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Abstract: Free-breathing and ungated cardiac MRI is a challenging problem due to the cardiac motion
and respiration motion, which are not tracked. In this work, we propose an unsupervised deep
kernel method for reconstructing real-time free-breathing and ungated cardiac MRI from highly
undersampled k-t space measurements. We propose implementing the feature map and kernel
function in the kernel method using CNNs. The parameters of the CNNs are learned from specific-
subject data directly. Comparisons with state-of-the-art kernel methods show improved performance
of the proposed deep kernel method.
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1. Introduction

Cardiac magnetic resonance (CMR) imaging is an imaging modality that uses a strong
magnetic field and radio frequency to produce images of the heart. CMR imaging is
the golden standard for diagnosing and prognosis of cardiac disorders because CMR is
adaptable for both functional and anatomical assessment of a wide range of cardiovascular
diseases. Cardiac CINE imaging is an integral part of cardiac MR exams. Cardiac CINE
provides valuable indicators of abnormal structure and function of the heart. Cardiac
CINE studies are usually acquired by repeatedly imaging the heart at one slice location
throughout the cardiac cycle, and 10 to 30 cardiac phases are usually acquired for one slice.
Cardic CINE is usually done in a breath-hold fashion to minimize the effects of respiratory
motion. A challenge with the breath-hold cardiac CINE is the difficulty in acquiring
data from subjects who cannot comply with multiple long breath-holds. To overcome
the long breath-hold duration, compressed sensing methods [1–4] together with parallel
imaging technique [5–7] are used in clinical practice to reduce the breath-hold duration for
cardiac CINE. Recently, deep learning methods [8–10] have emerged as powerful options
to accelerate cardiac cine, with excellent performance. Despite these advances, we still
need to note that there are a few patients’ groups (e.g., patients with lung diseases, infant
patients and etc.) who cannot comply with breath-hold acquisitions.

During the last decade, several authors have introduced free-breathing and ungated
cardiac MR imaging to deal with the challenge of breath-holding using self-gating and/or
manifold methods. Self-gating methods [11–13] employ the k-space navigators to estimate
the motions (cardiac and respiratory motions), followed by k-space data binning and
reconstruction of binned data. Instead of using self-gating, manifold approaches [14–17]
perform soft-gating based on the k-space navigators and are emerging as an alternative
to self-gating. Moreover, instead of using binning and then reconstructing only a few
cardiac and respiratory phases, manifold approaches usually produce real-time cardiac
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imaging [15,18]. This leads to the fact that the manifold approaches are often associated
with high memory demand. Here, real-time images refer to high spatial resolution images
using the data acquired continuously without binning.

To resolve the issue of high memory demand from manifold approaches and to
promote a computationally efficient framework, kernel methods [19] have been introduced.
The basic idea of kernel methods is to first embed the original data in the original space into
a suitable feature space and then use algorithms to discover the relations for the embedded
data. The solution of kernel methods usually comprises two modules: (1) Embedding
the data in the original space into the feature space using some non-linear feature maps
and (2) Solving (linear) equations to discover the linear patterns in the feature space.
The advantage of kernel methods comes from the better data representation using features
that are obtained by non-linear operations. Because of the advantages of kernel methods,
they are adapted for MRI recovery [20–22]. However, in the existing kernel methods,
the non-linear feature maps and the kernels (defined by the inner product of features) are
usually chosen empirically, and the parameters in the associated feature maps and/or the
kernel functions are manually tuned based on the problems at hand. This often leads to the
sub-optimal performance of the kernel methods.

In this work, we show that the two modules in the kernel representation can be
realized by the cascade of two convolutional neural networks (CNN). CNN is a special
type of artificial neural network that uses the convolution operator instead of general
matrix multiplication in the layers of the neural networks. The CNNs in this work are then
learned based on the available undersampled data. The main advantage of the proposed
kernel method using CNN is the elimination of the manual choice for the feature maps
and the kernels. Deep CNN is known to be able to provide better feature extraction [23].
In this work, we leverage the power of the CNN for feature extraction to implement the
feature map in the proposed kernel method as a CNN. The CNN are then learned from
the undersampled data, and hence no manual selection is needed. The inner products
of the features, which are the kernels, can also be implemented using a one-layer CNN.
This indicates the data representation in the proposed kernel method (linear combination
of the kernels) can be implemented using the cascade of two CNNs, followed by a fully
connected layer. Another advantage of the proposed deep kernel method is that this
scheme is totally unsupervised. Unlike most of the current CNN-based MRI reconstruction
schemes [24–26], which require a large amount of fully-sampled training data to train the
network, the proposed scheme requires only undersampled data. We should note that
in the free-breathing and ungated cardiac MRI setting, fully-sampled data is usually not
accessible. The proposed deep kernel method is subject-specific, and hence the subject-
specific CNN parameters are learned directly from the undersampled data based on the
specific subject.

2. Background
2.1. Free-Breathing and Ungated Cardiac MRI Recovery

One of the main objectives in free-breathing and ungated cardiac MRI is to get high
spatio-temporal resolution images from undersampled k-t space measurements. The main
focus of this work is to reconstruct the images x1, · · · , xM in the time series from the under-
sampled multi-coil measurements. The images xi, i = 1, · · · , M are usually represented by
the Casorati matrix

X = [x1, · · · , xM].

