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Abstract: Dimensional error of workpiece is an important index that indicts the grinding accuracy
of machine tools. Conventional error compensation strategies focus on modeling one or several
error factors for a particular CNC machining type, which are time consuming and costly. Based on
data-driven sliding mode terminal iterative learning control, a new dimensional error compensation
method is proposed in this paper. The compensation algorithm based on an iterative sliding surface
and an objective function is established using the terminal experimental data. A modified NC program
is fed to the machine tool to push the workpiece dimension towards desired. The theoretical analysis
and experimental results show the proposed compensation method can effectively improve the batch
grinding accuracy of the machine tool, which shows good perspective in manufacturing industry.
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1. Introduction

As the manufacturing technology has continuously been developed, the accuracy
requirements of computer numerical control (CNC) machining are becoming increasingly
important. Error compensation has become a hot issue for actively improving the machining
accuracy, which is influenced by error sources such as geometric error of machine tools, ther-
mal error, cutting force, tool’s wear error, etc. [1–3]. Software compensating is a convenient
solution to error compensation, which consists of three crucial steps, measurement strategy,
identification approach, and compensation method. It improves machining accuracy and
surface quality of workpiece through regenerating numerical control (NC) program for
next compensation cycle, which is characterized by high efficiency and low cost.

There are many studies that have focused on one error source to compensate, which is
the main cause of machine inaccuracy under certain machining. For example, the geometric
error makes up a significant portion of the inaccuracy of a machine tool, accounting for
more than 30% [4]. The authors of [5] presented a novel 13-line identification algorithm
by employing a laser interferometer, and by correcting compensation parameters in NC
instructions the linear axes are compensated. In [6], by using double ball bar (DBB), a
comprehensive geometric error measurement and identification method is presented. How-
ever, for the experiments, on a tilt table of five-axis machine tool, the authors assumed that
the geometric errors of the translational axes were abandoned. Wu et al. [7] presented an
integrated error prediction and compensation method for the translational axes’ geometric
errors. With this integrated approach, the positioning inaccuracy of tool ball for a double
ball bar is greatly decreased in a multi-axis machine tool.

On the other hand, there are many studies reporting that the error caused by thermal
error source constitutes another vital portion, up to 25–35% of total errors [8–10]. There
are three categories of methods to eliminate thermal errors in current research, which are
structural optimization of machine tool featured by thermal characteristics, temperature
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control, and thermal error compensation. The first two kinds are error prevention, which
are high-cost. There is a large quantity of research focused on thermal error compensation
for machining accuracy. On the basis of least square support vector machine (LS-SVM),
a thermal error model of motorized spindle is proposed in [11]. The results showed
that the predictive ability of this model was high. According to temperature variation, a
thermal growth model of spindle is presented by Liu in [12], and a parameter identification
method of the model is also given in this article. At present, almost all of the thermal
error compensation method conducted on the machine tools is based on modeling error
sources. On the contrary, the constructed various thermal error models are rarely applied
to structural optimization or design of machine tools in no matter what manner [13].

Cutting force is another factor influencing machining accuracy of workpiece, which
contributes about 10% of inaccuracy. Many researchers have focused on dealing with the re-
duction in tool deflection error induced by cutting force [14,15] and this kind compensation
has widely been conducted in milling process.

Moreover, in practical application, after a long time machining, the tool’s wear in-
creases, which is inevitable. Therefore, it is difficult to ensure that the precision of machine
tools is still within acceptable limits.

From the above literature review and to our best knowledge of the research, it can
be seen that most of the studies have concentrated on measuring and modeling of error
sources, as well as parameter identification. As known to all, there are various error
sources on a machine tool, not just one. In order to improve the machining precision more
effectively, the error compensation system needs to possess the capability to deal with this
combination of error sources rather than a single one [16]. It is obvious that the complexity
of this work would be multiplied.

