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Abstract: Foot pain is a common musculoskeletal disorder. Orthotic insoles are widely used in
patients with foot pain. Inexperienced clinicians have difficulty prescribing orthotic insoles appropri-
ately by considering various factors associated with the alteration of foot alignment. We attempted to
develop deep-learning algorithms that can automatically prescribe orthotic insoles to patients with
foot pain and assess their accuracy. In total, 838 patients were included in this study; 70% (n = 586)
and 30% (n = 252) were used as the training and validation sets, respectively. The resting calcaneal
stance position and data related to pelvic elevation, pelvic tilt, and pelvic rotation were used as input
data for developing the deep-learning algorithms for insole prescription. The target data were the
foot posture index for the modified root technique and the necessity of heel lift, entire lift, and lateral
wedge, medial wedge, and calcaneocuboid arch supports. In the results, regarding the foot posture
index for the modified root technique, for the left foot, the mean absolute error (MAE) and root
mean square error (RMSE) of the validation dataset for the developed model were 1.408 and 3.365,
respectively. For the right foot, the MAE and RMSE of the validation dataset for the developed model
were 1.601 and 3.549, respectively. The accuracies for heel lift, entire lift, and lateral wedge, medial
wedge, and calcaneocuboid arch supports were 89.7%, 94.8%, 72.2%, 98.4%, and 79.8%, respectively.
The micro-average area under the receiver operating characteristic curves for heel lift, entire lift, and
lateral wedge, medial wedge, and calcaneocuboid arch supports were 0.949, 0.941, 0.826, 0.792, and
0.827, respectively. In conclusion, our deep-learning models automatically prescribed orthotic insoles
in patients with foot pain and showed outstanding to acceptable accuracy.

Keywords: insole; foot pain; deep learning; prescription

1. Introduction

Foot pain is common among adults and is frequently observed in patients who visit
pain clinics, particularly older adults [1,2]. Its prevalence among adults aged ≥18 years is
reported to range from 17 to 24% [3]. It can lead to a diminished ability to perform activities
of daily living, problems with balance and gait, and an increased risk of falls [1,2]. Foot
pain is reported to significantly impact the quality of daily life and work [1,2]. Therefore,
the appropriate treatment of foot pain is important. Despite the use of various therapeutic
methods such as oral medication, physical therapy, injections, extracorporeal shockwave
therapy, and orthoses, many patients frequently complain of persistent foot pain [1,2,4,5].
The development of foot pain is associated with alterations in foot alignment, which result
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in abnormally distributed loads on the foot [6,7]. Orthotic insoles are frequently used to
correct altered foot alignments [8,9]. The usefulness of orthotic insoles for patients with
foot pain has been demonstrated in several previous studies, and they have been widely
applied in clinical practice for the treatment of foot pain [10–12].

Additionally, the asymmetrical motion between the right and left lower limbs and
pelvic malalignment is kinetically associated with abnormal foot motion [13]. A misalign-
ment can create excessive load on certain foot structures, causing foot pain. To correct
the symmetry between the lower limbs and pelvic malalignment, the height of orthotic
insoles can be adjusted by lifting the insole. The asymmetric movement of the pelvis can be
corrected by applying lateral wedge, medial wedge, and calcaneocuboid arch supports to
the insole and lifting the heel [14,15]. The rotation of the pelvis to one side can be blocked
using lateral wedge, medial wedge, and calcaneocuboid arch supports. The tilt of one side
of the pelvis toward the anterior region can be corrected by a heel lift.

A lot of experience should be accumulated to prescribe orthotic insoles appropriately.
To apply the appropriate orthotic insole, clinicians should consider various factors such as
foot alignment, pelvic movement, and leg length discrepancy [13,16]. The comprehensive
consideration of various factors associated with the alteration of foot alignment is difficult
for inexperienced clinicians. An algorithm that automatically prescribes the orthotic insole
would be of great help to clinicians treating patients with foot pain.

Machine learning is an artificial intelligence technique that involves system learning
rules and patterns from given data [17–19]. It has several advantages for determining the
appropriate prescription for patients with various disorders [17–19]. The deep-learning
technique is an advanced machine learning approach [20,21]. In particular, it constructs
artificial neural networks with functions and structures similar to those of the human brain
using a large number of hidden layers [20,21]. Several studies have demonstrated that the
deep-learning technique can outperform traditional machine learning techniques [17–19].