The MR images are acquired by the multi-coil measurements

bi = Ai(xi) + ni,

where ni is a zero-mean Gaussian noise that is introduced into the measurements bi during
the data acquisition process. The forward operator Ai is the measurements operator, which
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is time-dependent. Ai evaluates the multi-coil k-space measurements of the image frame xi
corresponding to the time point i, based on the k-space trajectory of data acquisition.

2.2. Kernel Representation for Free-Breathing and Ungated Cardiac MRI Recovery

The kernel representation [19] states that the intensity value xm at location m in the
image frame xi can be compactly represented as the linear combination of kernels:

xm = ∑
n∈Nm

αnK(xm, xn), (1)

where Nm is a user pre-defined neighborhood of m and the kernel function [27] K(xm, xn)
is the inner product of two features:

K(xm, xn) =< ϕm, ϕn > .

The notation ϕ is used to denote the feature vector, which is obtained at each image
location from the image prior Y. αn in (1) is the kernel coefficients.

Based on (1), we can use the following matrix form to present the free-breathing
cardiac MR images in the time series:

xi = Kαi, i = 1, · · · , M.

Here K is the kernel matrix, and αi is the frame-based kernel coefficients.

3. Deep Kernel Method for Dynamic MRI Recovery
3.1. Feature Extraction Using CNN

In kernel representation (1), one of the most important pieces is the feature vector ϕ.
The feature vector ϕ is obtained using the feature extraction operator Φ, which applies to
the image prior to Y. Specifically, in the free-breathing and ungated cardiac MRI setting,
we assume the prior Y has M prior images AH

i bi, i = 1, · · · , M. Then the feature operator
Φ is applied on the M prior images to get the feature vector ϕ with pre-determined length
` for each pixel location. In this work, we choose ` = 64. We optimize ` on a single dataset
such that the reconstructions are visually optimal. It is then kept fixed for the remaining
datasets. Mathematically speaking, we have

ϕ = Φ(Y).

In classical machine learning, popular feature extraction techniques include princi-
pal components analysis (PCA) [28], independent component analysis (ICA) [29], and t-
distributed stochastic neighbor embedding (t-SNE) [30]. Readers may refer to the references
listed for the details of these techniques.

Deep CNN now provides a better way for automatic feature extraction. In this work,
we implement the feature extraction operator Φ as a deep CNN with network parameters
θ. We denote the feature extraction network as Φθ . The structure of the feature extraction
network is illustrated in the upper part of Figure 1.

3.2. Deep Kernel Representation

In kernel representation, the choice of the kernel function is important after determin-
ing the non-linear feature map. The kernel function is an inner product of the features.
Once it is a well-defined inner product, we can get a valid kernel function. In most of the
current kernel methods, the kernel functions are chosen empirically. Popular choices of the
kernel functions include the radial Gaussian kernel [31]:

Km,n = exp
(
−||ϕm − ϕn||2

2σ2

)
,
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and the Dirichlet kernel with bandwidth d [32]:

Km,n = ∑
k∈Zn ,||k||≤d

exp (j2πkT(ϕm − ϕn)).

Figure 1. Illustration of the deep kernel representation. The upper part shows the feature extraction
CNN. A U-net without skip connection is used to implement the feature extraction operator in
this work. The lower part gives the illustration of the deep kernel representation. The feature
maps, which are obtained using the CNN Φθ , are first reshaped into the size (1×)nx · ny × `, where
nx × ny denotes the image size. Then a convolutional layer is used to obtain the kernel matrix K.
The final reconstructed images in the time series are obtained using a fully-connect (FC) layer and
images reshape.

Besides the empirical choice of the kernel functions, the parameters in the kernel
functions, such as σ in the radial Gaussian kernel and d in the Dirichlet kernel, need manual
tuning. This significantly limits the performance of the kernel methods. In this work, we
implement the kernel function as a convolutional layer. In other word, we define

Km,n = ϕm ∗ ϕ̃n, (2)

where ϕ̃n is the intrinsic features in the convolutional layer. ϕ̃n is learned directly from the
data. We use the word “intrinsic features” to distinguish the features ϕm learned fromAHb
using the feature extraction CNN as described in Section 3.1. The convolution of the feature
ϕm with the learned intrinsic feature ϕ̃n is an inner product [33]. So we have a valid kernel
function. The advantage of implementing the kernel function as a convolutional layer is
the elimination of the empirical choice of the kernel function and the manual tuning of the
kernel parameters. Once we have the kernel matrix K = [Km,n] with Km,n defined as (2),
we can have the following image representation:

xi = Kαi, i = 1, · · · , M.

The multiplication Kαi can be implemented using a linear layer and hence αi, i = 1, · · · , M
can be learned from the data.

With the aforementioned description of kernel representation using CNNs, we can
have the following deep kernel representation for the free-breathing and ungated cardiac
MRI representation:

xi =
(

Φθ(AHb) ∗ ϕ̃
)

αi, i = 1, · · · , M.