Apart from the above error compensation methods, there is another kind of method,
which actively compensate errors from data analysis. For example, dimensional error of
workpiece is the result of various error sources. The authors of [17] presented an intel-
ligent pre-compensation method for dimensional error. A PD-type rule library is set up
to compute the compensation of next workpiece according to the previous workpieces’
dimensions. Similarly, a P-type self-learning updating law is proposed to compute com-
pensation according to the previous dimension error in [18]. Both methods have set up the
iterative updating law with the previous three-dimensional errors or just the previous one.
The form of the two updating laws is similar to proportion integration differentiation (PID)
control law.

Our work focuses on the problem of dimensional error compensation in real CNC
batch grinding, which is a meaningful and practical issue. For the data-driven methods,
especially sliding mode terminal iterative learning methods, it is the first time they have
been introduced in a CNC error compensation field. As the above mentioned, error
sources are various and complex; furthermore, they are coupled to each other. Completely
separating every error source is unrealistic. It is difficult to sense and model all error
sources and model parameter identification is not easy. Its costs, including time and money,
are very high. In CNC batch grinding, workpieces are grinded one by one, and terminal
dimension data are easily obtained. With the data-driven compensation method, only
one grating displacement sensor is used to measure the dimension, which does not need
so many various sensors. Moreover, it does not need complex modeling and parameter
identification. In practical application, the compensation is also easier to implement.
Whether or not compensation is needed is determined before the workpiece machined. If it
needs compensation, the compensation module is introduced and the compensated NC
program is executed. Thus, it can be seen that compared with conventional compensation
methods, data-driven compensation method has numerous advantages.

The terminal iterative learning control (TILC) as a data-driven algorithm can converge
to the desired output. It does not need to track the entire output trajectory in the finite
time, only the terminal output needs to be tracked [19,20]. Moreover, in view of its simple
algorithm, strong robustness, and fast response, the sliding mode control (SMC) has
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received more and more attention [21,22]. Therefore, it is necessary to apply the two control
strategies into batch grinding to improve dimension precision.

This paper presents a dimensional error compensation method based on sliding mode
terminal ILC under the data-driven design framework. Different from the upper methods
in [17,18], this method introduces a sliding surface, which is designed by the previous two-
dimensional error. With the sliding surface, the dimensional error will quickly converge
to zero after a number of iteration cycles. Consider the batch grinding system as a single
input single output (SISO) nonlinear discrete-time system. Firstly, the nonlinear system
is transferred into a linear system by using the dynamic linearization (DL) method [23].
Secondly, under the defined sliding surface, the terminal iterative learning law [24–26] is
derived for the compensation system. Measurements of dimensions are used to compute
compensation value according to the learning law. Finally, the NC program is modified to
compensate the subsequent machining cycle. With this data-driven compensation method,
the dimensional accuracy will be improved. The organization of the paper is shown as
follows. Section 2 presents the grinding protocol and problem formulation. Section 3
presents the sliding mode terminal iterative learning compensation method. Simulation
and experimental verification are drawn in Section 4. Finally, the paper is concluded in
Section 5.

2. Grinding Protocol and Problem Formulation
2.1. Grinding Model

The structure of the CNC batch grinding machine tool is shown in Figure 1. As shown,
the spindle drives the grinding wheel to rotate. The C axis is the rotation axis, which
controls the workpiece to rotate. The B axis drives the workbench to rotate. The X axis is
the linear axis, which is the feed shaft of the grinding wheel carriage. The Y axis is also the
linear axis, which drives the grinding wheel carriage side to side. The peripheral surface of
workpiece is machined through the combination of rotation axis and linear axis.
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The motion model is shown in Equation (1):{
ω = l(θ)
X = h(θ)

(1)

where θ is the rotation angle of workpiece;ω is the angular speed of workpiece rotation;
and X is linear displacement of feed movement for grinding wheel carriage.

In the point of processing technology, grinding amount and grinding force are key fac-
tors influencing grinding quality. The grinding amount is indicated in terms of equivalent
grinding thickness aeq. It is shown in Equation (2):
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{
aeq = ap

vω
vs

Ft = kaα1
p

(
vω
vs

)α2 (2)

Here, ap is the grinding depth, which is in positive proportion to grinding wheel feed
rate vr; vω is speed of grinding point on the workpiece; vs is the speed of grinding point
on the grinding wheel; and k, α1, α2 are parameters.

