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Abstract: Considering that the Line-Of-Sight (LOS) of a small optical payload is mainly connected
with the angular motions while insensitive to linear motion, a novel pointing and stabilizing manipu-
lator was proposed for small payloads on a large spacecraft. By integrating fine and coarse actuators
in parallel, the proposed manipulator could isolate spacecraft vibration and independently adjust
the LOS on a large scale at the same time. On this basis, the study revealed the key kinematic and
dynamic characteristics and then designed an operation scheme, including the large-scale angular
motion algorithm and the active isolation algorithm. Finally, the proposed pointing solution was
comprehensively verified through simulation.

Keywords: pointing mechanism; fine and coarse integration; active isolation; parallel configuration

1. Introduction

Independent pointing adjustment is necessary for the small optical payloads on a large
spacecraft to keep LOS aligned with the pointing target without changing the orientation
of the whole orbiter. In addition, optical payloads should also keep pointing stable enough
in the presence of spacecraft vibration to guarantee the observation or telecommunica-
tion quality.

The gimbal-type photoelectric platform is one of the most classic Line-Of-Sight (LOS)
motion control schemes, which is widely used in high-gain antennas and aviation recon-
naissance platforms [1–3]. It can pan and tilt (or roll, pitch, and yaw) in quite a large range
and meanwhile compensate for errors induced by low-frequency disturbance. Parallel
mechanisms are also popular for payload pointing because of the high precision, stiffness,
and load capacity [4–6]. Some novel pointing mechanisms for specific applications might
also be a potential solution to this problem [7–10]. The schemes use typical actuators that
possess large strokes, such as servo motors and linear modules. However, the motion
resolutions of typical actuators are usually inadequate for micro-vibration rejection due to
the torque ripple and friction. As for micro-vibration control, the multi-dimensional isolator
is a commonly used scheme. It usually adopts voice coil motors (VCM) [11–14], inertial
actuators [15–17], or piezoelectric devices [18–23] as actuators and transferred motion with
flexible structure, and good motion resolution was then achieved. However, the strokes of
these fine actuators are usually too tiny to get enough angular workspace, and independent
pointing adjustment is, thus, unavailable.

It is natural to combine several devices to possess motion of large-scale and high-
resolution simultaneously [24–27]. Stratospheric Observatory for Infrared Astronomy
(SOFIA) utilized coarse drive, fine drive, and active secondary mirror to provide the
telescope independent LOS control. Meanwhile, it also adopted multiple piezoelectric
active mass dampers besides the vibration isolation system to reject the disturbance [28–30].
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However, the scheme is too complex for a small optical payload and would cause high costs
or excess performance. A Large Ultraviolet/Optical/Infrared (LUVOIR) Surveyor was
planned to adopt a serial integration scheme [31,32]. It would reject the disturbance with a
parallel isolator that adopts the disturbance-free platform concept. A two axes gimbal that
connects the isolator and the support module was planned to provide the telescope with
independent angular motion. The serial scheme would increase the electrical interfaces
and could not reuse space and structure. In addition, the serial scheme might have stiffness
problems, and the additional reinforcing structure may be necessary. In a word, a serial
integration scheme would have difficulties in miniaturization.

Aiming at small optical space payloads, this paper introduces a novel pointing and
stabilizing manipulator that integrates both coarse and fine actuators in parallel. On this
basis, comprehensive research on the motion characteristics was conducted, and a specific
operation scheme was proposed so that large-scale pointing adjustment and disturbance
isolation could be accomplished by a single manipulator. The parallel scheme could get
rid of additional assistant devices in an integrated and compact way and thus would be a
potential solution for the miniaturization of optical payload manipulators.

The remainder of the paper is organized as follows. Section 2 presents the kinematic
and dynamic characteristics of the manipulator. Section 3 proposes a specific operation
scheme, including adjustment and isolation algorithms. Section 4 introduces the validation
of the proposed scheme. The last section summarizes the contents and contributions of
the paper.

2. Characteristics and Algorithms for Large-Scale Pointing Adjustment
2.1. Virtual Assembly

The structure of the proposed manipulator is introduced below. To mitigate spacecraft
vibration and adjust the LOS on a large scale, the proposed manipulator integrates fine and
coarse actuators simultaneously. For the convenience of integration and miniaturization,
two kinds of actuators are combined in parallel. The schematic diagram and the prototype
are shown in Figure 1. The prototype adopts manual gear racks as the coarse and voice coil
actuators as fine actuators. All the branch legs of the manipulator are arranged in the form
of UPS, where P represents the active prismatic joint, either coarse actuator or fine actuator,
and U and S, respectively, represent the passive joint of universal and sphere form.
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Figure 1. Schematic diagram and the virtual assembly of the pointing and stabilizing manipulator.

2.2. Mechanism Singularity

Integrating into a parallel configuration, the characteristic differences between the two
kinds of actuators would introduce additional constraints. From the perspective of coarse
actuators, the strokes of fine actuators are so small that they could be deemed immobile.
Similarly, from the perspective of fine actuators, coarse actuators are so slow that they
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could be deemed not to move. Since the constraint couplings of parallel mechanisms, the
additional constraint might cause the mutual obstruction of the actuators and, thus, the
failure of the division of action. Therefore, the mechanism characteristic will be analyzed
in this section to guarantee the theoretical feasibility of the proposed parallel solution.

To ensure that the division of labor still succeeds under extreme conditions, it is
desired that the fine (or coarse actuators) are still able to control the pointing motion (i.e.,
the angular motion) of the payload independently under the condition that the coarse
(or fine actuators) are completely immobile. From the kinematics view, it is a mechanism
singularity problem.

As shown in Figure 2, there are vector loops in the proposed manipulator. On this
basis, the vector variation relation isδ

→
t b + δ

→
r b f i + δ

→
l f i = δ

→
t p + δ

→
r p f i with i = 1, 2, 3

δ
→
t b + δ

→
r bci + δ

→
l ci = δ

→
t p + δ

→
r pci with i = 1, 2, 3

(1)

and the displacement of each actuator could be expressed as
d f i =

√(→
t p −

→
t b +

→
r p f i −

→
r b f i

)T(→
t p −

→
t b +

→
r p f i −

→
r b f i

)
− l f 0 with i = 1, 2, 3

dci =

√(→
t p −

→
t b +

→
r pci −

→
r bci

)T(→
t p −

→
t b +

→
r pci −

→
r bci

)
− lc0 with i = 1, 2, 3

(2)

where d f i and dci represent fine actuator displacement and coarse actuator displacement,
respectively, and l f 0 and lc0 denote the original fine leg length and coarse leg length, respectively.
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Figure 2. Vector loops in the pointing and stabilizing manipulator.