Here Φθ is the feature extraction network with parameters θ, ϕ̃ = [ϕ̃n] is the features in
the one-layer CNN for the kernel matrix calculation, and αi is the parameters in the linear
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layer. The parameters θ,ϕ̃, αi are learned using back-propagation [34]. The illustration of
the deep kernel representation is depicted in Figure 1.

3.3. Free-Breathing and Ungated Cardiac MRI Recovery Using Deep Kernel Representation

With the deep kernel representation, we can use the following minimization criterion
to get the parameters θ,ϕ̃, and α = [αi] for free-breathing and ungated cardiac MRI
reconstruction:

C(θ,ϕ̃, α) =
M

∑
i=1

||Ai

[
(Φθ(AHb) ∗ ϕ̃)αi

]
− bi||2︸ ︷︷ ︸

data term

+ λ · TV[(Φθ(AHb) ∗ ϕ̃)αi]︸ ︷︷ ︸
image regularization

. (3)

Here TV is the total variation regularization, and λ is chosen to be 0.01 in this work.
The parameters θ,ϕ̃, and α are learned in an unsupervised fashion from only the

measured k-t space data of the specific patient. We use ADAM optimization for the learning.

4. Experiments Setup
4.1. Acquisition Scheme and Pre-Processing of Data

In this work, we use the short-axis orientation without a contrast agent to show-
case the results. Five subjects were involved in this study, and the public information
of these five subjects, including the average heart rate, are shown in Table 1. All the
data were acquired on a 3T MR750W scanner (GE Healthcare, Waukesha, WI, USA).
The data were acquired using a 2D gradient echo (GRE) sequence with golden angle spiral
readouts in a free-breathing and ungated fashion. Some sequence parameters include:
FOV = 380 mm × 380 mm; TR = 8 ms; flip angle = 14◦; slice thickness = 8 mm; readout
bandwidth = 500 Hz. The reconstruction matrix size is 340× 340. All the data was acquired
using the AIR coil developed by GE HealthCare (Waukesha, WI, USA). We used an in-house
algorithm to pre-select the coils that provide the best signal-to-noise ratio in the region of
interest. We then estimated the coil sensitivity maps based on these selected channels using
ESPIRiT [35] and assumed them to be constant over time. For each slice, a total number
of 950 spirals were acquired. During the reconstruction, the first 200 spirals were deleted.
For the rest of the 750 spirals, we bin every five spirals corresponding to 40 ms temporal
resolution for each frame in the time series.

Table 1. Public information of the five subjects involved in this work.

Sex Age Health Condition Avg. Heart Rate (bpm)

Subject 1 F 29 Healthy 64

Subject 2 M 51 Healthy 71

Subject 3 M 20 Lower LVEF and RVEF 88

Subject 4 F 26 Healthy 65

Subject 5 F 24 Lower heart rate; Lower RVEF 54

For the comparison purpose, the conventional 2D photoplethysmography (PPG)
gated breath-hold images using the balanced steady-state free precession (bSSFP) se-
quence were also acquired for all the slices. PPG is a simple optical technique used
to detect volumetric changes in blood in peripheral circulation and hence can be used
as one of the choices for monitoring the cardiac cycle. Balanced steady-state free pre-
cession sequence is one type of gradient echo pulse sequence in which a steady, resid-
ual transverse magnetization is maintained between successive cycles. For each sub-
ject, the breath-hold images of a middle slice were also acquired using a fast gradient
echo (FGRE) sequence for comparison. The acquisition scheme for FGRE is Cartesian,
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while the spiral GRE sequence in the proposed acquisition scheme uses the spiral trajec-
tories, which is non-Cartesian. The parameters for the breath-hold bSSFP sequence were:
FOV = 380 mm × 380 mm; spatial resolution = 0.74 mm × 0.74 mm; TR/TE = 3.5/1.5 ms;
flip angle = 49◦; slice thickness = 8 mm; readout bandwidth = 488 Hz. The parameters
for the breath-hold FGRE sequence were: FOV = 380 mm × 380 mm; spatial resolution =
1.48 mm × 1.48 mm; TR/TE = 5.1/2.8 ms; flip angle = 15◦; slice thickness = 8 mm; readout
bandwidth = 488 Hz.

4.2. State-of-the-Art Method for Comparison

We first compare the reconstructed free-breathing and ungated images with the fully-
sampled breath-hold images. Two medical experts were required for consensus scoring
for the image quality of the reconstructed free-breathing images and the fully-sampled
breath-hold images based on the scoring criteria scales from 1 to 4 (1—non-diagnosable;
2—diagnosable with average image quality; 3—diagnosable with adequate image quality;
4—excellent image quality). Except for the consensus image quality scoring, we also
compare the left ventricular ejection fraction (LVEF) and the right ventricular ejection
fraction (RVEF) obtained from the breath-hold images and the free-breathing images.
The LVEF and RVEF are defined as

LVEF =
LVEDV− LVESV

LVEDV
× 100%, RVEF =

RVEDV− RVESV
RVEDV

× 100%.

Here EDV and ESV denote the end-diastolic volume and end-systolic volume, respec-
tively. We note that in some cases, the basal slices are missing, and the calculated LVEF and
RVEF might not represent the accurate LVEF and RVEF of the subjects.