We propose that deep learning can be used to develop an algorithm that automatically
prescribes orthotic insoles to patients with foot pain, using several measured results as
input data. In the current study, we investigated the potential of deep learning to prescribe
an appropriate orthotic insole for patients with foot pain.

2. Methods
2.1. Study Design and Population

The data for developing the machine learning algorithms were obtained from a single
insole manufacturer (BioMechanics, Goyang-si, Republic of Korea). Insoles were made on
the basis of the insole prescription paper on which the results of the physical examination,
including the resting calcaneal stance position (RCSP), pelvic elevation, pelvic tilt, and
pelvic rotation, were written [22–24]. The prescription paper was written by a podiatrist
(ISP) who had more than 25 years of experience in the prescription of orthotic insoles for
patients with foot pain. Insole prescriptions were written at five different hospitals. We
used the following inclusion criteria: (1) age ≥ 20 years, (2) the insole was prescribed
for managing foot pain, (3) patients with no neurological disorders, (4) patients with no
diabetic foot ulcer, and (5) the presence of an insole prescription paper containing all the
information on the RCSP, pelvic elevation, pelvic tilt, and pelvic rotation.

Informed consent was waived by the Institutional Review Board of Yeungnam Univer-
sity Hospital. This study was approved by the Institutional Review Board of Yeungnam
University Hospital (2022-06-046). All procedures were carried out in accordance with the
relevant guidelines and regulations.
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2.2. Input Variables
Resting Calcaneal Stance Position

To measure the RCSP, patients with foot pain were asked to place their foot on the edge
of the bed and lay in the prone position on a bed parallel to the ground. The investigator
manually inspected the foot and drew a bisector by placing three dots on the top, middle,
and bottom of the heel, regardless of the fat surrounding the calcaneus (Figure 1A). The
RCSP was measured when the patients stood on their feet placed at a fist-width distance
(Figure 1B). Angles were determined between the line of the heel and the surface.
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Figure 1. Measurement of the resting calcaneal stance position (RCSP), pelvic elevation, pelvic tilt,
and pelvic rotation. Measurements of the (A) RCSP in the prone position, (B) RCSP in the standing
position, (C) pelvic elevation, (D,E) pelvic tilt, and (F) pelvic rotation.

2.3. Pelvic Elevation, Pelvic Tilt, and Pelvic Rotation

Pelvic elevation indicated the height difference between the left and right iliac crests.
It was measured using an angulometer with the patients standing on their feet placed at a
fist-width distance. The right and left blades of the angulometer were placed at the highest
point of the iliac crest, and pelvic elevation was measured (Figure 1C). When one iliac
crest was elevated relative to the iliac crest of the other side, the value was indicated as a
positive value, and a larger value indicated a greater difference in the heights of the left
and right pelvis (e.g., when the heights of the left and right iliac crests were the same, it
was described as 0-0, and when the height of the left iliac crest was 2 degrees higher than
the other side, it was presented as 2-0).

To assess the presence of pelvic tilt, the investigator’s thumb was placed on the pos-
terior superior iliac spine (PSIS), and the remaining fingers were placed on the patient’s
iliac crest (Figure 1D). The investigator then asked the patients to bend their lower back
90 degrees forward and assessed the difference in the degree of anterior tilt of the investi-
gator’s thumb (Figure 1E). When the tilt of both PSISs was symmetrical, it was presented
as “−,−,” and when the tilt of the left PSIS was greater than the left PSIS, it was presented
as “+,−.”
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To measure pelvic rotation, the investigator attached the angulometer to the patients’
PSISs, asked the patients to walk in place, and observed the movement of the angulometer
(Figure 1F). The investigator assessed whether the degree of the backward movement of the
right and left wings of the angulometer was symmetrical. When the angulometer attached
to the patients’ PSIS moved backward symmetrically, it was described as “−,−,” and when
the left side moved backward more than the right side, it was described as “+,−.”

2.4. Target Variables

The foot posture index for the modified root technique and the application of heel lift,
entire lift, and lateral wedge, medial wedge, and calcaneocuboid arch supports were set as
the target variables (Figure 2).
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Figure 2. Photographs of (A) heel lift, (B) entire lift, and (C) lateral wedge, (D) medial wedge, and
(E) calcaneocuboid arch supports.