In order to improve the grinding quality, the linear speed of grinding point kept
constant is introduced into processing technology. With the constant linear speed, the
stock removal rate of workpiece and the grinding force would change stably. Therefore,
the contour accuracy of workpiece is improved. On the other hand, with the constant
linear speed, the linear speed of the grinding point on the machined peripheral surface is
identical, so the consistency of the surface grinding quality can be ensured.

Take the square workpiece for example, the constant linear speed grinding model
shown in Figure 2 is established. In Figure 2, point O1 is the rotation center of grinding
wheel, and point O is the rotation center of workpiece. Set up the coordinate system X-Y
with O as the origin. Point P is the grinding point, at which the workpiece and the grinding
wheel are tangent. The angel between PO and X axis is τ. The radius of grinding wheel
is Rs. Point N is an intersection point of the tangent line and X axis, and point M is an
intersection point of the vertical line and X axis. When the angular speed of grinding
wheel is 0, the linear speed at grinding point P is equal to the relative speed of point P
on the workpiece to point P on the grinding wheel. To discuss the relation between the
instantaneous linear speed of grinding point and rotation speed of workpiece, the following
calculations are made.

tanγ =
PM
MN

(3)
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Here, γ is the acute angel between the tangent line and X axis; PM is the vertical line,
and MN is line from vertical point to intersection point N. From the triangular relation
shown in Figure 2, the following Equation (4) can be easily obtained:{

γ = τ+ δ
σ = π

2 − δ
(4)

Here, δ is the angle between PO and PA. Note that V1 is the linear speed at grinding
point P, V2 is the linear speed of point P on the workpiece, and V3 is the speed of grinding
wheel carriage. σ is the angle between V1 and V2, and σ = τ+ π

2 − γ.
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The relation between V1, V2, and V3 satisfies the following Equation (5):{
V2(t) = V1(t)· cosσ+ V3(t)· sin τ

V1(t)· sinσ−V3(t)· cos τ = 0
(5)

Then the instantaneous rotation speed of the workpiece is derived, which is shown in
Equation (6),

ω(t) =
V1(t)·(cosσ+ sinσ· tan τ)

OP
(6)

Here, OP is the rotation diameter of workpiece.
With Equation (6), the function h(·) described the relationship between the rotation

angle and the displacement of grinding wheel carriage can be deduced as following.{
θ(t) =

∫ t
0 ω(t)dt

X(t) = h(θ)
(7)

As mentioned above, the workpiece rotates with varying speed to keep the linear
speed of grinding point constant.

2.2. Dimensional Error Analysis

For the indexable insert grinding process, it is complex and particular. Therefore, the
error sources for dimensional precision decrease are much more complex, and many of
them are coupled. Moreover, it is difficult to separate them from each other. For example,
after long time grinding, the grinding wheel becomes blunt and the cutting reaction force
increases, so the elastic deformation of feed system increases and the grinding wheel
diameter decreases. Both of these increase the dimensional error. Dressing the grinding
wheel further decreases the grinding wheel diameter. On the other hand, the feed system
elastic deformation decreases. The influence of the grinding wheel diameter decrease on
dimensional error is shown in Figure 3.
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As it is shown in Figure 3, the solid circle is the real grinding wheel, and the dotted
circle is the theoretical grinding wheel. O and O′ are the circle centers, respectively. O1 is
the rotation center of the workpiece. Rs and Rs′ represent the actual value and theoretical
value of the grinding wheel radii, respectively. Point P is the theoretical tangent point. In
fact, the workpiece is not tangent to the grinding wheel at point P. In the triangle O′PO,
with cosine law, Equation (8) can be derived.

(Rs + e)2 =
(
Rs′ − Rs

)2
+ Rs′2 − 2·

(
Rs′ − Rs

)
·Rs′· cosϑ (8)
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Here, e is the machining error. In this situation, the dimension of the workpiece will
be large than the desired dimension.