For the reconstruction of free-breathing and ungated cardiac MRI, we compare the
proposed deep kernel reconstruction with a state-of-the-art kernel reconstruction method
“SToRM”, which was proposed in [18]. The SToRM model exploits the non-linear structure
of the dynamic data to estimate the kernel matrix based on a kernel low-rank regularization
problem. The kernel matrix is then used to solve the images to be reconstructed. The biggest
difference between SToRM and the proposed deep kernel scheme is in the way of calculating
the kernel matrix. SToRM relies on a kernel low-rank regularization problem to solve the
kernel matrix, while the proposed deep kernel scheme uses CNNs to output the kernel
matrix. We note that the SToRM approach yields comparable or improved performance to
state-of-the-art self-gated methods.

The quantitative comparisons between the proposed deep kernel method and SToRM
are made using the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). We
normalize the values for the images for the SNR and CNR calculation. The definitions of
SNR and CNR are as follows:

• The SNR is calculated as

SNR = 20 log(
µs

σn
),

where µs is the mean intensity value of the user-defined region of interest, and σn is
the standard deviation of the intensity value of a chosen noise region. A higher SNR
usually means better image quality. The unit of SNR is dB.

• The CNR is calculated as

CNR = 20 log(
|µA − µB|

σn
),

where µA and µB are the mean intensity value of two regions within the region of
interest and σn is the standard deviation of the intensity value of a chosen noise region.
A higher CNR usually means better image quality. The unit of CNR is dB.
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5. Results
5.1. Free-Breathing and Ungated Cardiac MRI Using Deep Kernel Method

We use the proposed deep kernel method to reconstruct the free-breathing and un-
gated cardiac MRI. The method was implemented using the PyTorch library. The GPU
acceleration of the non-uniform FFT and non-uniform IFFT was realized using the TorchKb-
Nufft package [36]. The reconstructions were run on a machine with an Intel Xeon CPU at
2.40 GHz and a Tesla V100 32 GB GPU.

The output of each image has two channels, which correspond to the real and imagi-
nary parts of the MR image. For the convolutional layers which have activation functions,
we use Leaky ReLU with slope 0.2. Thirty-seven slices from five subjects were recon-
structed in this work. Among the five subjects, we collected the basal slices for two subjects.
The deep kernel method is also able to reconstruct the basal slices. The reconstructions of
eight slices from Subject #2 were shown in Figure 2. We have also shown the comparison
between the bSSFP Cartesian real-time images with acceleration factor 5 and the GRE spiral
real-time images reconstructed using the deep kernel method in Figure 3.

Figure 2. Showcase of the reconstruction of free-breathing and ungated cardiac MRI using the
proposed deep kernel method. The eight slices are from Subject #2. The first row shows the end-
diastolic phase, and the second row is the end-systolic phase.

Figure 3. Comparison between the bSSFP Cartesian real-time images with acceleration factor 5 and
the GRE spiral real-time images reconstructed using the deep kernel method. The three slices (one
basal slice, one mid slice, and one apex slice) are from Subject #3. The first row shows the bSSFP
Cartesian real-time images, and the second row is the GRE spiral real-time images.

5.2. Comparisons with Fully-Sampled Breath-Hold Images

In this section, we show the results of the comparison between the reconstructed
free-breathing images and the fully-sampled breath-hold images.

For the data acquisition, except for the highly undersampled k-space data for all the
slices from the five subjects, we also acquired the fully-sampled breath-hold data for all the
corresponding slices using the clinical bSSFP sequence. Moreover, we also acquired the
fully-sampled breath-hold images for one middle slice for each subject using the commercial
FGRE sequence.

In Figure 4, we showed the visual comparison of the reconstructed free-breathing
images and the fully-sampled breath-hold images acquired using the bSSFP sequence.
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The slices shown in Figure 4 were from Subject #4. Figure 5 was the visual comparison of
the reconstructed free-breathing images and the fully-sampled breath-hold images acquired
using the FGRE sequence. We reconstructed the whole time series, and we randomly chose
a cardiac cycle (from end-systolic to end-diastolic) for comparison with the breath-hold cine.

Figure 4. Visual comparison of the reconstructed free-breathing images and the fully-sampled breath-
hold images. End-systolic and end-diastolic phases from six slices are shown in the figure. The six
slices are from Subject #4. We note that the free-breathing images are acquired using the GRE sequence
and the fully-sampled breath-hold images are acquired using the bSSFP sequence. This results in
different contrast between the two types of the images.

Figure 5. Visual comparison of the reconstructed free-breathing images and the fully-sampled breath-
hold images acquired using FGRE sequence. For each subject, we acquired fully-sampled breath-hold
images for one middle slice using the FGRE sequence. End-systolic and end-diastolic phases from
two slices from two subjects are shown in the figure.

Quantitative comparisons between the free-breathing images and the breath-hold
images were performed based on image quality assessment by experts, LVEF, and RVEF.

Figure 6 showed the results of consensus image quality scoring done in a blinded
fashion by two medical experts. From the scores, we can see that the fully-sampled
breath-hold images acquired using the bSSFP have the highest image quality. While we
do not see a big difference in the image quality for the free-breathing images and the
fully-sampled breath-hold images acquired using the FGRE sequence (average score of 2.8
and 2.9, respectively).



