 13,937
59.5% 12,500 12,837 12,164 18,017 14,321
65.3% 12,876 13,213 12,540 18,558 14,752
71.1% 13,294 13,631 12,958 19,161 15,230

Table 9 shows that when the ratio of the spoke plate thickness to the total thickness
increases from 36.3% to 65.3% at a working temperature of 20 ◦C, the resonance frequency
of the 3rd ND changes from 6885.1 Hz to 8115.5 Hz, increasing by 1127.4 Hz, and the FTW
of the 3rd ND increases from 7221.6 Hz to 8452 Hz. With an increase of 1230.4 Hz, the
frequency of the BTW of the 3rd ND increases from 6548.6 Hz to 7779 Hz, with an increase
of 1230.4 Hz. The FTW resonant rotational speed of the 3rd ND increases from 9613.5 r/min
to 11,331.5 r/min, an increase of 1722 r/min. The frequency of the BTW resonance of the
3rd ND increases from 8095.6 r/min to 9542.3 r/min, an increase of 1446.7 r/min.

As for the influence of the change in the thickness of the spoke plate on the resonance
characteristics of the 4th ND shown in Table 10, when the ratio of the thickness of the
spoke plate to the total thickness increases from 36.3% to 65.3%, the frequency of the
FTW resonance of the 4th ND changes from 11,359.5 Hz to 13,294 Hz, an increase of
1934.5 Hz, and the frequency of the BTW resonance of the 4th ND increases from 11,696 Hz
to 13,630.5 Hz. Increasing 1934.5 Hz, the static frequency of the 4th ND increases from
11,023 Hz to 12,958 Hz, increasing 1935 Hz; The resonant rotational speed of the FTW of the
4th ND increases from 16,372.6 r/min to 19,160.9 r/min and increased by 2788.23 r/min.
The resonant rotational speed of the FTW of the 4th ND increases from 13,014.2 r/min to
15,230.4 r/min after four nodes, increasing by 2216.28 r/min.

From the variation of the inherent characteristics of traveling wave resonance with
the thickness of the spoke plate, it can be concluded that by adjusting the thickness of the
spoke plate, the resonant rotational speed of the FTW and the BTW of the 4th ND can avoid
the working speed, and the working gear can avoid the resonant rotational speed of the
vibration of the 4th ND.

5. Transient Dynamics Analysis of Driven Bevel Gears
5.1. Setting of FEM Model and Simulation Reliability Verification

In the Ansys Workbench transient analysis module, the tetrahedral meshing method
is adopted, and the gear root and gear teeth are refined by 2 mm and the gear root teeth
are refined by 1.5 mm, so that the mesh quality is above 0.7 to ensure the accuracy of the
calculation results and the convergence of the results. When two separate surfaces touch
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and shear each other, they are said to be in contact. The surfaces in a contact state have
the following characteristics: (1) they do not penetrate each other. (2) they can transmit
normal pressure and tangential friction. (3) Normally, no normal tension is transferred. The
above characteristics of contact allow contact surfaces to be freely separated and separated.
Contact is highly nonlinear, and it is challenging to calculate convergence for dynamics
problems, such as gear meshing, where stiffness changes with time. Therefore, for the
augmented Lagrange method with good convergence, the friction coefficient is set as
0.05 [26]. The flow chart of the simulation calculation is shown in Figure 16.
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5.1.1. Stress Comparison between Test and Simulation

Using FEM to reproduce the working state of the driven bevel gear to verify the
reliability of the transient dynamic model. The thickness of the gear speak plate is 10.28 mm,
the gear speed at the moment of the driven bevel gear’s 4th ND is calculated by the
formula, and the torque of the driving wheel is 101.6 kN·m. When the experimental gear
is working, its surface lubricating oil temperature can reach 200 ◦C. It is assumed that the
gear temperature is equal to the oil temperature, so the environmental temperature is set as
200 ◦C. The model was verified using transient dynamic analysis. The stress at the position
monitored in the test was extracted from the calculation results, as shown in Figure 17. The
amplitude of the equivalent stress at the position monitored in the test at the resonance
rotational speed of the BTW of the 4th ND obtained from the simulations and tests is shown
in Table 11.
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Table 11. Comparison of stress simulation and test results.

Vibration Mode Simulation
Results/MPa Test Results/MPa Relative Error/%

4th 218.6
235.5 7.5
214.1 1.75

As can be seen from the data in Table 11, the error between the simulation results
and the experimental results is 1.75–7.5%. The simulation results are reliable and meet the
precision requirements for engineering.