2.5. Deep-Learning Algorithms

Sequential deep neural networks (DNNs) were applied for classification and sequential
DNN-based regression algorithms (Supplementary Materials). TensorFlow 2.9.1 with Keras,
Python 3.8.1, and Scikit-learn 1.1.1. were used to train two DNN regression models (right
and left feet) for automatic prescriptions of the foot posture index for the modified root
technique and five DNN classification models to determine the application of heel lift,
entire lift, and lateral wedge, medial wedge, and calcaneocuboid arch supports. Among
the study population, 70% (n = 586) and 30% (n = 252) were included in the training and
validation sets, respectively. The details of each model are listed in Tables 1–6.

Table 1 shows the application of deep-learning regression to determine the foot posture
index. This approach is particularly effective because of its capability to handle complex
and non-linear associations between inputs and outputs, making it an optimal solution
for determining the foot posture index using continuous values. The mean absolute error
(MAE) and root mean square error (RMSE) were used to validate the performance of the
two regression models.
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Table 1. Details of the model for determining the foot posture index for the modified root technique.

Prescription Left DNN Regression Model Prescription Right DNN Regression Model

DNN model

- Four hidden layers with 256-128-128-64 neurons
- RMSProp optimizer, ReLU activation
- Learning rate 1 × 10−5, batch size 512
- Batch normalization for regularization

- Five hidden layers with 512-512-1024-1024-512 neurons
- RMSProp optimizer, ReLU activation
- Learning rate 2 × 10−3, batch size 512
- Batch normalization for regularization

Model
performance

- MAE 1.460, RMSE 3.539 for training
- MAE 1.408, RMSE 3.365 for validation

- MAE 1.560, RMSE 3.860 for training
- MAE 1.601, RMSE 3.549 for validation

DNN, deep neural network; RMSProp, root mean squared propagation; ReLU, rectified linear unit; MAE, mean
absolute error; RMSE, root mean square error.

Table 2. Details of the model for determining the application of heel lift.

Sample size and ratio
Sample class size and ratio

- 70% for training: 586; 30% for validation: 252; total: 838
- Class 0: 392 (66.9%), class 1: 64 (10.9%), class 2: 130 (22.2%) for training
- Class 0: 169 (67.1%), class 1: 28 (11.1%), class 2: 55 (21.8%) for validation

DNN model

- Five hidden layers with 512-512-1024-1024-512 neurons
- Adam optimizer, ReLU activation
- Learning rate 1 × 10−2 batch size 32
- Dropout layer for regularization
- Training accuracy: 89.1%, validation accuracy: 89.7%

Model performance
(validation data)

Class Precision Recall F1-score Support ROC AUC

0 0.961 0.882 0.920 169 0.942

1 0.839 0.939 0.881 28 0.993

2 0.773 0.927 0.843 55 0.950

Macro average 0.858 0.913 0.881 252 0.961

Micro average 0.907 0.897 0.899 252 0.949

DNN, deep neural network; Adam, adaptive moment estimation; ReLU, rectified linear unit; ROC, receiver
operating characteristic; AUC, area under the curve; class 0, no application; class 1, application of heel lift to the
right side; class 2, application of heel lift to the left side.

Table 3. Details of the model for determining the application of entire lift.

Sample size and ratio
Sample class size and ratio

- 70% for training: 586; 30% for validation: 252; total: 838
- Class 0: 508 (86.7%), class 1: 23 (3.9%), class 2: 55 (9.4%) for training
- Class 0: 218 (86.5%), class 1: 10 (4%), class 2: 24 (9.5%) for validation

DNN model

- Three hidden layers with 256-256-512 neurons
- RMSProp optimizer, ReLU activation
- Learning rate 5 × 10−3, batch size 2
- Dropout layer for regularization
- Training accuracy: 94.7%, validation accuracy: 94.8%

Model performance
(validation data)

Class Precision Recall F1-score Support ROC AUC

0 0.977 0.968 0.972 218 0.939

1 0.750 0.600 0.667 10 0.868

2 0.786 0.917 0.846 24 0.991

Macro average 0.838 0.828 0.828 252 0.933

Micro average 0.950 0.948 0.948 252 0.941

DNN, deep neural network; RMSProp, root mean squared propagation; ReLU, rectified linear unit; ROC, receiver
operating characteristic; AUC, area under the curve; class 0, no application; class 1, application of entire lift to the
right side; class 2, application of entire lift to the left side.
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Table 4. Details of the model for determining the application of lateral wedge support.

