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Abstract: Event detection (ED) aims to detect events from a given text and categorize them into event
types. Most of the current approaches to ED rely heavily on the human annotations of triggers, which
are often costly and affect the application of ED in other fields. However, triggers are not necessary
for the event detection task. We propose a novel framework called Type Hierarchy Enhanced Event
Detection Without Triggers (THEED) to avoid this problem. More specifically, We construct a type
hierarchy concept module using the external knowledge graph Probase to enhance the semantic
representation of event types. In addition, we divide input instances into word-level and context-level
representations, which can make the model use different level features. The experimental result
indicates that our proposed approach achieves better improvement. Additionally, it is significantly
competitive with mainstream trigger-based models.

Keywords: hierarchy concept; attention mechanism; probase; bi-LSTM; event detection

1. Introduction

Event extraction is the task of extracting structure information of events from unstruc-
tured text [1–3], which has a wide range of usages in fields such as financial analysis [4],
fake news detection [5] and social emergency event judgment [6]. It aims to detect events
with triggers and their corresponding arguments. Event detection, as a core subtask of
event extraction, has attracted many researchers‘ attention in recent years. Since most
existing studies consider triggers as essential features of the event type, the event detection
task is modeled as predicting whether each word in a given sentence is a trigger and what
type of event it triggers [7–9]. Consequently, these methods often require the annotation of
triggers for each sentence in the training set.

However, triggers are not necessary for event detection tasks. Firstly, It is difficult to
annotate all the triggers in some sentences, especially long ones. As shown in Figure 1,
there are three events in S1, but a trigger such as “detonated” may be omitted in the
annotation process. Secondly, as the statistical results in Figure 2a,b show, some triggers
can easily correspond to event types, such as “married”, but there are still some triggers
with ambiguous meanings, so it is difficult to correspond to event types. For example,
“went” in Figure 1 S3 is difficult to correspond to the event type “Arrest-Jail.” Finally, recall
that event detection aims to identify events and classify them into event types; identifying
triggers is only an intermediate process [10].

To avoid the large amount of resources consumed in annotating triggers, errors in the
incorrect annotation of triggers and word ambiguity in the subsequent event detection task,
our proposed approach will complete the event detection task without trigger annotations.
However, studies on this task are still in the initial stage [11,12]. All the event types will be
transformed into low-dimensional vectors by looking up a randomly initialized embedding
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table. Still, the semantic information of event types represented in this way is limited. For
each event type, we can find its corresponding superordinate and subordinate concepts to
enrich its semantic information, so this paper proposes a type hierarchy concept module
to enhance the semantic representation of event types and compensate for some semantic
features lost by event triggers. Specifically, it uses the IS_A relationship in the probabilistic
knowledge graph Probase [13] to look up the hierarchy concepts of an event type while
calculating their confidence based on the frequency of occurrence [14]. Unlike the remote
supervision framework [15], our approach does not utilize an external knowledge base to
annotate text or generate a new training corpus for event detection.

Another limitation is that existing studies consider only context-level features and
ignore word-level features in the event detection task [16,17] or consider every word as a
potential trigger when using word-level features [9,18]. The former will lose an essential
part of the features during the event detection task, while the latter will take into account
many useless words such as “a”, “the”, etc.

S1: Three people were killed and about 50 injured when another Briton, 

Asif Muhammad Hanif, 21, from London, detonated explosives 

strapped to his body.

Event-Type: Die; Attack; Injure

S2: They got married in 1985.

Event-Type: Marry

S3: The company's performance wasn't all that hot even before the 

CEO went to prison...

Event-Type: Arrest-Jail 

Figure 1. Event instances from the ACE 2005 benchmark, where the trigger words are colored.

(a) (b)

Figure 2. Statistics about the number of occurrences of triggers in the ACE2005 dataset. (a) Top
10 occurrences of triggers. (b) Top 50–60 occurrences of triggers.