Combining Equations (1) and (2), the variation relation could be rewritten as

δ
→
d = Jpδ

→
q p − Jbδ

→
q b (3)
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where
→
d =

→d c
→
d f

,
→
d c =

(
dc1 dc2 dc3

)T,
→
d f =

(
d f 1 d f 2 d f 3

)T (4)

→
q p =

→t p
→
θ p

,
→
q p =

(→
t b→
θ b

)
(5)

Jlp =

[
Nc Mpc
N f Mp f

]
=



→
n

T
c1

...
(→

r pc1 ×
→
n c1

)T

→
n

T
c2

...
(→

r pc2 ×
→
n c2

)T

→
n

T
c3

...
(→

r pc3 ×
→
n c3

)T

· · · · · · · · · · · · · · · · · · · · · · · ·
→
n

T
f 1

...
(→

r p f 1 ×
→
n f 1

)T

→
n

T
f 2

...
(→

r p f 2 ×
→
n f 2

)T

→
n

T
f 3

...
(→

r p f 3 ×
→
n f 3

)T



(6)

Jlb =

[
Nc Mbc
N f Mb f

]
=



→
n

T
c1

...
(→

r bc1 ×
→
n c1

)T

→
n

T
c2

...
(→

r bc2 ×
→
n c2

)T

→
n

T
c3

...
(→

r bc3 ×
→
n c3

)T

· · · · · · · · · · · · · · · · · · · · · · · ·
→
n

T
f 1

...
(→

r b f 1 ×
→
n f 1

)T

→
n

T
f 2

...
(→

r b f 2 ×
→
n f 2

)T

→
n

T
f 3

...
(→

r b f 3 ×
→
n f 3

)T



(7)

where
→
n ∗ represents the unit direction vector of

→
l ∗. If the 6-UPS configuration is nonsingu-

lar, i.e., matrix Jp is nonsingular, then the platform motion fulfills that

δ
→
q p = J−1

lp δ
→
d − J−1

lp Jlbδ
→
q b (8)

Notating the coefficient matrices, respectively, as

Jpl =
[
Jpc Jp f

]
=

[
Jtc Jt f
Jθc Jθ f

]
= J−1

lp (9)

Jpb = J−1
lp Jlb =

[
Jtb
Jθb

]
(10)

then the angular motion of the platform fulfills that

δ
→
θ p = Jθcδ

→
d c + Jθ f δ

→
d f − Jθbδ

→
q b (11)

Considering that dimensions of
→
θ p,

→
d c, and

→
d f are both 3, it could be drawn that

the fine actuators could completely and independently control the angular motion of the
platform if, and only if, matrix Jθ f is nonsingular. On this basis, the capability would be

free from the interference of coarse actuators if matrix Jθ f frees from δ
→
d c. Similarly, the
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coarse actuators could completely and independently control the angular motion and be

free from the interference of fine actuators if matrix Jθc is nonsingular and frees from δ
→
d f .

Assuming matrix Nc is nonsingular, i.e., the direction of each coarse actuator is linearly
independent of the other coarse actuators, according to Formula (6) and Schur lemma,
there has ∣∣∣Jlp

∣∣∣ = |Nc|
∣∣∣Mp f −N f N−1

c Mpc

∣∣∣ (12)

and
Jθ f =

(
Mp f −N f N−1

c Mpc

)−1
(13)

It could be seen that matrix Jθ f is nonsingular if, and only if, Jlp is nonsingular. It is

also drawn that matrix Jθ f frees from δ
→
d c since matrices Mp f , Mpc, N f , and Nc are all free

from δ
→
d c. Similarly, in the case that matrix N f is nonsingular, matrix Jθc would be free from

δ
→
d f and nonsingular if, and only if, Jlp is nonsingular.

In conclusion, on the condition that coarse actuator directions are mutually linearly
independent of each other and fine actuator directions are also mutually linearly inde-
pendent of each other, the division of labor of the pointing and stabilizing manipulator
would be feasible as long as the corresponding 6-UPS configuration of the manipulator
is nonsingular. Besides, the singularity relationship between matrices Jθ f , Jθc and matrix
Jlp implies that the proposed manipulator would have a large angular workspace if the
corresponding 6-UPS configuration could remain non-singular across a wide range of
roll-pitch-yaw (RPY) angles.

2.3. Algorithm of Large-Scale Adjustment

The kinematics algorithm is central to the large-scale pointing adjustment. The for-
ward kinematic algorithm of typical 6-UPS mechanisms is still effective for the proposed
manipulator, so it will not be repeated here. However, the inverse kinematic algorithm
would be different. Denote the coordinate transformation matrix from the platform to the
base as P

BR and represent it in RPY angles:

P
BR = P

BR
(→

φ
)

 cosφ2 cosφ3 cosφ3 sinφ1 sinφ2 − cosφ1 sinφ3 cosφ1 cosφ3 sinφ2 + sinφ1 sinφ3
cosφ2 sinφ3 cosφ1 cosφ3 + sinφ1 sinφ2 sinφ3 − cosφ3 sinφ1 + cosφ1 sinφ2 sinφ3
− sinφ2 cosφ2 sinφ1 cosφ1 cosφ2

 (14)

where φ1, φ2, and φ3 represent the roll, pitch, and yaw angle. Then denote

B→t ∆ = BRT
(→

t p −
→
t b

)
(15)

where BR represents the coordinate transformation matrix from the base to the inertial
coordinate system. So, Formula (2) could be rewritten in the local coordinate system of
the base:

d f i =

√(
B
→
t ∆ + P

BRP→r p f i − B→r b f i

)T(
B
→
t ∆ + P

BRP→r p f i − B→r b f i

)
− l f 0 with i = 1, 2, 3

dci =

√(
B
→
t ∆ + P

BRP→r pci − B→r bci

)T(
B
→
t ∆ + P

BRP→r pci − B→r bci

)
− lc0 with i = 1, 2, 3

(16)

Given the target linear coordinates B→t ∆ and angular coordinates
→
φ, the required

actuator displacement could be directly solved from Equation (16). However, there are two

difficulties with the proposed manipulator. Firstly, only the required angular coordinates
→
φ

are knowable when adjusting the LOS. Secondly, the stroke of fine actuators is tiny, and the
result d f i(i = 1, 2, 3) must not exceed permissive stroke.
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For the convenience of solving, the fine actuators could be regarded as completely

immobile so that the feasible linear coordinates B→t ∆ could be uniquely determined by the
following constraint equation:

d f i = 0 with i = 1, 2, 3 (17)

For constraint Equation (17), although the solutions of analytical forms could be
obtained, the numerical method would be simpler. The numerical algorithm adopted here
is based on the gradient optimization method (Algorithm 1):

Algorithm 1 Gradient Optimization Method

Input:
→
φ

Output: B→t ∆(k + 1)

1. Initialize: B→t ∆(0)
2. do
3. k← k + 1

4.
→
l f i(k)← B→t ∆(k) + P

BR
(→

φ
)

P→r p f i − B→r b f i

5. l f i(k)←
√
→
l

T

f i(k)
→
l f i(k), i = 1, 2, 3

6. J(k)←
[→

l f 1(k)
l f 1(k)

→
l f 2(k)
l f 2(k)

→
l f 3(k)
l f 3(k)

]
7.