Sample size and ratio
Sample class size and ratio

- 70% for training: 586; 30% for validation: 252; total: 838
- Class 0: 571 (97.4%), class 1: 9 (0.015%), class 2: 3 (0.005%), class 3: 3 (0.005%) for training
- Class 0: 245 (97.2%), class 1: 4 (0.016%), class 2: 1 (0.004%), class 3: 2 (0.008%) for validation

DNN model

- Two hidden layers with 256-1024 neurons
- RMSProp optimizer, ReLU activation
- Learning rate 5 × 10−4, batch size 128
- Dropout layer for regularization
- Training accuracy: 98.8%, validation accuracy: 98.4%

Model performance
(validation data)

Class Precision Recall F1-score Support ROC AUC

0 0.988 0.996 0.992 245 0.790

1 0.667 0.500 0.571 4 0.861

2 1.000 1.000 1.000 1 1.000

3 1.000 0.500 0.667 2 0.800

Macro average 0.914 0.749 0.807 252 0.863

Micro average 0.983 0.984 0.983 252 0.792

DNN, deep neural network; RMSProp, root mean squared propagation; ReLU, rectified linear unit; ROC, receiver
operating characteristic; AUC, area under the curve; class 0, no application; class 1, application of medial wedge
support to the right side; class 2, application of medial wedge support to the left side; class 3, application of medial
wedge support to both sides.

Table 5. Details of the model for determining the application of medial wedge support.

Sample size and ratio
Sample class size and ratio

- 70% for training: 586; 30% for validation: 252; total: 838
- Class 0: 289 (49.3%), class 1: 19 (3.2%), class 2: 80 (13.7%), class 3: 198 (33.8%) for training
- Class 0: 124 (49.2%), class 1: 8 (3.2%), class 2: 35 (13.9%), class 3: 85 (33.7%) for validation

DNN model

- Two hidden layers with 256-1024 neurons
- Nadam optimizer, ReLU activation
- Learning rate 5 × 10−5, batch size 64
- Dropout layer for regularization
- Training accuracy: 93.0%, validation accuracy: 72.2%

Model performance
(validation data)

Class Precision Recall F1-score Support ROC AUC

0 0.786 0.798 0.792 124 0.827

1 0.333 0.250 0.285 8 0.754

2 0.455 0.429 0.441 35 0.791

3 0.759 0.776 0.767 85 0.845

Macro average 0.583 0.583 0.572 252 0.804

Micro average 0.716 0.722 0.719 252 0.826

DNN, deep neural network; Nadam, Nesterov-accelerated adaptive moment estimation; ReLU, rectified linear
unit; ROC, receiver operating characteristic; AUC, area under the curve; class 0, no application; class 1, application
of lateral wedge support to the right side; class 2, application of lateral wedge support to the left side; class 3,
application of lateral wedge support to both sides.

Tables 2–6 present the results of the multi-class classification models designed to
handle more than two classes or categories. The entire lift, lateral wedge support, and
calcaneocuboid arch support models used the RMSProp optimizer. The heel lift and
medial wedge support models utilized the Adam and Nadam optimizers, respectively. In
terms of performance, the heel lift, entire lift, and lateral wedge support models exhibited
exceptional results, with accuracy rates surpassing 90% for the validation data. In contrast,
the accuracies of the medial wedge support and calcaneocuboid arch support models were
moderate, yielding accuracy levels ranging between 72% and 80% for the validation data.
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Table 6. Details of the model for determining the application of calcaneocuboid arch support.

Sample size and ratio
Sample class size and ratio

- 70% for training: 586; 30% for validation: 252; total: 838
- Class 0: 412 (70.3%), class 1: 36 (6.1%), class 2: 138 (23.6%) for training
- Class 0: 177 (70.2%), class 1: 16 (6.4%), class 2: 59 (23.4%) for validation

DNN model

- Four hidden layers with 1024-512-256-128 neurons
- RMSProp optimizer, ReLU activation
- Learning rate 2 × 10−3, batch size 128
- Dropout layer for regularization
- Training accuracy: 88.7%, validation accuracy: 79.8%

Model performance
(validation data)

Class Precision Recall F1-score Support ROC AUC

0 0.868 0.853 0.860 177 0.824

1 0.684 0.812 0.743 16 0.859

2 0.627 0.627 0.627 59 0.828

Macro average 0.726 0.764 0.743 252 0.837

Micro average 0.800 0.798 0.798 252 0.827

DNN, deep neural network; RMSProp, root mean squared propagation; ReLU, rectified linear unit; ROC, receiver
operating characteristic; AUC, area under the curve; class 0, no application; class 1, application of calcaneocuboid
arch support to the right side; class 2: application of calcaneocuboid arch support to the left side.