To this end, we propose a new event detection framework with enhanced type hierar-
chy called THEED. Our framework represents event types as hierarchy concepts with rich
semantics. The hierarchy concepts are then used to complete event detection by leveraging
the attention mechanism to capture their interactions with word-level and context-level
representations. Specifically, (1) for the type hierarchy concept module, we construct a
type hierarchy network by looking for the superordinate and subordinate concepts of each
event type using the probabilistic knowledge graph Probase. Furthermore, we calculate
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the confidence of each hierarchy concept to indicate the similarity with the event type.
(2) For word-level and context-level representations, our framework first converts the input
tokens into embeddings and then applies the bi-LSTM layer to calculate the context-level
representation. As for word-level representation, we exploit the attention mechanism to
obtain top K contribution to the sentence’s semantic information. (3) For event detection,
we give an input sentence, and we make the binary decoding of each representation based
on the hierarchy concept. Our contributions can be summarized as follows:

• We propose a trigger-free event detection framework with the semantic enhancement
of event types called THEED.

• We design a type hierarchy concept enhanced module that uses the Probase probabilis-
tic knowledge graph to construct hierarchical concepts with confidence. It enhances
the semantic representation of event types and improves the accuracy of the event
detection task.

• We exploit the attention mechanism to divide the input into word-level and context-
level representations, which consider different levels of features and filter useless words.

The rest of the paper is organized as follows. First of all, we apply the related work in
event detection with triggers and event detection without triggers in Section 2. Secondly,
in Section 3, we introduce our proposed framework in detail. Again, in Section 4, we
present the experimental details and evaluate the results. Then, Section 3 gives a concrete
example and visualizes the results. In Section 4, we analyze errors and give possible
reasons according to the event detection results. Finally, Section 5 gives the conclusion of
this framework and considers its prospects.

2. Related Work

The main purpose of this section is to review the related work on event detection. It
is mainly divided into two subsections: event detection with triggers and event detection
without triggers. We also introduce the semantically enhanced ED methods in Section 2.1.

2.1. Event Detection with Triggers

Event detection has been used as a fundamental core technology in NLP. Early ap-
proaches are feature-based. Researchers construct rules manually or automatically and then
use them as templates to guide event detection [19–22]. However, rules and features greatly
affect the overall performance of the ED model and require a high level of human resources
and expertise. With the gradual improvement of deep learning theory and technology in
recent years, more and more approaches use deep learning methods to complete ED. Con-
volutional neural networks capture semantic associations between consecutive words by
convolutional operations. Chen et al. [8] proposed a dynamic multipooling convolutional
neural network, which uses a dynamic multipooling layer based on event triggers and
arguments, to keep more crucial information. Nguyen et al. [23] used a joint framework
with bidirectional recurrent neural networks to perform event extraction. The framework
can learn hidden feature representations automatically from data according to the continu-
ous and generalized representations of words. Feng et al. [24] constructed a hybrid neural
network to capture both sequence and chunk information from specific contexts.

On the other hand, there are some approaches used to enhance semantic features
during event detection. A hierarchical and supervised attention model is proposed by
Zhao et al. [25], which pays word-level attention to triggers and sentence-level attention
to sentences containing events. Moreover, the use of ontology in various fields is increas-
ing [26–29], and some studies obtain satisfactory results with ontology. For example,
Deng et al. [29] formulate event detection as a process of event ontology population, which
associates an event instance with a predefined event type. Most recently, Wang et al. [9]
proposed a framework that uses event types as queries to extract candidate trigger words.
Nevertheless, this framework formulates the query based on its event type name and the
top K of prototype triggers.
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A common problem with the above approaches is that they rely too heavily on the
annotated triggers. However, annotating is usually resource-intensive and may cause error
propagation if incorrectly annotated. Unlike previous work, our framework accomplishes
event detection without triggers.