→
e (k)←

(
l f 0 − l f 1(k) l f 0 − l f 2(k) l f 0 − l f 3(k)

)T

8. B→t ∆(k + 1)← B→t ∆(k) + µJ(k)
→
e (k)

9. while ‖→e (k)‖ ≥ ε

10. return B→t ∆(k + 1)

where error limit ε controls the displacement of fine actuators, parameter µ controls the
iteration step size. The value of ε, for example, 10−6 meters, could be set according to the
permissive stroke of fine actuators and the pointing precision of adjustment. Combining

the given numerical algorithm of feasible linear coordinates B→t ∆, and Formula (16), the
required coarse actuator displacement dci is now solvable.

3. Characteristics and Algorithms for Pointing Stabilization
3.1. Dynamics and Disturbance Transmissibility

When the manipulator is equipped with a small payload and installed on a support
module, the whole dynamic system could be divided into three parts, i.e., the support
module and the manipulator base, the small payload and the manipulator platform, and the
branch legs of the manipulator. For describing convenience, the first two are, respectively,
referred to as the support module and the payload in this paper. A small payload usually
has a compact structure, and the mode frequencies are far beyond the active vibration
isolation frequency band, so it is considered rigid here. The actuator naturally divides
each leg into upper and lower parts. For the convenience of mathematical processing, the
leg modes beyond the active frequency band would be neglected, so the coarse legs are
considered completely rigid. As for the fine legs, the flexibility on each leg is assumed to be
concentrated at the position of the actuator. The simplified model is shown in Figure 3.
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For the convenience of dealing with complex constraints, the Lagrange method is
adopted to establish the dynamics model, as shown in Figure 3. The elastic potential energy
of the dynamic system could be expressed as

the elastic potential energy of all the fine legs,

Vl f =
1
2 ∑3

i=1 k f i

(
δd f i

)2
=

1
2

δ
→
d

T

f K f δ
→
d f (18)

the elastic potential energy of the support module,

Vbm =
1
2
→
x

T
mKbm

→
x m (19)

where
→
x m represents the modal coordinates that describe the vibration deformation, as

shown in Figure 3. Furthermore, the kinematic energy of the idealized dynamic system
includes

the kinematic energy of the payload,

Tp =
1
2

.
→
q

T

pMp

.
→
q p =

1
2

.
→
q

T

p

[
mpE3 −mp

~
ρp

mp
~
ρp Ip

] .
→
q p (20)

and the kinematic energy of the manipulator’s legs

Tl f u + Tl f d + Tlc =
1
2

(
.
→
q

T

p

.
→
q

T

b

)[
Mα Mαβ

Mβα Mβ

] .
→
q p.
→
q b

 (21)

A detailed derivation of Formula (21) can be found in Appendix A. The kinematic
energy of the support module origin from two kinds of motion, i.e., the bulk motion and
the deformation motion, so the kinematic energy could be expressed as

Tb =
1
2

.
→
q

T

b Mb

.
→
q b =

(
.
→
q b

.
→
x

T

m

)[
Mb Mb12

Mb12 Mb22

] .
→
q b.
→
x m

 (22)

where the mass matrix associated with bulk motion is

Mb =

[
mbE3 −mb

~
ρb

mb
~
ρb Ib

]
(23)
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As for non-conservative forces, the floor disturbance force
→
f b, the fine leg active force

f f i (vector form is
→
f f ), and the force arising from fine actuator electromagnetic damping

c f i (matrix form is C f ) are considered. Note that coarse actuators are regarded as immobile
during active isolation because they are too slow.

On this basis, the dynamic differential equations could be obtained according to
Euler–Lagrange equations. Then, according to Formula (11), it has the following varia-
tional relationship:

δ


→
θ p
→
q b→
x m

 =

Jθ f Jθb O
O E6 O
O O E

δ


→
d f
→
q b→
x m

 (24)

so the dynamic equations could be rewritten as

Me f Me f b O

Meb f Meb Mb12

O Mb21 Mb22




..
→
d f..
→
q b..
→
x m

+

C f O O
O O O
O O O




.
→
d f.
→
q b.
→
x m

+

K f O O

O O O
O O Kbm



→
d f
→
q b→
x m

 =


→
f f
→
f b→
0

 (25)

where
Me f = JT

p f

(
Mp + Mα

)
Jp f (26)

Meb f = MT
e f b = JT

pb

(
Mp + Mα

)
Jp f + MβαJp f (27)

Meb = Mb + Mβ + JT
pb

(
Mp + Mα

)
Jpb + JT

pbMαβ + MβαJpb (28)

Note that nonlinear terms corresponding to the centrifugal force and the Coriolis force
in the above dynamic equation were neglected.

Apply Laplace Transform to the dynamic equations, and the vibration deformation
→
x m could be derived from

→
q b the support module bulk motion:

→
Xm(s) =

(
s2Mb22 + Kbm

)−1
s2Mb21

→
Qb(s) (29)

where
→
Xm(s) and

→
Qb(s), respectively, represent the Laplace transform of

→
x m and

→
q b. Then

define the notation:[
U11(s) U12(s)
U21(s) U22(s)

]
=

[
s2Me f + sC f + K f s2Me f b

s2Meb f s2
(

Meb + Mb12
(
s2Mb22 + Kbm

)−1s2Mb21

)] (30)

Furthermore, the transfer function matrix of
→
d f and

→
q b could be obtained:→D f (s)

→
Qb(s)

 =

[
U11(s) U12(s)
U21(s) U22(s)

]−1
→F f (s)
→
F b(s)

 =

[
G11(s) G12(s)
G21(s) G22(s)

]→F f (s)
→
F b(s)

 (31)

where
→
D f (s),

→
F f (s) and

→
F b(s), respectively, represent the Laplace transform of

→
d f ,

→
f f , and

→
f b. Combining Formulas (24) and (31), the transfer function matrix of

→
θ p and

→
q b could

be obtained:→Θp(s)
→
Qb(s)

 =

[
Jθ f Jθb
O6 E6

][
G11(s) G12(s)
G21(s) G22(s)

]→F f (s)
→
F b(s)

 =

[
A(s) B(s)
C(s) D(s)

]→F f (s)
→
F b(s)

 (32)
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Using Schur complement, a detailed expression of each sub-matrix could be obtained as