Moreover, the spindle axis, ball screw, grinding wheel, and other parts generate much
quantity of heat during grinding process, which result in thermal deformation of drive
system. Finally, the dimensional precision decreases. In addition to, the static error of the
machine tool, such as assembly error, also decreases the dimensional precision.

2.3. Problem Formulation

Consider the batch grinding system as a SISO nonlinear discrete-time system, which
can be shown in Equation (9):

Dk(t + 1) = f(Dk(t), uk) (9)

where t = 0, 1, 2, . . . , N is the sampling time index and N is the finite time interval of batch
grinding system; k indicates the system repetition number and Dk(t) ∈ R is the system
output; uk ∈ R denotes the system input, which is constant at all sampling time in the same
iteration; and f(·) is an unknown function and continuously differentiable.

In the batch grinding system, only the terminal dimension Dk(N) is measurable at
the end of each run. Over iterations, the Equation (9) can be rewritten as a continuously
differential function g(·) [25]. It is shown in Equation (10):

Dk(N) = f(Dk(N− 1), uk) = f(f(Dk(N− 2), uk), uk) = f(. . . f(f(Dk(0), uk), uk), . . . , uk)

= g(Dk(0), uk)
(10)

Here, Dk(0) is the initial value of Equation (9). The system is controllable and the
initial value Dk(0) is identical for every iteration, Dk(0) = Dk−1(0) = c. c is a constant for
the batch grinding system, which is the dimension of workpiece before grinding discussed
in Section 4.

Assumption 1. The partial derivative of f (. . .) with respect to control input uk is continuous.

Assumption 2. The Equation (9) satisfies the generalized Lipschitz condition. That is,
|∆Dk(N)|≤ b|∆uk−1|, here ∆Dk(N) = Dk(N)−Dk−1(N), ∆uk−1 = uk−1− uk−2 and b is pos-
itive.

Applying the mean value theorem into Equation (10), Equation (10) can be transformed
to Equation (11),

∆Dk(N) =
∂g
∂D

∆Dk(0) +
∂g
∂u

∆uk (11)

Since Dk(0) = Dk−1(0), then ∆Dk(0) is 0. Therefore, Equation (11) can be simplified
as Equation (12),

∆Dk(N) =
∂g
∂u

∆uk = ϕk∆uk (12)

Here, ϕk =
∂g
∂u . According to Assumption 2, |ϕk|≤ b. It is called pseudo-partial-

derivative (PPD), which is a DL parameter. For more details, please see [23].
Then Equation (10) can be transformed to Equation (13),

Dk(N) = Dk−1(N) +ϕk∆uk (13)

Remark 1. From a practical point, these assumptions imposed on the industrial system are
reasonable and acceptable. Assumption 1 is a typical condition of control system design for general
nonlinear systems. Assumption 2 imposes an upper bound limitation on the change rate of the
system output driven by the changes in the control inputs. From the energy conservation point, the
energy change rate in an industrial system is not infinite [24].

Remark 2. ϕk is a differential signal and bounded to any k, which is unknown and iteratively changes.
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An index function J = ||Dk(N)−Dk−1(N)||2 + µ||Dk(N)||2 [23] is introduced to
estimate the value of ϕk. By optimal condition, an estimation algorithm for ϕk is derived
as Equation (14):

ϕ̂k = ϕ̂k−1 +
ρ(∆Dk−1 − ϕ̂k−1∆uk−1)∆uk−1

µ+ ||∆uk−1||2
(14)

Here it is bounded. The weighting factor µ > 0, 0 < ρ < 2.