Appl. Sci. 2023, 13, 2281 9 of 13

Figure 6. Comparison of image quality of the free-breathing images and breath-hold images. Image
quality assessment is done in a blinded fashion by two medical experts. We reconstructed all the
short-axis slices acquired from five subjects. We also acquired the fully-sampled breath-hold images
for all the slices using the bSSFP sequence. For each subject, we scanned one middle slice using the
product FGRE sequence provided by GE HealthCare. The free-breathing images from all the slices
received an average score of 2.7, and the clinical fully-sampled images using the bSSFP sequence got
an average score of 3.6. The fully-sampled breath-hold images acquired using the FGRE sequence
received an average score of 2.9, and the free-breathing images corresponding to these five slices got
an average score of 2.8. From which we can see that the reconstructed free-breathing images have
similar image quality as the fully-sampled breath-hold images acquired using the product FGRE
sequence, even though the images were highly undersampled and acquired in a free-breathing and
ungated fashion.

Table 2 gave the results of the LVEF and RVEF comparison. The LVEF and RVEF
calculations for the fully-sampled images were done using commercial software (Circle cv42,
Calgary, AB, Canada). Automatic segmentation was first performed for the fully-sampled
images using the software, and we then manually corrected the segmentation. The LVEF
and RVEF calculations for the free-breathing images were done using Matlab 2019a. We
manually drew the contours for the free-breathing images to calculate the EF. Since bulk
motions were involved in the data acquisition for Subject #1 and we did not have exactly
matching breath-hold and free-breathing slices. Hence we skipped Subject #1 for LVEF
and RVEF comparison. We also reported the corresponding left ventricular end-diastolic
volume (LVEDV), left ventricular end-systolic volume (LVESV), right ventricular end-
diastolic volume (RVEDV), and right ventricular end-systolic volume (RVESV). From the
statistical analysis, we can see that there is no significant difference between the LVEF and
RVEF obtained from the fully-sampled breath-hold images and the highly undersampled
free-breathing images.

5.3. Comparisons with Current Kernel Method

In this part, we compare the reconstructed images using both the proposed deep
kernel method and the SToRM method, which is a state-of-the-art kernel method.

Figure 7 showed the visual comparison of the reconstructed images using the two
methods. The end-diastolic and the end-systolic phases from two slices were shown
in the figure. From the figures, we can see that the proposed deep kernel scheme can
reduce the blurring and the motion artifacts in the reconstructed images compared to the
images obtained from the SToRM method. This enables us to see more heart details in the
reconstructed images. For example, we can see the papillary muscles and the RV free-wall
more clearly in the reconstructed images using the deep kernel method.
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Table 2. LVEF and RVEF comparison. Since bulk motions were introduced during the data acquisition
of subject #1 and we do not have the matching breath-hold and free-breathing slices for this subject.
Therefore, the LVEF and RVEF are compared based on only four subjects. The LVEF calculated from
the free-breathing and ungated images and the LVEF calculated from the fully-sampled breath-hold
images have a p-value of 0.295. The RVEF calculated from the free-breathing and ungated images and
the RVEF calculated from the fully-sampled breath-hold images have a p-value of 0.184. The p-values
indicate that the LVEF and RVEF got from the free-breathing images and breath-hold images have no
significant difference.

Subject 2 Subject 3 Subject 4 Subject 5

LVEF Free-breathing 55.9% 47.3% 62.6% 59.5%
breath-hold 56.3% 41.4% 61.7% 58.8%

RVEF Free-breathing 56.5% 29.6% 49.0% 39.4%
breath-hold 55.8% 27.8% 49.5% 37.0%

LVEDV Free-breathing 136 169 123 126
breath-hold 142 157 115 119

LVESV Free-breathing 60 89 46 51
breath-hold 62 92 44 49

RVEDV Free-breathing 170 145 102 99
breath-hold 156 151 97 81

RVESV Free-breathing 74 102 52 60
breath-hold 69 109 49 51

Figure 7. Comparison of the reconstructions from the proposed method and the SToRM method. We
showed the end-diastolic and end-systolic phases from two slices acquired from Subject #1. From the
images, we can see that the proposed reconstruction scheme can provide images with sharper edges,
and the papillary muscles are more visible (illustrated by the red arrows in the images). Furthermore,
from the end-systolic images, we can see that the proposed scheme provides reduced motion artifacts,
and the RV free-wall is more clear (illustrated by the yellow arrows in the images).

The improved image quality from the proposed method was also confirmed by the
quantitative results, which were shown in Figure 8. The SNR and CNR calculations were
done using Matlab 2019a. We manually chose the regions (region of interest and the noise
region) for the calculation. For the SNR calculation, we choose a 15× 15 square region in
the left ventricle as the region of interest and a 25× 25 square region out of the body as
the noise region. For the CNR calculation, we choose two 10× 10 square regions in the left
ventricle as the regions of interest and a 25× 25 square region out of the body as the noise
region. From the quantitative results, we can see that the reconstruction from the proposed
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method can provide about 2 dB improvement in SNR and about 1.5 dB improvement in
CNR compared to the competing SToRM method.