2.2. Event Detection without Triggers

To reduce the massive annotation of triggers in new domains, several studies have
been exploring event detection without triggers. Xu et al. [30] constructed a deep learning
model called BLMA, which uses bi-LSTM and multihead weighted attention to perform
event detection on an automatically tagged screenplay dataset. Liu et al. [10] propose the
TBNNAM framework, which encodes a sentence based on event types via the attention
mechanism on an LSTM model. This framework does not utilize bi-LSTM, which makes it
capture limited contextual information. Moreover, individual event types represent fewer
features, which leads to worse performance than trigger-based methods. Hsu et al. [31]
feed inputs and a manually predefined template into a generation-based neural network
to output a natural sentence for further event extraction. Nevertheless, The template is
event-type-specific, manually created and the process is more complex. Lu et al. [32]
propose a sequence-to-structure model to avoid using labeled triggers to extract events in
an end-to-end manner. Although the model does not use token-level annotations such as
trigger offset, the framework still requires much effort to identify trigger words.

In general, there are few methods for event detection without triggers. The above
approaches either consider only context-level features or consider every word as a potential
trigger when using word-level features. On the other hand, most embedding models
typically represent each event type only using the literal meaning of the words or random
initialization, which makes these models represent a limited semantic representation of
event types.

3. Methodology
3.1. Task Definition

In this section, we briefly introduce the task definition to facilitate understanding the
following subsections. Following the previous work [10,19], we are given a training dataset,
{(xi, yi)}N

i=1, wherein N denotes the number of sentence–event pairs. xi is the i-th sentence.
Let xi = w1, w2, · · · , wL be a sentence of L words, and the yi is the corresponding event
type, where yi ∈ Ys, which indicates an event label sequence [y1, y2, · · · , yN ]. We treat Ys
simply as 34 distinct event types, including 33 event types based on the ACE 2005 corpus
and an “NA” to denote that sentences do not contain any events. Our goal is to train a
model to detect the corresponding event type, which may contain one or more events, as
accurately as possible given the input data. It should be noted that the training set does not
contain annotated triggers. Consider the following sentence, “He claimed Iraqi troops had
destroyed five tanks”, our eventual goal is to detect the “Attack” event.

Our task can be divided into (1) how to capture the effective features in the input
text, (2) how to learn more precise representations to embed semantic information between
input sentences and event types and (3) how to detect each event in a sentence which may
contain an arbitrary number of events.

3.2. Model Overview

In this section, we introduce the framework of THEED in detail. Without event
triggers, there will be three challenges, as shown in the task definition. To solve the first
challenge, we divided the features into context-level and word-level, where context-level
captures contextual information and word-level denotes word information. Meanwhile,
we remove useless words from the sentence, such as “a”, “the”, etc., using the attention
mechanism. As for the second challenge, rather than a simple “event-type embedding
table”, we first construct the type graphs, and then assign confidence to each hierarchical
concept to strengthen the semantic relationship between the input text and the event type.
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Finally, to solve the multievent problem, we convert multilabel classification into a multiple
binary classification task. For example, consider the following sentence, “We go to war
in Iraq, 200,000 people start protesting in Pakistan, they put too much pressure on the
government”, a perfect model should detect two different events from the sentence: an
Attack event and a Demonstrate event.

As Figure 3 shows, THEED comprises three components: (1) The instance encoding
represents a sentence into hidden embeddings. (2) The type hierarchy concept modular
component enhances the semantic representation of event types through an external knowl-
edge graph. (3) The event detection task relies on instance encoding and the hierarchy
concept embedding to estimate the probability of a certain event type for the sentence. The
details are as follows.

Event-type

Sup-concept Sup-concept Sup-concept

Sub-concept Sub-concept Sub-concept
Probase

Event type hierarchy structure
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Figure 3. The architecture overview of THEED. It consists of three components. Component 1:
Instance encoding. Component 2: Type hierarchy concept module. Component 3: Binary encoding.
(The type hierarchy concept module only indicates one example. Due to space constraints, confidence
is not marked on the lines.)