D(s) = G22(s) =
(

U22(s)−U21(s)U
−1
11 (s)U12(s)

)−1

= U−1
22 (s) + U−1

22 (s)U21(s)G11(s)U12(s)U
−1
22 (s)

(33)

C(s) = G21(s) = −U−1
22 (s)U21(s)G11(s) = −G22(s)U21(s)U

−1
11 (s) (34)

B(s) = Jθ f G12(s) + JθbG22(s)

= Jθ f

(
−U−1

11 (s)U12(s)G22(s)
)
+ JθbG22(s)

=
(

Jθb − Jθ f U−1
11 (s)U12(s)

)
D(s)

(35)

A(s) = Jθ f G11(s) + JθbG21(s)

= Jθ f

(
U11(s)−U12(s)U

−1
22 (s)U21(s)

)−1
+ JθbC(s)

(36)

Set the active isolation force
→
f f to zeros, and the disturbance transmissibility of the

manipulator could be obtained as

→
Θp(s) = B(s)

→
F b(s) = B(s)

(
D−1(s)

→
Qb(s)

)
= GP(s)

→
Qb(s) (37)

According to Formulas (33) and (35), the detail expression could be obtained as

GP(s) = B(s)D−1(s) =
(

Jθb − Jθ f U−1
11 (s)U12(s)

)
(38)

It is first seen that the disturbance transmissibility of the manipulator is immune
to the support module modes. Then, since the DC gain of item U−1

11 (s)U12(s) is zero,
low-frequency disturbance transmissibility is Jθb. Considering that

Jθb =
[
O3

P
BR
]

(39)

the singular value frequency response of the disturbance transmissibility would always be-
gin with 0 dB. In addition, the form of GP(s) implies a non-zeros nominal feedthrough gain:

A f t = lim
s→∞

GP(s) = Jθb − Jθ f Me f
−1Me f b

= Jθb − Jθ f

(
JT

p f

(
Mp + Mα

)
Jp f

)−1(
JT

p f Mαβ + JT
p f

(
Mp + Mα

)
Jpb

) (40)

Considering that large feedthrough gain would damage the suppression of high-
frequency disturbance, Formula (40) implies that the passive vibration isolation capability
of the manipulator is likely to be poor.

According to Formula (36), the plant dynamics A(s) would be influenced by item
C(s), i.e., the ‘mobile-base’ effect. Item C(s) describes the response characteristics of the
support module under the excitation of fine actuator force. Considering that the dynamics
modes of a large spacecraft are numerous and complex, the dynamic coupling of A(s) and
C(s) would raise difficulties in controller design. Fortunately, there is an approximation for
the case of large spacecraft and small payloads.

Define mobile-base factor υ as

υ = ‖U−1
22 (s)U21(s)‖∞ = ‖Y(jω)‖∞ = sup

ω∈R
σ(Y(jω)) (41)

Combining Formula (30), the mobile-base factor of the nominal system could be
estimated as

υ ≈ σ
(

M−1
eb Meb f

)
(42)
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According to Formulas (27) and (28), the norm of Meb mainly depends on the total
mass of the support module and the payload, while Meb f mainly depends on the mass of the

payload. For the case of large spacecraft and small payload,
(

Mb + Mβ

)
�
(

Mp + Mα

)
and then υ ≈ 0, i.e., Y(s) ≈ O. Consider the above facts and then C(s) and A(s) could be
rewritten as

C(s) = −Y(s)G11(s) = −Y(s)(U11(s)− Y(s)U21(s))
−1 (43)

A(s) =
(

Jθ f − JθbY(s)
)
(U11(s)− Y(s)U21(s))

−1 (44)

If Y(s) ≈ O, then each sub-matrix of the transfer function could be approximated as

C(s) ≈ Ĉ(s) = O (45)

A(s) ≈ Â(s) = Jθ f

(
s2Me f + sC f + K f

)−1
(46)

It is seen that the approximate active control characteristics of the manipulator Â(s) is
no longer affected by support modules modes.

3.2. Algorithm of Active Vibration Isolation

To ensure the pointing accuracy and stability of the optical load in the presence
of disturbances, the pointing and stabilizing manipulator should be able to isolate the
floor disturbance. Based on the above dynamic model, active vibration isolation of the
feedforward method will be proposed in this subsection.

3.2.1. Active Feedforward Controller

The feedforward system of the manipulator takes the motion signal of the base as
input. As shown in Figure 4, the disturbance from the base would influence the platform
motion through two parallel paths, i.e., the primary path (denoted by GP(s)) and the active
path (denoted by A(s)). The platform would be completely isolated from base disturbance
when primary path and active path satisfy that

GP(s)
→
Qb0(s) = −A(s)

→
F f (s) (47)
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Because of the effect of active isolation force
→
f f on the support module, the input of

feedforward controller (i.e.,
→
q b) would differ from that of primary path (i.e.,

→
q b0) if

→
f f

were applied. Considering item C(s), the relationship between
→
q b and

→
q b0 is

→
Qb(s) = S(s)

→
Qb0(s) = (E6 −C(s)Kw(s))

−1→Qb0(s) (48)

Combined expression (47) and (48), the optimal active feedforward isolation force is

→
F f opt(s) = Kwop(s)

→
Qb(s) = −

(
E3 −A−1(s)GP(s)C(s)

)−1
A−1(s)GP(s)

→
Qb(s) (49)

In addition, the corresponding feedforward controller is

Kwop(s) = −(A(s)−GP(s)C(s))−1GP(s)

= −
(

Jθ f G11(s) + JθbC(s)−GP(s)C(s)
)−1

GP(s)

= −
(

Jθ f G11(s) + Jθ f U−1
11 (s)U12(s)C(s)

)−1
GP(s)

= −
(

Jθ f

(
G11(s) + U−1

11 (s)U12(s)
(
−G−1

22 (s)U21(s)U
−1
11 (s)

)))−1
GP(s)

= −U11(s)J
−1
θ f GP(s)

= U12(s)−U11(s)J
−1
θ f Jθb

(50)

It is seen that Kwop(s) is also immune to the support module modes. Combined
expression (26)–(30), (49), and (50), the optimal feedforward force could be expressed as

→
f f opt = Kwd

..
→
q b + Kwv

.
→
q b + Kwa

→
q b (51)

where
Kwd = JT

p f

((
Mp + Mα

)(
Jpb − Jp f J−1

θ f Jθb

)
+ Mαβ

)
(52)

Kwv = −C f J−1
θ f Jθb (53)

Kwa = −K f J−1
θ f Jθb (54)

Since only static gains are required, the nominal optimal feedforward controller
Kwop(s) is feasible.