5.1.2. The Verification of the Contact Stress of Tooth Surface

In gear meshing, the stress produced includes compressive stress, bending stress,
contact stress and so on. Among them, contact stress is a significant part of gear stress,
which is related to gear load, tooth surface relative curvature, friction coefficient and
lubrication state, so the contact stress changes with the change of meshing state and is a
time-varying stress. The gear contact stress distribution obtained by FEM is analyzed to
verify the reliability of FEM.

Through simulation analysis, the distribution form of contact stress on the bevel gear
tooth surface at the resonant rotational speed of the BTW of the 4th ND, which is obtained
by FEM, is shown in Figure 18. It is shown that the distribution of contact stress on the
tooth surface of the bevel gear is elliptical, decreasing from the center to all sides, with the
maximum value in the center of the ellipse, and the distribution of contact stress is the
same as that in reference [41].
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It is shown in Figure 18 that the gear meshing contact stress obtained using the
simulation shows an elliptic distribution and has a maximum value at the geometric
center of the ellipse. The distribution form of contact stress is consistent with that of tooth
surface contact stress obtained in reference [41]. Therefore, FEM can obtain reliable stress
distribution of driven bevel gears.

5.1.3. Gear Simulation Stress Analysis

Through simulation analysis of the stress distributions of the position monitored in the
test, the stress concentration positions on the back of the spoke and the stress concentration
position at the tooth root were studied. The temperature was set to 200 ◦C, the rotational
speed was 14,399 r/min, and the resistance moment of 101.6 N·m was calculated using
Formulas (8) and (9). The gear stress distribution at the 4th ND resonant rotational speed
is shown in Figure 19. The stress distribution at the 4th ND resonant rotational speed is
shown in Table 12.
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Table 12. Different positions equivalent stress of driven bevel gear at the 4th ND resonant
rotational speed.

Vibration Mode Position Simulation Results/MPa

4th
monitoring position 218.6

back of the spoke 437.4
tooth root 1179.6
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As can be seen from Table 12, the stress value at the position monitored in the test
is 218.6 MPa at the resonant rotational speed of the BTW of the 4th ND, and the stress
at the stress concentration position on the back of the spoke reaches the maximum stress
of 437.4 MPa. The stress at the stress concentration position at the tooth root of the gear
reaches the maximum stress of 1179.6 MPa.

In the test, the whole gear and spoke plate fracture occurred at the speed of the 4th ND;
the schematic diagram of the fatigue fracture of the gear at the 4th ND resonant rotational
speed is shown in Figure 20.
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It can be seen from Figure 20 that the failure mode of the gear is that 12 complete teeth
are connected with a block of spoke plate in order to break. The reason for the failure is
inferred to be the failure mode of the bevel gear is the fatigue crack propagation of a tooth
root defect under alternating load.

It can be seen from Figures 17 and 19a,b that there are stress concentrations at the
tooth root and the interface between the spoke plate and the axle on the back of the gear
spoke plate at the speed of the 4th ND, the area of the stress distribution consists of
12 complete teeth, which is consistent with the fracture form. Therefore, it is judged that
the initial root defect and stress concentration on the back of the gear spoke plate are the
main causes of fatigue fracture.

5.2. The Prediction of the Max Stress at the Tooth Root

In gear meshing, the tooth root is subjected to alternating stress; therefore, crack
propagation occurs at the defect of the tooth root, leading to fatigue failure. On the premise
of verifying the reliability of the transient dynamics simulation results, the stress at the
tooth root at the resonant rotational speed in the tests was predicted. Simulation analysis
was conducted on the equivalent stress distribution of gear meshing under the resonance
of the 4th ND in the test.

In actual use processes, the teeth of the bevel gear in an aero-engine are often broken
due to TWR. However, it is difficult to stick the strain gauge due to the arc at the tooth
root in the test, and there is a large stress gradient at the junction of the spoke plate and
tooth root, so it is difficult to accurately measure the stress data at the tooth root. Through
simulation analysis, it was found that the maximum stress at the tooth root is far larger
than that at the position monitored in the test, and the stress gradient at the junction of the
tooth root and spoke, which caused the inaccuracy of the stress at the tooth root by test.
Therefore, simulation analysis can further forecast the value of the maximum stress of the
tooth root in the tests.