3. Sliding Mode Terminal Iterative Learning Compensation Method

1. Define Ek as the terminal dimensional error of the kth workpiece, which is shown as
Equation (15):

Ek = Ddesired −Dk (15)

Here, Dk is the terminal dimension of the kth workpiece, which is measurable by
laser sensor. Ddesired is the desired dimension of the workpiece. If Ek is within the
accepted error limit Elim, the error compensation is ignored; otherwise, the compensa-
tion is operated. Substituting Equation (13) into Equation (15) yields Equation (16).
Equation (16) is transformed as follows:

Ek = Ddesired −Dk−1 −ϕk∆uk (16)

2. Introduce an iteration-dependent slide surface function and an index function [26],
which are two common functions in sliding mode control. The Equations are shown
as follows:

Sk = (Ek − Ek−1) + αEk (17)

J = ||Sk − Sk−1||2 + β||Sk||2 (18)

where α > 0, β > 0. They are weighting factors. Substituting Equation (16) and
Equation (17) into Equation (18), the Equation (18) is transformed into Equation (19).
The Equation (19) is shown as follows:

J = ||−(1 + α)ϕk(uk − uk−1)− Ek−1 + Ek−2||2

+β||αEk−1 − (1 + α)ϕk(uk − uk−1)||2
(19)

In optimal conditions, the control input can be obtained in Equation (20), which is
shown as follows:

uk = uk−1 +
ϕk(Ddesired −Dk−1)

||ϕk||2
− (2 + α+ β)ϕkEk−1 −ϕkEk−2

(1 + α)(1 + β)||ϕk||2
(20)

3. In the upper part, the compensation control input uk is deduced, which is the function
of the previous two-dimensional errors, the previous dimension, and the estimation
parameter. In this part, the convergence analysis of the grinding system with the
control input is derived. In combination with Equation (20) and Equation (13), in
virtue of Equation (16), then Equation (21) can be deduced. It is shown as follows [26]:

ϕk
TEk =

(2 + α+ β)ϕk
TEk−1

(1 + α)(1 + β)
− ϕk

TEk−2

(1 + α)(1 + β)
(21)

According to the above Equation (21), it is easy to derive the Equation (22),

(1 + α)ϕk
TEk −ϕk

TEk−1 =
(1 + α)ϕk

TEk−1
1 + β

− ϕk
TEk−2

1 + β
(22)

Therefore, for the sliding surface Equation (17), it can be derived Equation (23),

ϕk
TSk =

ϕk
TSk−1

1 + β
(23)
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Since β > 0,
∣∣∣∣ϕk

TSk
∣∣∣∣ < ∣∣∣∣ϕk

TSk−1
∣∣∣∣. Then lim

k→∞

∣∣∣∣ϕk
TSk
∣∣∣∣=0. Since ϕk is bounded,

ϕk
T is bounded. Therefore, the following Equation (24) can be derived.

lim
k→∞
||Sk|| = 0 (24)

Therefore, the sliding surface will converge to 0. Substituting Equation (17) into
Equation (24), lim

k→∞
||(Ek − Ek−1) + αEk||=0. Then, Equation (25) can be deduced.

lim
k→∞
||Ek|| = lim

k→∞

∣∣∣∣∣∣∣∣ Ek−1
1 + α

∣∣∣∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣
∣∣∣∣∣ E0

(1 + α)k

∣∣∣∣∣
∣∣∣∣∣ (25)

Since α > 0, the following Equation (26) can be derived.

lim
k→∞
||Ek|| = 0 (26)

Therefore, the terminal error will converge to 0. As mentioned above, the convergence
analysis is made.

4. As it is mentioned in Section 2, the system input is constant of every cycle at an
arbitrary sampling time for one batch and it is executed by X axis. The compensation
is executed by the compensation module if it is necessary; the compensation input for
the (k + 1)th workpiece is computed as follows.

comk+1=comk +
ϕk+1Ek

||ϕk+1||2
− (2 + α+ β)ϕk+1Ek −ϕk+1Ek−1

(1 + α)(1 + β)||ϕk+1||2
(27)

Here, the compensation is computed by the previous two-dimensional errors, and ϕk
is computed in Equation (14).

The flowchart of the compensation method is shown in Figure 4. Note that in the
judgment module, the compensation direction needs to be defined. If Ek is less than
(−Elim), that is to say, the dimension of this machined workpiece is less than the desired
dimension, the compensation input will be positive. If Ek is greater than positive error
limit (+Elim), that is to say, the dimension of this machined workpiece is greater than the
desired dimension, the compensation will be negative.