Although the nominal optimal feedforward controller is achievable, it would face
difficulties when it comes to a practical plant whose dynamic differs from the nominal plant.
On the one hand, it is hard to obtain the absolute and multidimensional displacement,
velocity, and acceleration of floor disturbance at the same time. On the other hand, the
all-pass controller might provoke a strong high-frequency response, considering that
the high-frequency characteristics of the practical plant probably differ from that of the
nominal system.

Given this, a modified feedforward controller is proposed. Firstly, the modified
controller takes only the acceleration of floor disturbance as the input signal, and then the
integration method is adopted to obtain displacement and velocity signals. Considering
the saturation risk of the integrator, the acceleration signal would be filtered by a high-pass
filter first. The resultant first-order integrator is denoted as H(1,p)(s) and the second-order
integrator denoted as H(2,p)(s) here, where p represents passband edge frequency of the
high-pass filter. Secondly, the controller output would be low-pass filtered. Considering
the intrinsic low-pass characteristic of the integrator, the low-pass filter M(s) only acts on
the feedthrough item of floor acceleration. The final form feedforward controller is

Kwe(s) = H(2,p)(s)Kwd + H(1,p)(s)Kwv + M(s)Kwa (55)
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3.2.2. Stability of Feedforward Controller

Generally, a feedforward control system would not be at an unstable risk. However,
item C(s) gives the manipulator feedforward system an internal positive feedback loop
(IPFL); thus, the control system would not be stable. Since A(s), GP(s), C(s), D(s), and the
nominal optimal feedforward controller are stable, respectively, there is no unstable pole-
zero cancellation in the IPFL. The stability is decided by its sensitivity function. According
to Formulas (34) and (50), the sensitivity function of the IPFL consisting of the optimal
feedforward controller and the nominal plant could be expressed as

S(s) =
(

E6 −C(s)Kwop(s)
)−1

=
(

E6 −C(s)U12(s) + C(s)U11(s)J
−1
θ f Jθb

)−1

=
(

E6 −
(
−U−1

22 (s)U21(s)G11(s)
)

U12(s) +
(
−G22(s)U21(s)U

−1
11 (s)

)
U11(s)J

−1
θ f Jθb

)−1

=
((

U−1
22 (s) + U−1

22 (s)U21(s)G11(s)U12(s)U
−1
22 (s)

)
U22(s)−G22(s)U21(s)J

−1
θ f Jθb

)−1

=
(

G22(s)U22(s)−G22(s)U21(s)J
−1
θ f Jθb

)−1

=
(

U22(s)−U21(s)J
−1
θ f Jθb

)−1
G−1

22 (s)

=
(

U22(s)−U21(s)J
−1
θ f Jθb

)−1(
U22(s)−U21(s)U

−1
11 (s)U12(s)

)
=
(

Meb + Meb f J−1
θ f Jθb

)−1
(

Meb − s2Meb f

(
s2Me f + sC f + K f

)−1
Me f b

)

(56)

So, the pole equation of nominal IPFL is

det
(

s2Me f + sC f + K f

)
= 0 (57)

Since Me f , C f , K f is always symmetric and positive definite, it is certain that all the
roots of the pole equation are placed at the left. Therefore, the above sensitivity function is
bound to be stable.

However, the practical plant would usually differ from the nominal one because
of delay, high-frequency modes of the manipulator and payload, feedforward controller
approximation, and other uncertainty. All the uncertainty could be first lumped in practical
plant C′(s), and the relationship between the nominal plant C(s) and the practical plant
C′(s) could be expressed in a general form:

C′(s) = (E6 + ∆(s))C(s) (58)

where ∆ denotes the model uncertainty and is supposed to be a proper and real rational
stable transfer matrix. To overcome the influence of model uncertainty, the sensitivity
function of practical IPFL is supposed to be robustly stable, i.e., the loop is stable for any
given bounded model uncertainty. Combining Formulas (56) and (58), the sensitivity
function of practical IPFL is

S′(s) =
(

E6 −C′(s)Kwop(s)
)−1

= S(s)S∆(s) (59)

where
S∆(s) = (E6 − ∆(s)T(s))−1 (60)

T(s) = E6 − S(s) = −C(s)Kwop(s)
(

E6 −C(s)Kwop(s)
)−1

(61)

Since S(s) is certainly stable, S′(s) is robustly stable if, and only if, S∆(s) is robustly
stable. According to small gain theorem, S∆(s) is stable if

σ(∆(jω))σ(T(jω)) < 1, ∀ω ∈ R (62)
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where σ(·) represents the maximum singular value of a matrix. According to the dynamic
model in the above subsection, the form of T(s) could be obtained as

T(s) = E6 − S(s)

= E6 −
(

U22(s)−U21(s)J
−1
θ f Jθb

)−1(
U22(s)−U21(s)U

−1
11 (s)U12(s)

)
=
(

U22(s)−U21(s)J
−1
θ f Jθb

)−1((
U22(s)−U21(s)J

−1
θ f Jθb

)
−G−1

22 (s)
)

=
(

U22(s)−U21(s)J
−1
θ f Jθb

)−1(
U21(s)U

−1
11 (s)U12(s)−U21(s)J

−1
θ f Jθb

)
=
(

U22(s)−U21(s)J
−1
θ f Jθb

)−1(
−U21(s)J

−1
θ f

)(
Jθb − Jθ f U−1

11 (s)U12(s)
)

=
(

I6 − Y(s)J−1
θ f Jθb

)−1(
−Y(s)J−1

θ f

)
GP(s)

(63)

Then, the maximum singular value response of T(s) satisfies that

σ(T(jω)) ≤ σ

((
I6 − Y(jω)J−1

θ f Jθb

)−1(
−Y(jω)J−1

θ f

))
σ(GP(jω)) (64)

Now, a permissive bound of ∆(s) that keeps practical IPFL stable could be drawn ac-
cording to Formulas (62) and(64). To keep the practical IPFL stable with greater uncertainty,
it is expected that σ(T(jω)) is as small as possible. Under the condition that υ < 1, which
is reasonable for the case of large spacecraft and small payload, the smaller the item Y(s)
and GP(s), the better the robust stability of the IPFL consisting of proposed feedforward
controller. In other words, the weaker the ‘mobile-base’ effect and the smaller the passive
transmissibility, the better the robust stability. A simple but effective method would be to
increase the mode damping ratios of GP(s) or to decrease the ratio of the payload mass to
the support module mass.

4. Simulation Validation

The proposed algorithms and the conclusions are verified through simulation. The
virtual prototype built in ADAMS is shown in Figure 5. The pointing and stabilizing
manipulator is installed on a support module weighted 9.13 × 103 kg. The flexibility of
the solar arrays is considered to simulate the influence of the support module modes.
The optical payload is a laser communication weighted 14.89 kg, and the flexibility of
its secondary mirror truss is considered to simulate the influence of payload modes. In
addition, all the coarse rods and diaphragm springs were flexible parts.