Figure 8. SNR and CNR comparison of the images reconstructed from the proposed scheme and the
SToRM method. The average SNR and CNR of the images reconstructed from the proposed method
are 37.99 dB and 26.28 dB. While the average SNR and CNR of the images reconstructed from SToRM
are 36.01 dB and 24.89 dB. From the quantitative comparison, we can see that the proposed deep
kernel method can provide improved image quality compared to the existing kernel method.

6. Discussion

In this work, we proposed a deep kernel method for the reconstruction of free-
breathing and ungated cardiac MRI. A GRE sequence with spiral readouts is implemented
to acquire the highly undersampled free-breathing and ungated data.

The non-Cartesian spiral k-space trajectories with golden angle increment are used
for data acquisition because it is more robust to motion effects compared to the Cartesian
acquisition. Furthermore, the long spiral trajectories enable more data samples in the center
k-space region, and the longer repetition time from the spiral trajectories offers enhanced
inflow contrast between the myocardium and blood pool. Another advantage of the spiral
trajectories is that they are less sensitive to the eddy-current effects compared to other
non-Cartesian trajectories, such as radial trajectories. Hence we did not perform k-space
trajectories correction in this work. In addition to the spiral k-space trajectories, the spoiled
GRE sequence for the data acquisition in this work does not suffer from banding artifacts,
which are usually seen in the images acquired using the bSSFP sequence without shimming.

Even the spiral GRE sequence has a few advantages, we can see from the image quality
assessment done by experts that the images acquired from the bSSFP sequence have the
best image quality. Indeed, the bSSFP sequence is widely used in clinical cardiac MRI due
to the short acquisition time and high contrast between the blood pool and myocardium.
So one direction in the future is to design a better non-Cartesian sequence based on the
bSSFP sequence for free-breathing and ungated cardiac MRI to get further improved image
quality with even shorter acquisition time.

Five volunteers were recruited for this study: three of them are healthy volunteers,
and two of them have heart problems. In the future, we plan to have more subjects with
different health conditions to study the feasibility of real-time free-breathing and ungated
cardiac MRI using the proposed deep kernel framework.

We demonstrate the deep kernel framework in free-breathing and ungated real-time
cardiac MRI reconstruction. We note that we may also apply the framework to free-
breathing and ungated first-pass perfusion, T1 mapping, T2 mapping, and late gadolinium
enhancement imaging. We will investigate the application of the deep kernel method in
different applications in the future work.
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7. Conclusions

In this work, a deep kernel method was introduced for real-time free-breathing and
ungated cardiac MRI reconstruction. We implemented the deep kernel method using a
cascade of two CNNs. We realized the feature extraction operator using a deep CNN, and a
one-layer CNN is used for the kernel matrix calculation. The benefits of the proposed deep
kernel methods are the elimination of the manual choices for the feature map and the kernel
function, as well as the elimination of the manual tuning of the parameters in the kernel
functions in the traditional kernel methods. This results in the improved performance of the
deep kernel method. Moreover, the proposed scheme is unsupervised, which ideally fits the
settings of free-breathing dynamic MRI. Comparisons with the competing state-of-the-art
kernel method show improved reconstructions using the proposed deep kernel method.

Author Contributions: Methodology: Q.Z.; data acquisition: Q.Z. and A.H.A.; images rating: S.D.
and T.H.; statistical analysis: Q.Z. and T.H.; writing—original draft preparation: Q.Z. and T.H.;
writing—review and editing: Q.Z., S.D. and T.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was conducted on an MRI instrument funded by NIH 1S10OD025025-01.

Institutional Review Board Statement: The Institutional Review Board at the University of Iowa
approved the acquisition of the data.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data has not been made publicly available due to the confidentiality of
the data.

Acknowledgments: Q.Z. would like to thank the Magnetic Resonance Research Facility (MRRF) at
the University of Iowa for providing the resources for data acquisition, and the University of Iowa
Research Services for providing the GPU and HPC resources for running the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med.

2007, 58, 1182–1195. [CrossRef]
2. Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed sensing MRI. IEEE Signal Process. Mag. 2008, 25, 72–82. [CrossRef]
3. Gamper, U.; Boesiger, P.; Kozerke, S. Compressed sensing in dynamic MRI. Magn. Reson. Med. 2008, 59, 365–373. [CrossRef]

[PubMed]
4. Haldar, J.P.; Hernando, D.; Liang, Z.P. Compressed-sensing MRI with random encoding. IEEE Trans. Med. Imaging 2010,

30, 893–903. [CrossRef] [PubMed]
5. Deshmane, A.; Gulani, V.; Griswold, M.A.; Seiberlich, N. Parallel MR imaging. J. Magn. Reson. Imaging 2012, 36, 55–72. [CrossRef]

[PubMed]
6. Niendorf, T.; Sodickson, D.K. Parallel imaging in cardiovascular MRI: Methods and applications. NMR Biomed. 2006, 19, 325–341.