3. Statistical Analysis

Receiver operating characteristic (ROC) curve analysis was performed using scikit-
learn, and the area under the curve (AUC) was calculated. The one-versus-one (OVO)
method was used to calculate accurate multi-class macro- and micro-average ROC AUC
values. The OVO method is a commonly used approach for solving multi-class imbal-
ance problems; this method transforms a multi-class problem into a set of two-class sub-
problems [25].

4. Results

In total, 838 patients (mean age, 47.7± 14.7 years; 323 men, 515 women) were included.
Regarding the foot posture index for the modified root technique, for the left foot, the
mean absolute error (MAE) and root mean square error (RMSE) of the validation dataset
for the developed model were 1.408 and 3.365, respectively (Table 1). For the right foot,
the MAE and RMSE of the validation dataset for the developed model were 1.601 and
3.549, respectively (Table 1). The accuracy of applying heel lift was 89.7%, and the macro-
and micro-average ROC AUC values were 0.961 and 0.949, respectively (Figure 3A). The
accuracy of applying entire lift was 94.8%, and the macro- and micro-average ROC AUC
values were 0.933 and 0.941, respectively (Figure 3B). The accuracy of applying lateral
wedge support was 72.2%, and the macro- and micro-average ROC AUC values were
0.804 and 0.826, respectively (Figure 3C). The accuracy of applying medial wedge support
was 98.4%, and the macro- and micro-average ROC AUC values were 0.863 and 0.792,
respectively (Figure 3D). The accuracy of applying calcaneocuboid arch support was 79.8%,
and the macro- and micro-average ROC AUC values were 0.837 and 0.827, respectively
(Figure 3E).

Figure 4 shows the correct classification and misclassification of the DNN models.
The model for the application of heel lift and entire lift correctly classified 226 and 239 of
252 cases, respectively, from the validation dataset. The model for the application of medial
and lateral wedge supports correctly classified 182 and 248 of 252 cases, respectively, from
the validation dataset. Lastly, the model for the application of calcaneocuboid arch support
correctly classified 201 of 252 cases from the validation dataset. It can be concluded that
the overall classification accuracy of the five models is good. However, the medial wedge
model (Figure 4D) has lower accuracy for classes 1 and 2 due to a small sample size of
patients in the validation data for those classes, resulting in inadequate learning.
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5. Discussion

In this study, we developed a deep-learning model for prescribing the appropriate
orthotic insole for patients with foot pain. Our developed model automatically determined
the foot posture index for the modified root technique and the necessity of heel lift, entire
lift, and lateral wedge, medial wedge, and calcaneocuboid arch supports. The MAE of the
foot posture index for the modified root technique in our model was 1.6. The micro-average
ROC AUC values of the models for determining the necessity of applying heel lift and
entire lift were >0.9, and those of lateral wedge, medial wedge, and calcaneocuboid arch
supports were 0.79–0.83. Considering that ROC AUC values ranging from 0.7 to 0.8 are
considered acceptable, those ranging from 0.8 to 0.9 are considered excellent, and those
>0.9 are considered outstanding. Therefore, these results indicate that the ability of our
developed model to automatically prescribe orthotic insole ranged from outstanding to
acceptable, which supports our proposition [26].

Our developed deep-learning models automatically determine the foot posture index
for the modified root technique and the necessity of heel lift, entire lift, and lateral wedge,
medial wedge, and calcaneocuboid arch supports. The modified root technique considers
forefoot-to-rearfoot structural problems and attempts to hold the rearfoot in its neutral
position while maintaining the appropriate forefoot-to-rearfoot relation [27–29]. This
technique modifies the ground reaction force around the subtalar joint axis [27–29]. The
foot posture index is the amount of twisting of the insole to place the rear foot in a neutral
position. Heel lift and entire lift are used when the right and left pelvic heights are
different [30,31]. In addition, when the side of the pelvic elevation is tilted anteriorly, a heel
lift is applied to the other side. When the side of pelvic elevation is not tilted anteriorly,
entire lift is applied. Lateral and medial wedge supports are applied to reduce varus and
valgus torques, respectively, during walking [14,15]. A calcaneocuboid arch support is used
when either side of the pelvis moves backward. A calcaneocuboid arch support is applied
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to the side on which the pelvis moves more backward than forward. These prescriptions
can be helpful for correcting the malalignment of the lower extremities, as they would
effectively reduce pain due to malalignment that occurs in any part of the leg, not only
limited to the foot.