4.1. Adjustment Algorithm Verification

The pointing adjustment limit of the payload is tested first. The coarse actuators
traversed the joint space boundary in a step of 2 mm so that the boundary of the workspace
could be traversed in an ergodic way. The resultant angular coordinates are all expressed
in the form of roll-pitch-yaw angles. The envelope shape and limit parameters are shown
in Figure 6 and Table 1.

Table 1. Workspace limit parameters of the pointing and stabilizing manipulator.

Angular Coordinates Maximum/(deg) Minimum/(deg)

Roll angle 9.60083 −8.97929
Pitch angle 9.7894 −10.6959
Yaw angle 16.6285 −14.4935
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It is seen that the limit of roll, pitch, and yaw angle exceeds ±8.5◦, and the envelope
shape has similar sizes in all directions. Therefore, it could be accepted that the pointing and
stabilizing manipulator could adjust the pointing direction of the payload on a large scale.

The algorithm of large-scale adjustment would be next to verify. Taking the actuator
displacement as the input command, the response of the virtual prototype could be obtained
from ADAMS. Then, the accuracy of the algorithm is checked by comparing the simulation
results with the target angular coordinates. The target angular coordinates are first chosen
from three planes and formed in a closed quadrilateral trajectory to enclose as many areas
as possible. Then, a path of a random walk is chosen as the target trajectory to validate the
algorithm in a fuller way.

The comparison results are shown in Figure 7. It is seen that the target trajectories
and simulated trajectories are highly consistent on all planes. The error magnitudes of the
angle coordinates are all kept at the level of 10−9 degrees~10−8 degrees, which is close to
the accuracy of the numerical calculation of ADAMS. Therefore, the effectiveness of the
proposed adjustment algorithm could be accepted.
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Figure 7. The simulation trajectories and the corresponding algorithm error on each plane. (a). The
quadrilateral trajectory comparison and the algorithm error on the roll-pitch plane, (b). those on the
roll-pitch plane, (c). those on the roll-pitch plane, (d). the random trajectory comparison and the
algorithm error on the roll-pitch plane.

4.2. Isolation Algorithm Verification

The proposed manipulator capability to stabilize the LOS is tested next. The floor
disturbance transmissibility is first compared in the frequency domain. Since the feedfor-
ward controller (55) is associated with the manipulator orientation, four pointing directions
were considered, whose RPY angles are, respectively, (0◦, 0◦, 0◦), (8.5◦, 0◦, 0◦), (0◦, −7◦,
0◦), and (0◦, 0◦, 14◦). The low-pass filters are both 9-order Chebyshev type II filters whose
stop frequencies are 1000 Hz. The high-pass filters are both 2-order filters whose corner
frequencies are 10−4 Hz.

As shown in Figure 8, when the feedforward controllers are acted, the maximum
attenuation exceeds 50dB in all four cases. Since the phase and gain mismatch, the attenua-
tion effect would degenerate in the transition frequency band of high-pass and low-pass
filter, and floor disturbance in the band of 100–700 Hz would be amplified by an active
feedforward system, but the amplifications do not exceed 9 dB. The theoretical results
derived from Formula (38) are also shown in the figures. It is seen that the theoretical
results are well consistent with the passive transmissibility of the virtual system in the
low-frequency band. Thus the validation of Formula (38) could be accepted.

Furthermore, the vibration isolation effect is compared in the time domain. Distur-
bance force generated by 0.1–1000 Hz white noise is acted on the support module. The
platform orientation jitter is shown in Table 2. It is seen that the jitter levels of all the chan-
nels in all four cases sharply go down, the magnitude of platform angular displacement
falls to 10−7 rad from 10−5 rad, and the root-mean-square (RMS) level of platform angular
displacement reduces by over 95%. The jitter trajectories of the image point and their
convex hull are shown in Figure 9. It is seen that the scattered areas in all four cases sharply
go down, too. Additionally, the scattered radius standard deviation falls to 10−7 meters
from 10−5 meters, which could meet the pointing stability requirements of common optical
payloads. Combining the frequency-domain and time-domain results, it could be accepted
that the feedforward controller (55) could effectively improve the pointing stability.
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Figure 8. Floor disturbance transmissibility of the pointing and stabilizing manipulator. (a). compari-
son in the orientation of (0◦, 0◦, 0◦), (b). in the orientation of (8.5◦, 0◦, 0◦), (c). in the orientation of
(0◦, −7◦, 0◦), (d). in the orientation of (0◦, 0◦, 14◦).

Table 2. RMS level of platform angular displacement of each channel.

Orientation Passive Case (Rad) Active Case (Rad) Rejection Ratio

(0◦, 0◦, 0◦)
θp1 1.65 × 10−5 1.14 × 10−7 99.3%
θp2 5.02 × 10−6 1.89 × 10−8 99.6%
θp3 5.34 × 10−6 1.22 × 10−7 97.7%

(8.5◦, 0◦, 0◦)
θp1 1.65 × 10−5 8.22 × 10−8 99.5%
θp2 5.03 × 10−6 3.49 × 10−8 99.3%
θp3 5.62 × 10−6 1.51 × 10−7 97.4%

(0◦, −7◦, 0◦)
θp1 1.65 × 10−5 5.53 × 10−8 99.7%
θp2 5.02 × 10−6 1.58 × 10−7 96.9%
θp3 5.68 × 10−6 1.25 × 10−7 97.8%

(0◦, 0◦, 14◦)
θp1 1.64 × 10−5 9.80 × 10−8 99.4%
θp2 5.63 × 10−6 1.77 × 10−7 96.9%
θp3 5.37 × 10−6 5.67 × 10−8 98.9%
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LDLSM, respectively, here. The passive transmissibility comparison is shown in Figure 
11. It is seen that the case of LSM and OSM have similar passive transmissibility, and so 
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orientation of (0◦, −7◦, 0◦), (d). that in the orientation of (0◦, 0◦, 14◦).

The stability of IPFL consisting of a feedforward controller (55) and the virtual proto-
type is tested last. The stability is shown by the bode diagrams of the open-loop transfer
function matrices (OLTFM). For convenience, only the elements in the first row and first col-
umn of OLTFM and the case of (0◦, 0◦, 0◦) are shown. Besides the Original Support Module
(OSM), the manipulator is also installed on a Lighter Support Module (LSM) weighted 9.33
× 102 kg to simulate the case of a larger ratio of the payload mass to the support module
mass. A delay of 0.02 s is introduced into all the IPFLs to increase uncertainty.