[CrossRef]
7. Baert, A. Parallel Imaging in Clinical MR Applications; Springer: Berlin/Heidelberg, Germany, 2007.
8. Qin, C.; Schlemper, J.; Caballero, J.; Price, A.N.; Hajnal, J.V.; Rueckert, D. Convolutional recurrent neural networks for dynamic

MR image reconstruction. IEEE Trans. Med. Imaging 2018, 38, 280–290. [CrossRef]
9. Küstner, T.; Fuin, N.; Hammernik, K.; Bustin, A.; Qi, H.; Hajhosseiny, R.; Masci, P.G.; Neji, R.; Rueckert, D.; Botnar, R.M.;

et al. CINENet: Deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal
convolutions. Sci. Rep. 2020, 10, 13710. [CrossRef]

10. Sandino, C.M.; Lai, P.; Vasanawala, S.S.; Cheng, J.Y. Accelerating cardiac cine MRI using a deep learning-based ESPIRiT
reconstruction. Magn. Reson. Med. 2021, 85, 152–167. [CrossRef]

11. Feng, L.; Grimm, R.; Block, K.T.; Chandarana, H.; Kim, S.; Xu, J.; Axel, L.; Sodickson, D.K.; Otazo, R. Golden-angle radial sparse
parallel MRI: Combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible
dynamic volumetric MRI. Magn. Reson. Med. 2014, 72, 707–717. [CrossRef]

12. Feng, L.; Axel, L.; Chandarana, H.; Block, K.T.; Sodickson, D.K.; Otazo, R. XD-GRASP: Golden-angle radial MRI with reconstruc-
tion of extra motion-state dimensions using compressed sensing. Magn. Reson. Med. 2016, 75, 775–788. [CrossRef]

http://doi.org/10.1002/mrm.21391
http://dx.doi.org/10.1109/MSP.2007.914728
http://dx.doi.org/10.1002/mrm.21477
http://www.ncbi.nlm.nih.gov/pubmed/18228595
http://dx.doi.org/10.1109/TMI.2010.2085084
http://www.ncbi.nlm.nih.gov/pubmed/20937579
http://dx.doi.org/10.1002/jmri.23639
http://www.ncbi.nlm.nih.gov/pubmed/22696125
http://dx.doi.org/10.1002/nbm.1051
http://dx.doi.org/10.1109/TMI.2018.2863670
http://dx.doi.org/10.1038/s41598-020-70551-8
http://dx.doi.org/10.1002/mrm.28420
http://dx.doi.org/10.1002/mrm.24980
http://dx.doi.org/10.1002/mrm.25665


Appl. Sci. 2023, 13, 2281 13 of 13

13. Deng, Z.; Pang, J.; Yang, W.; Yue, Y.; Sharif, B.; Tuli, R.; Li, D.; Fraass, B.; Fan, Z. Four-dimensional MRI using three-dimensional
radial sampling with respiratory self-gating to characterize temporal phase-resolved respiratory motion in the abdomen. Magn.
Reson. Med. 2016, 75, 1574–1585. [CrossRef] [PubMed]

14. Usman, M.; Atkinson, D.; Kolbitsch, C.; Schaeffter, T.; Prieto, C. Manifold learning based ECG-free free-breathing cardiac CINE
MRI. J. Magn. Reson. Imaging 2015, 41, 1521–1527. [CrossRef] [PubMed]

15. Shetty, G.N.; Slavakis, K.; Bose, A.; Nakarmi, U.; Scutari, G.; Ying, L. Bi-linear modeling of data manifolds for dynamic-MRI
recovery. IEEE Trans. Med. Imaging 2019, 39, 688–702. [CrossRef]

16. Zou, Q.; Ahmed, A.H.; Nagpal, P.; Kruger, S.; Jacob, M. Dynamic imaging using a deep generative SToRM (Gen-SToRM) model.
IEEE Trans. Med. Imaging 2021, 40, 3102–3112. [CrossRef] [PubMed]

17. Zou, Q.; Ahmed, A.H.; Nagpal, P.; Priya, S.; Schulte, R.F.; Jacob, M. Variational manifold learning from incomplete data:
Application to multi-slice dynamic MRI. IEEE Trans. Med. Imaging 2022, 41, 3552–3561. [CrossRef] [PubMed]

18. Ahmed, A.H.; Zhou, R.; Yang, Y.; Nagpal, P.; Salerno, M.; Jacob, M. Free-breathing and ungated dynamic mri using navigator-less
spiral storm. IEEE Trans. Med. Imaging 2020, 39, 3933–3943. [CrossRef] [PubMed]

19. Schölkopf, B.; Smola, A.J.; Bach, F. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT
Press: Cambridge, MA, USA, 2002.

20. Nakarmi, U.; Wang, Y.; Lyu, J.; Liang, D.; Ying, L. A kernel-based low-rank (KLR) model for low-dimensional manifold recovery
in highly accelerated dynamic MRI. IEEE Trans. Med. Imaging 2017, 36, 2297–2307. [CrossRef]

21. Poddar, S.; Jacob, M. Recovery of noisy points on bandlimited surfaces: Kernel methods re-explained. In Proceedings of the 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 4024–4028.