For the machine tool, stability and safe operation are of great importance. Under
this premise, if the compensation value is very large, the compensation axis may result
in irreversible fault. In order to ensure the safety of the machine tool, a compensation
limit commax is introduced to avoid excessive fluctuation. If the computed comk is in an
accepted range (−commax, commax), comk is executed; otherwise, the compensation value
is set to commax.



Appl. Sci. 2023, 13, 1822 9 of 16Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 
Figure 4. Flowchart of dimensional error compensation method. 

4. Simulation and Verification 
4.1. Simulation 

To verify the effectiveness of the upper error compensation algorithm, the step sig-
nal and impulse signal simulating dimensional errors is respectively introduced into the 
error compensation module. The desired value can be any value in the simulation. Here, 
it is defined as 9.435 mm, which is consistent with the desired dimension of experiment. 
Since the error acceptance of A level indexable insert is 0.005 mm, in order to increase 
dimensional precision, the error limit E  is set to 0.003 mm for the simulation. Moreo-
ver, in order to operate steadily, the maximum compensation value C  is chosen as 
0.015 mm. For the compensation module, the initial value of updated index φ = 1. 
Values of weighting factors are defined according to the established conditions of Equa-
tions (14), (17), (18) and historical data analyzing, which have great influence on simula-
tion results. Here, values of weighting factors are: ρ = 1, μ = 0.5, β = 10, α = 10.  

The step error is 0.01mm, which is imposed on the 15th and subsequent workpiec-
es. The simulation result is shown in Figure 5. It is evident that the compensation meth-
od works effectively. The dimension recovers to the desired value only in two operation 
cycles. That is, the dimensions from the 16th workpiece are all converged to the desired 
value. For the second simulation, the desired dimension and the impulse error are the 
same to the first simulation. The impulse error is imposed on the 15th workpiece. The 
simulation result is shown in Figure 6. The dimension returns to the desired value in 
three operation cycles. The simulation results show that this algorithm can quickly con-
verge to the desired value. 

Figure 4. Flowchart of dimensional error compensation method.

4. Simulation and Verification
4.1. Simulation

To verify the effectiveness of the upper error compensation algorithm, the step signal
and impulse signal simulating dimensional errors is respectively introduced into the error
compensation module. The desired value can be any value in the simulation. Here, it
is defined as 9.435 mm, which is consistent with the desired dimension of experiment.
Since the error acceptance of A level indexable insert is 0.005 mm, in order to increase
dimensional precision, the error limit Elim is set to 0.003 mm for the simulation. Moreover,
in order to operate steadily, the maximum compensation value Cmax is chosen as 0.015
mm. For the compensation module, the initial value of updated index ϕ1 = 1. Values of
weighting factors are defined according to the established conditions of Equations (14), (17),
(18) and historical data analyzing, which have great influence on simulation results. Here,
values of weighting factors are: ρ = 1, µ = 0.5, β = 10, α = 10.

The step error is 0.01mm, which is imposed on the 15th and subsequent workpieces.
The simulation result is shown in Figure 5. It is evident that the compensation method
works effectively. The dimension recovers to the desired value only in two operation cycles.
That is, the dimensions from the 16th workpiece are all converged to the desired value. For
the second simulation, the desired dimension and the impulse error are the same to the
first simulation. The impulse error is imposed on the 15th workpiece. The simulation result
is shown in Figure 6. The dimension returns to the desired value in three operation cycles.
The simulation results show that this algorithm can quickly converge to the desired value.
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4.2. Experimental Investigation

A group of indexable inserts is grinded on Agathon 400combi shown in Figure 7.
Figure 8 shows the geometry of this batch 35

◦
diamond indexable insert, and the material

is YT15, a kind of tungsten–cobalt–titanium hard alloy. The diameter of the inscribed circle
for the indexable insert is the controlled dimension (D in Figure 8), which is measured by a
grating displacement sensor. The displacement sensor used in experiment is HEIDENHAIN
MT60K. Its measurement range is 60 mm, and the system accuracy is up to ±0.5 um. The
measurement diagram is shown in Figure 9. After the indexable insert is grinded, the
displacement sensor measured the diameter of inscribed circle and transmitted it to the
controller to decide whether the compensation is needed or not. The grinding conditions
for the experiments are shown in Table 1. For the experiment, first, the machine tool runs
without grinding any workpiece for half an hour. Next, it begins to grind indexable inserts.