3.3. Instance Encoding

Given a sentence W = w1, w2, · · · , wn, the ACE2005 corpus is not only annotated
with events but also with entities. Following previous approaches, we will use both
entity tags and part-of-speech tags in our framework [8–10]. As for pos tags, we exploit
StanfordCoreNLP (https://stanfordnlp.github.io/CoreNLP/ (accessed on 1 January 2023))
to recognize them.

3.3.1. Word/Entity/Pos Embeddings

Word embeddings have been shown to be able to capture the complex semantic
regularities of words from massive unlabeled data [33]. In our work, we use the Skip-
gram [34] (accessed on 1 January 2023) model to learn word embeddings in New York
Times Corpus(NYT) https://catalog.ldc.upenn.edu/LDC2008T19. The reason why we
chose NYT is that it is large and diverse; moreover, its data domain is similar than the
ACE2005 dataset, which is helpful [35]. As for entity tags and pos tags, we randomly
initialize embedding tables for them. Then, every word token and the tag will convert to
a low-dimensional dense vector. Finally, the input token embedding will consist of three
parts: (1) word embeddings, where the dimension is dw; (2) entity embeddings, where the
dimension is de; and (3) pos embeddings, where the dimension is dp.

https://stanfordnlp.github.io/CoreNLP/
https://catalog.ldc.upenn.edu/LDC2008T19
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3.3.2. Context-Level Representation

Long short-term memory (LSTM) [36] is the most widely used method to deal with
long-term dependence. It consists of three gates (i.e., an input gate, a forget gate and an
output gate) and a storage unit to hold the state of each neuron. The standard LSTM
can only utilize the historical information of the sequences, which are single-directional
features. Due to the complexity of natural language sentence structure, it is also necessary
to consider future information.

As Figure 3 shows, we exploit bi-LSTM [37], which uses two LSTMs to work in
the forward and backward time directions to obtain contextual information. First, we
feed sequence embedding x to forward propagation, which runs x from the past to the
future. Similarly, we feed the reverse order to backward propagation, which considers the
contextual information from the future to the past. Therefore, we can preserve information
in two directions at any point in time.

Given the input token w, the input of bi-LSTM is xt, which includes three parts (i.e.,
a word embedding ewt, an entity embedding eet, and a pos tag embedding ept), and its
hidden state is ht at time t. The formula is expressed as follows:

xt = concat(ewt; eet; ept) (1)

−→
ht = LSTM(xt,

−−→
ht−1) (2)

←−
ht = LSTM(xt,

←−−
ht+1) (3)

ht = [
−→
ht ⊕

←−
ht ] (4)

Here, we obtain the hidden embeddings h = {h1, h2 · · · hi · · · hn} of the input tokens,
where we use the last hidden state hn to denote the context-level representation, because it
contains all the information in the forward and backward directions.

3.3.3. Word-Level Representation

Existing studies generally only adopt context-level representation and ignore word-
level, or each word is considered at the word level. However, it will contain useless words
such as “the’,’ “an”, “a”, etc. We introduce attention mechanisms in our framework to
select words with top K (in our experiments, we set K = 8) contribution to learning a weight
distribution. In this way, we can filter out the useless words in the sentence. We give an
example and visualize it later in the case study section.

αj =
exp(hj·hT

context)
n
∑

i=1
exp(hi·hT

context)
(5)

hword = gather(h, topK(aj).indices) (6)

where the attention vector α is calculated based on hidden states h and the context rep-
resentation hcontext. Specifically, the attention score calculation of the j-th input token is
illustrated in Equation (5). Then, we use the top K operation to obtain the K indices of
hidden states by contribution ranking. Finally, we use the gather operation to obtain
the hidden state corresponding to the indices. It is noted that both top K and gather are
functions that come with the framework codebase. we obtain the word-level representation
hword = {h1, h2 · · · hk}.
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3.4. Type Hierarchy Concept Module

In order to learn more precise semantic representations between input sentences and
event types, we construct a hierarchical network for each event type and calculate the
confidence of each hierarchical concept to indicate the similarity to the event type. Finally,
we use a scaled dot-product attention mechanism to obtain a single hierarchical concept
embedding from the token embedding sequence. The type hierarchy concept module
consists of three parts: concept graphs, concept confidence and concept representation.