When prescribing orthotic insoles, clinicians should consider all the data of the RCSP
and the static and dynamic states of the pelvis. Without a deep-learning model, clinicians
should prescribe orthotic insoles by considering all these results. Therefore, for the ap-
propriate prescription for patients with foot pain, a lot of experience in the field of foot
pain and orthotic insoles is necessary. Incorrect prescription leads to the application of
inappropriate insoles, which can aggravate patients’ foot pain. We used data on insole
prescriptions written by podiatrists with abundant experience in prescribing insoles. We
believe that the automatic prescription deep-learning model that we developed can relieve
the burden on clinicians of appropriately prescribing orthotic insoles.

The DNN model was trained using an artificial neural network structure based on the
neural network structure of the human brain [32]. A DNN is a powerful machine learning
algorithm that is implemented by stacking hidden layers of neural networks between the
input and output layers [20,21]. It attempts high-level abstraction by combining several
non-linear transformations [33]. Deep learning uses a large amount of data for training
and creating a model capable of processing new data [34]. It has been used to produce
advanced results in various fields, including computer vision, natural language processing,
voice recognition, and signal/voice processing [33]. The widely recognized benefits of
deep learning include its ability to identify interactions between multiple variables and
detect useful information in time series, clinical, and imaging data [35]. In particular,
deep learning is more useful for analyzing big data and detecting useful information from
images [35]. Deep learning can detect rules or relationships among large amounts of data
that cannot be found using traditional statistical analysis methods. The DNN detects the
correct mathematical manipulation to convert the input into output through a series of
hidden layers [20,21]. When input data are fed into a DNN, the input value is multiplied
by the weights at the nodes that comprise each layer, and the output data are generated
using an activation function [33].

Parameters such as learning rate, loss function, optimizer, number of epochs and
iterations, and batch size are varied by researchers and developers to generate a DNN. An
optimal model is determined by evaluating and comparing the accuracy and capacity of
each developed model [36,37]. Complex networks with multiple layers effectively represent
the complex nature of input and output variables [33]. This feature of DNNs enables the
analysis of large amounts of clinical data [36,37]. Multiple layers of a DNN appear to be
effective in determining the complex nature of orthotic insole prescription in patients with
foot pain.

The procedure for developing a deep-learning algorithm with a large amount of clinical
data as the input is as follows: First, the clinical data for deep learning are collected. The
clinical data are divided into input and target data and then arranged and saved as comma-
separated value files [38]. Programming languages such as Python and R and Python-based
deep-learning frameworks such as TensorFlow, PyTorch, and Keras are commonly used to
develop deep-learning algorithms [39]. The data, divided into input and target data, are
loaded onto the platform and converted into the NumPy array format for deep-learning
analysis [39]. Subsequently, the data are stacked in a column and standardized. The data
are then divided into training and test datasets, and a deep-learning model is trained [39].
The accuracy of the developed deep-learning model is assessed, and the results are usually
depicted by the ROC and AUC [39].

In conclusion, we developed DNN models that automatically prescribe orthotic insoles
in patients with foot pain. We demonstrated that their accuracies ranged from outstanding
to acceptable. However, for the application of our models in real clinical practice, the
accuracy of the prescription of orthotic insoles should be further increased. To increase
accuracy, more appropriate input and output data are required. In addition, to increase
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the generosity of the models, data or information on the prescription of insoles from more
clinicians or podiatrists should be used for the development of models. Finally, the clinical
data used to develop the deep-learning models, including RCSP, pelvic elevation, pelvic tilt,
and pelvic rotation, were measured manually and visually. However, their reliability and
validity have yet to be well-demonstrated. Therefore, a method or tool that can objectively
and accurately measure such data must be developed. Further studies are warranted to
address these limitations.
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