Table 1. Grinding conditions for workpiece.

Parameters Value

diamond wheel resin bonded, mesh #220, concentration 100%
wheel diameter (mm) 350

wheel rotation (mm/s) 18
feed rate (mm/s) 0.03–0.05
no spark time(s) 3

coolant water soluble
temperature of coolant (◦C) 12–13
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For this group experiment, the desired dimension of indexable insert is 9.435 mm. For
the compensation module, the error limit Elim is set to 0.003 mm also in consideration of the
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error acceptance of A level. The maximum compensation value Cmax is chosen as 0.01 mm
in order to ensure the safety. Furthermore, the initial value of updated index ϕ1 = 1. For
the experiment, under the grinding conditions shown in Table 1, a group of indexable
inserts have been grinded on the machine tool without compensation. The dimension data
are listed in columns 2 of Table 2, which are the baseline data.

Table 2. Dimensions of the machined workpieces before and after compensation.

No.
Dimensions of the Group

Workpieces without
Compensation (mm)

Dimensions of the Group
Workpieces with

Compensation (mm)

1 9.422 9.422
2 9.424 9.434
3 9.428 9.438
4 9.428 9.434
5 9.43 9.436
6 9.43 9.436
7 9.428 9.434
8 9.428 9.434
9 9.428 9.434
10 9.428 9.434
11 9.432 9.438
12 9.432 9.434
13 9.436 9.438
14 9.434 9.432
15 9.432 9.431
16 9.432 9.436
17 9.428 9.432
18 9.428 9.436
19 9.43 9.438
20 9.434 9.442
21 9.436 9.436
22 9.434 9.434
23 9.438 9.438
24 9.434 9.434
25 9.434 9.434
26 9.434 9.434
27 9.434 9.434
28 9.434 9.434
29 9.434 9.434
30 9.434 9.434
31 9.434 9.434
32 9.434 9.434
33 9.438 9.438
34 9.436 9.436
35 9.436 9.436
36 9.436 9.436
37 9.436 9.436
38 9.436 9.436
39 9.436 9.436
40 9.434 9.434
41 9.436 9.436
42 9.438 9.438
43 9.44 9.439
44 9.446 9.440
45 9.448 9.436
46 9.446 9.434
47 9.446 9.434
48 9.448 9.436
49 9.45 9.438



Appl. Sci. 2023, 13, 1822 13 of 16

Table 2. Cont.

No.
Dimensions of the Group

Workpieces without
Compensation (mm)

Dimensions of the Group
Workpieces with

Compensation (mm)

50 9.452 9.436
51 9.448 9.432
52 9.45 9.434
53 9.454 9.438
54 9.452 9.432
55 9.45 9.431
56 9.452 9.438
57 9.452 9.438
58 9.45 9.436
59 9.45 9.436
60 9.446 9.432
61 9.446 9.436
62 9.444 9.434
63 9.442 9.432
64 9.444 9.438
65 9.444 9.438
66 9.444 9.438
67 9.444 9.438
68 9.44 9.434