Through the simulation analysis, it can be found that there is a certain relationship
between the maximum stress at the tooth root and that at the monitoring position. The
stress value at the tooth root is about 5.4 times that of the position in the test. Based on
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this, the maximum stress at the tooth root can be predicted. The comparison of the stress
between the simulation and predication is shown in Table 13.

Table 13. Comparison of stress simulation and test results.

Position Test Results/MPa Simulation Results/MPa

monitoring position 235.5 218.6
tooth root 1271.7 (predict) 1179.6

It can be seen from the simulation results that in the case of root defects, such as cracks
and pits, crack propagation may occur at the 4th ND resonant rotational speed, resulting in
tooth-breakage failure because of large root stress.

5.3. Analysis of Influencing Factors of Stress Distribution
5.3.1. Influence Analysis of Temperature Change

A gear with a spoke plate thickness of 10.28 mm and a ratio of 59.5% was selected,
and the ambient temperature was set at 0 ◦C, 50 ◦C, 100 ◦C, 150 ◦C and 200 ◦C, respectively.
The simulation analysis of the 4th ND TWV of the driven bevel gear was carried out, and
the stress at the monitoring position and the stress concentration position at the tooth root
was extracted. In addition, the max stress at the tooth root predicted by the stress at the
monitoring position is compared with the simulation result, as shown in Table 14. The
stress at the monitoring position and the maximum stress at the tooth root change with
temperature; the max stress at the tooth root predicted by the stress at the monitoring
position is compared with the simulation result, as shown in Figure 21.

Table 14. Stress at the monitoring position and the tooth root at 4th ND resonant rotational speed at
different temperatures.

T/◦C
Max Stress at
Monitoring

Position/MPa

Max Stress at the
Tooth Root

(Simulation)/MPa

Max Stress at the
Tooth Root

(Predict)/MPa

0 226.2 1221.7 1221.5
50 221.3 1194.5 1195.2

100 220.4 1189.4 1190.2
150 219.3 1184.4 1184.2
200 218.6 1179.4 1180.4
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As can be seen from Figure 18, with the increase in temperature, the maximum stress
at the monitoring position and the tooth root decreased slightly, and the amplitude was not
significant. As can be seen from Table 13, when the working temperature rises from 0 ◦C to
200 ◦C, the stress at the monitoring position decreases by 7.6 MPa and the max stress at the
tooth root by 42.3 MPa, and the relationship between the stress at the monitoring position
and that at the tooth root is still valid.

5.3.2. Analysis of Influence of Spoke Plate Thickness Change

At the working temperature of 200 ◦C, the thickness of the spoke plate was changed
to 6.28 mm, 7.28 mm, 8.28 mm, 9.28 mm, 10.28 mm, 11.28 mm, 12.28 mm, which were
divided by the initial thickness of the spoke plate of the driven bevel gear to obtain the
dimensionless thickness to observe the influence of the spoke plate thickness on the stress
distribution at the 4th ND resonant rotational speed. The stress at the monitoring position
and the tooth root varies with the ratio of the thickness of the spoke plate and the prediction
of stress at the tooth root, as shown in Figure 22.
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The stress values at the monitoring position and the tooth root under different ratios of
spoke plate thickness are shown in Table 15, and the max stress at the tooth root predicted
by the stress at the monitoring position is compared with the simulation result.

Table 15. Max stress at the monitoring position and the back of the spoke at 4th ND resonant
rotational speed at different thickness of spoke plate.

Thickness/%
Max Stress at
Monitoring

Position/MPa

Max Stress at the
Tooth Root

(Simulation)/MPa

Max Stress at the
Tooth Root

(Predict)/MPa

36.3% 293.2 1582.2 1583
42.1% 274.5 1481.4 1482.4
47.9% 255.5 1379.3 1379.6
53.7% 237.7 1280.2 1283.7
59.5% 218.6 1179.5 1180.4
65.3% 200.4 1081.6 1082.2
71.1% 183.3 992.3 990.2
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It can be seen from Figure 19 that with the decrease in the spoke plate thickness, the
stress in all parts of the gear increases. The maximum stress at the tooth root increased
greater than the stress at the position monitored in the test.

As can be seen from Table 15, when the thickness of the spoke plate decreases from
12.28 mm to 6.28 mm at 200 ◦C, the ratio decreases from 71.1% to 36.9%, and the stress at the
monitoring position increases by 109.9 MPa and the stress at the tooth root by 589.9 MPa,
and the relation between the stress at the monitoring position and that at the tooth root is
still valid.