As shown in Figure 10, the amplitude–frequency curve (AFC) corresponding to OSM
is totally below the 0 dB line, i.e., the clockwise encirclement number of the Nyquist plot
about the−1 point is zero. Furthermore, considering that the C′(s), and Kwe(s) is inherently
stable, i.e., the unstable pole number of the OLTFM is also zero, the IPFL is bound to be
stable according to Nyquist stability criterion. Since the smaller support module mass
and the AFC corresponding to LSM is above that of OSM and cross over the 0 dB line
at the frequency of 5.16 Hz and 5.57 Hz. Then it is seen that the phase-frequency curve
corresponding to LSM crosses over the −180◦ line from above once at 5.42 Hz, and the
phase margin is −26.2◦. So, the encirclement number is no longer zero; thus, the IPFL
corresponding to LSM is unstable. On this basis, the electromagnetic damping of each fine
actuator is increased to 1160 N·s/m from 23.2 N·s/m to simulate the larger mode damping
ratio case of OSM and LSM. For convenience, they are abbreviated as LDOSM and LDLSM,
respectively, here. The passive transmissibility comparison is shown in Figure 11. It is seen
that the case of LSM and OSM have similar passive transmissibility, and so do LDOSM
and LDLSM, which is consistent with the theoretical result that the transmissibility frees
from the support modules. As for stability, as shown in Figure 10, the AFC corresponding
to LDLSM comes back below the 0 dB line due to the passive transmissibility attenuation
at about 5 Hz, so the encirclement number is zero again, and thus, the IPFL is stable.
Combining the stability conditions of OSM, LSM, and LDLSM, it could be accepted that
the larger mode damping ratios of GP(s) or the smaller ratio of the payload mass to the
support module mass, the better robust stability of the IPFL.
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5. Conclusions

This paper proposed a novel pointing and stabilizing manipulator that integrated both
coarse and fine actuators in parallel. The manipulator is designed to provide small optical
space payloads on large spacecraft with independent and large-scale pointing adjustment
as well as pointing stabilization at the same time.

A theoretical analysis of the manipulator characteristics was first conducted. Singu-
larity analysis showed that the division of pointing labor is feasible with parallel coarse
and fine actuators. Through dynamic analysis, the feed-through characteristic of distur-
bance transmissibility and the ‘mobile-base’ effect on active control was revealed. The
paper further presented a specific operation scheme of the novel manipulator including a
large-scale adjustment algorithm and an active vibration isolation algorithm. According to
the simulation, using the proposed adjustment algorithm, the prototype could arbitrarily
adjust the roll-pitch-yaw angles of the payload pointing within the range of±8.5◦ and error
below 2 × 10−8 degrees, and using the proposed active vibration isolation algorithm, the
prototype could reduce the pointing direction jitter by over 95%, which reached the level of
10−7rad from the original level of 10−5rad. Therefore, it could be accepted that the parallel
integrated scheme of coarse actuators and fine actuators is feasible. The simulation also
confirmed some key conclusions of theoretical analysis.

The proposed parallel integrated scheme suits the pointing requirements of future
small optical payloads on large spacecraft. The active feedforward method could also be ex-
tended to other vibration isolation manipulators. Next, we intend to build an experimental
system to validate the solution in practice and achieve the given performance requirements.
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Appendix A

This section introduced the method to express the kinetic energy of the manipulator’s

legs with
.
→
q p and

.
→
q b. To improve model accuracy while retaining model simplicity, the tiny

movable parts such as joint balls would be neglected. As shown in Figure 3, each fine leg is
divided into upper and lower parts and linked by a prism joint, and the prism joint in each
coarse leg keeps locked. Therefore, the kinematic energy of branch chains includes

kinematic energy of the upper parts fine leg,

Tl f u = 1
2 ∑3

i=1

(
m f ui

→
v

T
f ui
→
v f ui +

→
ω

T
f iI f ui

→
ω f i

)
= 1

2 ∑3
i=1

(
m f ui

(→
v p f i +

→
ω f i ×

→
ρ f ui

)T(→
v p f i +

→
ω f i ×

→
ρ f ui

)
+
→
ω

T
f iI f ui

→
ω f i

) (A1)

kinematic energy of the lower parts fine leg,

Tl f d = 1
2 ∑3

i=1

(
m f di

→
v

T
f di
→
v f di +

→
ω

T
f iI f di

→
ω f i

)
= 1

2 ∑3
i=1

(
m f di

(→
v b f i +

→
ω f i ×

→
ρ f di

)T(→
v b f i +

→
ω f i ×

→
ρ f di

)
+
→
ω

T
f iI f di

→
ω f i

) (A2)
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kinematic energy of coarse leg,

Tlc = 1
2 ∑3

i=1

(
mci
→
v

T
ci
→
v ci +

→
ω

T
ciIci

→
ωci

)
= 1

2 ∑3
i=1

(
mci

(→
v bci +

→
ωci ×

→
ρ ci

)T(→
v bci +

→
ωci ×

→
ρ ci

)
+
→
ω

T
ciIci

→
ωci

) (A3)

where
→
v f ui(i = 1, 2, 3),

→
v f di(i = 1, 2, 3),

→
v ci(i = 1, 2, 3), respectively, represent the centroid

velocity of each part.
→
ω f i(i = 1, 2, 3) and

→
ωci(i = 1, 2, 3), respectively, represent the angular

velocity of fine leg and that of the coarse leg. The definition of each inertial parameter and
joint-point velocity can be found in Figure 3.

Linear velocities
→
v bci(i = 1, 2, 3),

→
v p f i(i = 1, 2, 3) and

→
v b f i(i = 1, 2, 3) could be repre-

sented by
.
→
q p and

.
→
q b:

→
v bci =

.
→
t b +

→
ωb ×

→
r bci = Jbci

.
→
q b, i = 1, 2, 3

→
v p f i =

.
→
t p +

→
ωp ×

→
r p f i = Jp f i

.
→
q p, i = 1, 2, 3

→
v b f i =

.
→
t b +

→
ωb ×

→
r b f i = Jb f i

.
→
q b, i = 1, 2, 3

(A4)

The transformation matrices Jbci(i = 1, 2, 3), Jp f i(i = 1, 2, 3), and Jb f i(i = 1, 2, 3) are
matrices with similar forms. Taking Jbci(i = 1, 2, 3) as an example, it has the form of

Jbci =
[
E3 −r̃bci

]
(A5)

where r̃bci is the antisymmetric matrix corresponding to the vector
→
r bci.