22. Arif, O.; Afzal, H.; Abbas, H.; Amjad, M.F.; Wan, J.; Nawaz, R. Accelerated dynamic MRI using kernel-based low rank constraint.
J. Med. Syst. 2019, 43, 271. [CrossRef]

23. Garcia-Gasulla, D.; Parés, F.; Vilalta, A.; Moreno, J.; Ayguadé, E.; Labarta, J.; Cortés, U.; Suzumura, T. On the behavior of
convolutional nets for feature extraction. J. Artif. Intell. Res. 2018, 61, 563–592. [CrossRef]

24. Han, Y.; Yoo, J.; Kim, H.H.; Shin, H.J.; Sung, K.; Ye, J.C. Deep learning with domain adaptation for accelerated projection-
reconstruction MR. Magn. Reson. Med. 2018, 80, 1189–1205. [CrossRef] [PubMed]

25. Aggarwal, H.K.; Mani, M.P.; Jacob, M. MoDL: Model-based deep learning architecture for inverse problems. IEEE Trans. Med
Imaging 2018, 38, 394–405. [CrossRef] [PubMed]

26. Lee, D.; Yoo, J.; Tak, S.; Ye, J.C. Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans.
Biomed. Eng. 2018, 65, 1985–1995. [CrossRef]

27. Li, Z.; Li, C. Selection of kernel function for least squares support vector machines in downburst wind speed forecasting. In
Proceedings of the 2018 11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 8–9
December 2018; IEEE: Piscataway, NJ, USA, 2018; Volume 2, pp. 337–341.

28. Dunteman, G.H. Principal Components Analysis; Sage: Southend Oaks, CA, USA, 1989.
29. Stone, J.V. Independent Component Analysis: A Tutorial Introduction; MIT Press: Cambridge, MA, USA, 2004.
30. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
31. Fasshauer, G.E.; McCourt, M.J. Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 2012,

34, A737–A762. [CrossRef]
32. Zou, Q.; Jacob, M. Recovery of surfaces and functions in high dimensions: Sampling theory and links to neural networks. SIAM

J. Imaging Sci. 2021, 14, 580–619. [CrossRef]
33. Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; Shlens, J. Stand-alone self-attention in vision models. Adv.

Neural Inf. Process. Syst. 2019, 32.
34. LeCun, Y.; Touresky, D.; Hinton, G.; Sejnowski, T. A theoretical framework for back-propagation. In Proceedings of the 1988

Connectionist Models Summer School, Pittsburgh, PA, USA, 17–26 June 1988; Volume 1, pp. 21–28.
35. Uecker, M.; Lai, P.; Murphy, M.J.; Virtue, P.; Elad, M.; Pauly, J.M.; Vasanawala, S.S.; Lustig, M. ESPIRiT—An eigenvalue approach

to autocalibrating parallel MRI: Where SENSE meets GRAPPA. Magn. Reson. Med. 2014, 71, 990–1001. [CrossRef]
36. Muckley, M.J.; Stern, R.; Murrell, T.; Knoll, F. TorchKbNufft: A high-level, hardware-agnostic non-uniform fast Fourier transform.

In Proceedings of the ISMRM Workshop on Data Sampling & Image Reconstruction, Sedona, AZ, USA, 26–29 January 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/mrm.25753
http://www.ncbi.nlm.nih.gov/pubmed/25981762
http://dx.doi.org/10.1002/jmri.24731
http://www.ncbi.nlm.nih.gov/pubmed/25124545
http://dx.doi.org/10.1109/TMI.2019.2934125
http://dx.doi.org/10.1109/TMI.2021.3065948
http://www.ncbi.nlm.nih.gov/pubmed/33720831
http://dx.doi.org/10.1109/TMI.2022.3189905
http://www.ncbi.nlm.nih.gov/pubmed/35816534
http://dx.doi.org/10.1109/TMI.2020.3008329
http://www.ncbi.nlm.nih.gov/pubmed/32746136
http://dx.doi.org/10.1109/TMI.2017.2723871
http://dx.doi.org/10.1007/s10916-019-1399-x
http://dx.doi.org/10.1613/jair.5756
http://dx.doi.org/10.1002/mrm.27106
http://www.ncbi.nlm.nih.gov/pubmed/29399869
http://dx.doi.org/10.1109/TMI.2018.2865356
http://www.ncbi.nlm.nih.gov/pubmed/30106719
http://dx.doi.org/10.1109/TBME.2018.2821699
http://dx.doi.org/10.1137/110824784
http://dx.doi.org/10.1137/20M1340654
http://dx.doi.org/10.1002/mrm.24751

	Introduction
	Background
	Free-Breathing and Ungated Cardiac MRI Recovery
	Kernel Representation for Free-Breathing and Ungated Cardiac MRI Recovery

	Deep Kernel Method for Dynamic MRI Recovery
	Feature Extraction Using CNN
	Deep Kernel Representation
	Free-Breathing and Ungated Cardiac MRI Recovery Using Deep Kernel Representation

	Experiments Setup
	Acquisition Scheme and Pre-Processing of Data
	State-of-the-Art Method for Comparison

	Results
	Free-Breathing and Ungated Cardiac MRI Using Deep Kernel Method
	Comparisons with Fully-Sampled Breath-Hold Images
	Comparisons with Current Kernel Method

	Discussion
	Conclusions
	References