It can be seen that when the spoke plate thickness is thinner, the stress concentration
is more serious, and it is more likely to lead to tooth-breaking accidents. Therefore, it is
necessary to consider the structural strength when changing the thickness of the spoke to
avoid TWR.

6. Conclusions

In this paper, a TWR test on a bevel gear is analyzed by combining tests and sim-
ulations, and the stress distribution of the central bevel gear is predicted based on the
simulation analysis, and the stress concentration problem of the tooth root and the back of
the spoke caused by TWR is further expounded.

1. The fatigue test of the driven gear is performed. The time-speed-sound pressure
diagram of the prefabricated gear fracture process and the max stress at the position
monitored in the test and the resonance speed are obtained. The results show that the
new refined gear will not break even if it works in the resonant rotational speed range
of BTW of the 4th ND, but if the gear has an initial defect and works in the resonant
rotational speed range of the BTW of the 4th ND, the gear will break.

2. The modal analysis of driven bevel gears is performed; in view of the TWR theory,
the influence of spoke plate thickness and working temperature on the TWR charac-
teristics of the gears are studied. Compared with the measurement results, the error
between the test value and the simulation value is 0.2–4.7%. According to the results,
it is verified that the characteristics of TWR are sensitive to the spoke plate thickness,
and with reduced spoke plate thickness, TWR speed shows a downward trend.

3. The transient dynamic analysis of the 3rd ND and 4th ND TWR are carried out, the
error between the test value and the value achieved when using the transient dynamic
finite element analysis model is 1.75–7.06%. The distribution form of contact stress
obtained by simulation is in accordance with the law, which verifies the accuracy of
the simulation calculation.

4. Based on the simulation analysis, the maximum stress at the tooth root at the 4th
ND resonant rotational speed in the test was predicted, and it was believed that the
tooth root was prone to crack propagation under the action of alternating stress from
the fatigue source when there was a defect in the tooth root, which was the cause
of the broken tooth of the defective gear at the 4th ND resonant rotational speed in
the test. The stress distribution on the tooth surface of the bevel gear at the 4th ND
resonant rotational speed is obtained. It is found that there is stress concentration at
the tooth root and on the back of the spoke, where the maximum stress is less than
the allowable value.

5. It is found that the equivalent stress at the tooth root is 5.4 times that at the monitoring
position. The distribution and change of gear stress in the resonance state under
the influence of factors such as the thickness of the spoke plate and the working
temperature are studied. As the working temperature increase, the stress at all
position decrease. As the thickness of the spoke plate increases, the stress at the tooth
root reduces, and under the above variations, the relationship between the stress at
the test monitoring point and the maximum stress at the tooth root is still satisfactory.
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Nomenclature

FTW Forward Traveling Wave
BTW backward-traveling wave
TWV traveling wave vibration
TWR traveling wave resonance
NC node-circle
ND node-diameter
[M] the mass matrix of the node
[C] the damping matrix of the node
[K] the stiffness matrix of the node
x(t) the displacement of the node
F(t) exciting force
σH contact stress
Fn normal force acting on contact surface
ρ1 curvature radius of contacted body
ρ2 curvature radius of contacted body
L length of contact line
µ1 Poisson’s ratio of contacted body
µ2 Poisson’s ratio of contacted body
ZE the elastic coefficient
ρE comprehensive radius of curvature
y lateral displacement
B(r) amplitude at radius r
ω angular frequency of sector vibrations
t time
m the ND number
fd dynamic frequency of the gear
fF FTW frequency of the gear
fB BTW frequency of the gear
i the gear ratio
N1 rotational speed of the driving gear
N2 rotational speed of the driven gear
z1 teeth number of the driving gear
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z2 teeth number of the driven gear
T1 active torque acting on the driving gear
P output power of the rotating shaft
SPL sound pressure level
f1 static frequency of the gear of the 1NC
f2 static frequency of the gear of the 2nd ND
f3 static frequency of the gear of the 3rd ND
f4 static frequency of the gear of the 4th ND
f3F frequency of FTW resonance of the 3rd ND
f3B frequency of BTW resonance of the 3rd ND
f4F frequency of FTW resonance of the 4th ND
f4B frequency of BTW resonance of the 4th ND
n3F rotational speed of driven gear when the FTW of the 3rd ND resonance occur
n3B rotational speed of driven gear when the BTW of the 3rd ND resonance occur
n4F rotational speed of driven gear when the FTW of the 4th ND resonance occur
n4B rotational speed of driven gear when the BTW of the 4th ND resonance occur
σ stress
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