According to the structure of the universal joint shown in Figure A1, considering that
each leg is linked by the universal joint, the angular velocity of each leg must fulfill

→
ω

T
ci
→
n Uci = 0; i = 1, 2, 3

→
ω

T
f i
→
n U f i = 0; i = 1, 2, 3

(A6)

The definition of
→
n Uci(i = 1, 2, 3) and

→
n U f i(i = 1, 2, 3) can be found in Figure A1. The

formula could be equivalently rewritten as
→
ωci =

(
E3 −

→
n Uci

→
n

T
Uci

)
→
ωci = P⊥Uci

→
ωci, ; i = 1, 2, 3

→
ω f i =

(
E3 −

→
n U f i

→
n

T
U f i

)
→
ω f i = P⊥U f i

→
ω f i; i = 1, 2, 3

(A7)

As shown in Figure A1, it could be approximately deemed that each rod is perpendic-
ular to two pivots of the universal joint. So there is the approximation

→
n Uci ≈

→
n ci, P⊥Uci ≈ P⊥ci =

~
nci

~
n

T
ci; i = 1, 2, 3

→
n U f i ≈

→
n f i, P⊥U f i ≈ P⊥f i =

~
n f i

~
n

T
f i; i = 1, 2, 3

(A8)

In addition, the velocity of each joint point fulfills that{ →
v pci =

→
v bci +

→
ωci × lci

→
n ci, i = 1, 2, 3

→
v p f i =

→
v b f i +

→
ω f i × l f i

→
n f i +

.
l f i
→
n f i; i = 1, 2, 3

(A9)
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The equivalent form is
→
ωri ×

→
n ri =

1
lci

(→
v pri −

→
v bri

)
, i = 1, 2, 3

→
ω f i ×

→
n f i =

1
l f i

(→
v p f i −

→
v b f i −

.
l f i
→
n f i

)
; i = 1, 2, 3

(A10)

Combine Equations (A7), (A8), and (A10), and the angular velocity could be approxi-
mately expressed as

→
ωci ≈ P⊥ci

→
ωci =

~
nci

(→
ωci ×

→
n ci

)
=

~
nci
lri

(
Jpci

.
→
q p − Jbci

.
→
q b

)
; i = 1, 2, 3

→
ω f i ≈ P⊥f i

→
ω f i =

~
n f i

(→
ω f i ×

→
n f i

)
=

~
n f i
l f i

(
Jp f i

.
→
q p − Jb f i

.
→
q b

)
; i = 1, 2, 3

(A11)

So far, all the transformations have been obtained. On this basis, the expressions of
kinetic energy can be further simplified using the structural characteristics. Assuming that
the mass distribution of each leg is approximately axisymmetric, the eccentricity vector of
each part can be approximated as

→
ρ ci ≈ ρci

→
n ci, i = 1, 2, 3

→
ρ f ui ≈ −ρ f ui

→
n f i, i = 1, 2, 3

→
ρ f di ≈ ρ f di

→
n f i, i = 1, 2, 3

(A12)

Under the same assumption, the form of inertia tensors can also be simplified. Taking
one of the coarse legs as an example, the inertia tensor at the centroid can be generally
expressed as

Iri =
[→

n cxi
→
n cyi

→
n ci

]µci 0 0
0 µci 0
0 0 ηci



→
n

T
cxi

→
n

T
cyi
→
n

T
ci

 (A13)

where
→
n cxi and

→
n cyi are, respectively, the unit vectors of arbitrary two radial directions,

and µci and µci represent the principal components in the radial and axial directions,

respectively. Then according to Formula (A11), the item
→
ω

T
ciIci

→
ωci fulfills

→
ω

T
ciIci

→
ωci ≈

→
ω

T
ciP
⊥
ci

[ →
n cxi

→
n cyi

→
n ci

] µci 0 0
0 µci 0
0 0 ηci



→
n

T
cxi

→
n

T
cyi
→
n

T
ci

P⊥ci
→
ωci

= µcui
→
ω

T
ciP
⊥
ci

(
→
n cxi

→
n

T
cxi +

→
n cyi

→
n

T
cyi

)
P⊥ci
→
ωci + ηcui

→
ω

T
ci

~
n

T
ci

~
nci
→
n ci
→
n

T
ci

~
n

T
ci

~
nci
→
ωci

= µcui
→
ω

T
ciP
⊥
ci

(
→
n cxi

→
n

T
cxi +

→
n cyi

→
n

T
cyi

)
P⊥ci
→
ωci + O3

= µcui
→
ω

T
ciP
⊥
ci

(
→
n cxi

→
n

T
cxi +

→
n cyi

→
n

T
cyi +

→
n ci
→
n

T
ci

)
P⊥ci
→
ωci

= µcui
→
ω

T
ciP
⊥
ci P
⊥
ci
→
ωci ≈ µci

→
ω

T
ci
→
ωci

(A14)
Therefore, the inertia tensors could be approximated as

Ici ≈ µciE3, i = 1, 2, 3
I f ui ≈ µ f uiE3, i = 1, 2, 3
I f di ≈ µ f diE3, i = 1, 2, 3

(A15)
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Combining Formulas (A1)–(A5), (A11), (A12), and (A15), the kinetic energy of all legs
could be rephrased as

Tl f u + Tl f d + Tlc =
1
2

( .
→
q p

.
→
q b

)[Mα Mαβ

Mβα Mβ

] .
→
q p.
→
q b

 (A16)

where
Mα = ∑3

i=1 JT
pci

(
mαciP

⊥
ci

)
Jpci + ∑3

i=1 JT
p f i

(
m f uiE3 + mα f iP

⊥
f i

)
Jp f i (A17)

mαci =
µci + mciρ

2
ci

l2
ci

, i = 1, 2, 3 (A18)

mα f i =
µ f ui + m f uiρ

2
f ui + µ f di + m f diρ

2
f di

l2
f i

−
2m f uiρ f ui

l f i
, i = 1, 2, 3 (A19)

Mβ = ∑3
i=1 JT

bci

(
mciE3 + mβciP

⊥
ci

)
Jbci + ∑3

i=1 JT
b f i

(
m f diE3 + mβ f iP

⊥
f i

)
Jb f i (A20)

mβci =
µci + mciρ

2
ci

l2
ci

−
2mciρci

lci
, i = 1, 2, 3 (A21)

mβ f i =
µ f ui + m f uiρ

2
f ui + µ f di + m f diρ

2
f di

l2
f i

−
2m f diρ f di

l f i
, i = 1, 2, 3 (A22)

Mαβ = MT
βα = −∑3

i=1 mαβciJ
T
pciP

⊥
ci Jbci −∑3

i=1 mαβ f iJ
T
p f iP

⊥
f iJb f i (A23)

mαβci =
µci + mciρ

2
ci

l2
ci

−
mciρci

lci
, i = 1, 2, 3 (A24)

mαβ f i =
µ f ui + m f uiρ

2
f ui + µ f di + m f diρ

2
f di

l2
f i

−
m f uiρ f ui + m f diρ f di

l f i
, i = 1, 2, 3 (A25)
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