Number of workpieces within
the dimensional error
tolerance 0.005 mm

33 65

Figure 10 shows the comparison of dimensional variation with different sets of com-
pensation parameters, which is a group of compensation experiment. The first set com-
pensation parameters are: ρ = 1, µ = 0.5, β = 1, α = 1. The second set compensation
parameters are: ρ = 1, µ = 0.5, β = 10, α = 10. The third set compensation parameters
are: ρ = 1, µ = 0.5, β = 10, α = 20. It is evident that under the first set compensation
parameters, the dimensions fluctuated largely compared with the other two sets. The
compensation effectiveness of the second set of compensation parameters is much better.
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Figure 11 shows the comparison of dimensional variation before and after compen-
sation. The blue line represents the baseline data without compensation. It is shown that
the dimensional error is non monotonic. At the beginning of batch grinding, the dimen-
sional error is relatively large. Then the dimensional error tends to within error tolerance.
After a certain time grinding, the dimensional error increases largely again. Column 3
of Table 2 shows the data of the dimensions using this compensation method, which is
indicated by the black line. The compensation parameters for this group experiment are:
ρ = 1, µ = 0.5, β = 10, α = 10. It can be seen from Figure 11 that the dimensions fluctuate
around the desired value after error compensation, and the compensation effectiveness is
really good. From Figure 11 and Table 2, it is evident that there are only 33 workpieces out
of 68 within the error tolerance (−0.005, 0.005) before error compensation, while after error
compensation, the amount increases to 65. The qualified rate increases from 48.5% to 95.6%
and the maximum error decreases from 0.019 to 0.007 mm. From the experiment results,
it can be seen that this sliding mode terminal iterative learning compensation method
performs well.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 16 
 

54 9.452 9.432 
55 9.45 9.431 
56 9.452 9.438 
57 9.452 9.438 
58 9.45 9.436 
59 9.45 9.436 
60 9.446 9.432 
61 9.446 9.436 
62 9.444 9.434 
63 9.442 9.432 
64 9.444 9.438 
65 9.444 9.438 
66 9.444 9.438 
67 9.444 9.438 
68 9.44 9.434 

Number of work-
pieces within the di-
mensional error tol-

erance 0.005 mm 

33 65 

Figure 11 shows the comparison of dimensional variation before and after compen-
sation. The blue line represents the baseline data without compensation. It is shown that 
the dimensional error is non monotonic. At the beginning of batch grinding, the dimen-
sional error is relatively large. Then the dimensional error tends to within error toler-
ance. After a certain time grinding, the dimensional error increases largely again. Col-
umn 3 of Table 2 shows the data of the dimensions using this compensation method, 
which is indicated by the black line. The compensation parameters for this group ex-
periment are: ρ = 1, μ = 0.5, β = 10, α = 10. It can be seen from Figure 11 that the di-
mensions fluctuate around the desired value after error compensation, and the compen-
sation effectiveness is really good. From Figure 11 and Table 2, it is evident that there are 
only 33 workpieces out of 68 within the error tolerance (−0.005, 0.005) before error com-
pensation, while after error compensation, the amount increases to 65. The qualified rate 
increases from 48.5% to 95.6% and the maximum error decreases from 0.019 to 0.007 mm. 
From the experiment results, it can be seen that this sliding mode terminal iterative 
learning compensation method performs well. 

 
Figure 11. Dimensional variation before and after error compensation. Figure 11. Dimensional variation before and after error compensation.

5. Conclusions

This paper focuses on the dimensional error compensation in CNC batch grinding.
A data-driven sliding mode terminal iterative learning error compensation method is
proposed to solve the problem. Through the above research, the following conclusions can
be achieved:

(1) Based on the theory of sliding mode terminal iterative learning control, the compensa-
tion method is presented. This method only needs to measure the terminal dimension
using a touch probe, without using other sensors to detect all kinds of error sources.
Moreover, there is no need of model information, which is data-driven;

(2) Step and impulse input were introduced into the compensation module to simulate
errors. Through many simulations, the values of compensation parameters were
defined, and the simulation results showed that the compensation effectiveness was
obvious;

(3) In order to verify the compensation performance in an actual industrial environment,
two groups of experiment were carried out on the machine tool. Based on the compar-
isons, the compensation parameters defined by simulation performed well and the
performance effectiveness of this proposed compensation method was obvious. In
the experiment, for 68 pieces of indexable inserts, the qualified rate increased from
48.5% to 95%.
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Using this compensation method, the machined indexable inserts will remain within
tolerance in successive machining. This method is appropriate for batch manufacturing,
which is much more economical and universality.
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