3.4.1. Hierarchy Concept Graphs

As several studies have shown, a simple way to represent an event type is to use
its event type name directly [10,38]. However, this approach means limited semantics
information, and the names often contain ambiguities, which may introduce errors in the
later event detection task. Inspired by previous methods [9,39], we use type hierarchy
concept graphs to enrich the semantics of each event type.

Figure 3 illustrates that we exploit the external knowledge graph Probase to build
hierarchy concept graphs. Probase is a large-scale concept knowledge graph proposed by
Microsoft, containing 5,401,933 concepts, 12,551,613 instances and 87,603,947 IsA triples [40].
Figure 4 shows partial examples in the Probase knowledge graph. By using this KG,
concepts can be mapped to different semantic concepts. Each event type, such as Arrest-Jail,
is represented with a text, including a shortlist of superordinate concepts and a shortlist
of subordinate concepts, such as “legal problem” and “rape suspect”, which select from
the Probase through IsA relation. The reason why we use superordinate concepts and
subordinate concepts is that they can extend the concept of event types or instantiate the
concept of event types. Finally, we use supt = {supt1, supt2 · · · suptn} (In our experiments,
we set n = 20) to denote the set of superordinate concepts of event type t, and similarly, use
subt = {subt1, subt2 · · · subtn} to indicate the set of subordinate concepts.

Figure 4. Partial display of the Probase KG (concepts in orange and instances in blue) connected by
the “IS_A” relationship.

3.4.2. Hierarchy Concept Confidence

The hierarchy concepts should not only indicate whether the supt or subt is related to
an event type but also calculate the confidence of how likely supt/subt could be mapped to
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type in the Probase. We formulate the hierarchy concepts confidence of supt/subt as follows:

superordinate(supti, evtt) =
f req(supti, evtt)

∑k=1 f req(supti, evtk)
(7)

subordinate(subti, evtt) =
f req(subti, evtt)

∑k=1 f req(subti, evtk)
(8)

Wherein f req(supti, evtt) is derived from the Probase, and it indicts the frequency
between supti/subti and evtt. As shown in the previous sections, the hierarchy concepts
of an event type will be a list, so their confidence is also a list, denoted by SupScoret and
SubScoret. Table 1 shows that we construct the superordinate and subordinate concepts
of the event type “Arrest-Jail” and assign confidence to the hierarchical concepts. Due to
space constraints, we only display part of the hierarchical concepts.

Table 1. Hierarchical concept and confidence for an example of “Arrest-Jail”; due to space constraints,
we only display part of the hierarchical concept.

Event Type Superordinate
Concept Confidence Subordinate Concept Confidence

legal problem 0.15157 los angeles county jail 0.09714
terminal event 0.13662 rape suspect 0.08928

Arrest-Jail punishment 0.07898 county jail 0.07142
· · · · · · · · · · · ·

public facility 0.07590 east cambridge jail 0.05357

3.4.3. Hierarchy Concept Representation

We can see from Table 1 that the hierarchical concepts may contain a different number
of words. So, it is important to obtain a single embedding from a sequence of embeddings
with the same embedding size. Specifically, given a superordinate concept or subordinate
concept with a sequence of embeddings, x = x1, x2, x3, · · · , xNx , where the dimension
of each xi is dw, and x is an embedding with size dw × Nx, then we use the dot-product
attention [41] to produce a single embedding from a sequence of embeddings.

hiei =
QTxi√

dw
(9)

αi =
exp(hiei)

∑j exp(hiei)
(10)

x = Dropout(LayerNorm(∑
i

αixi)) (11)

Wherein the dimension of the single embedding x is dw, and Q is a trainable parameter.
Dividing by

√
d is to alleviate the problem of gradient disappearance if the dot product

is large. In addition, we add layer normalization and dropout to avoid overfitting. In
our experiments, we also exploit max pooling or mean pooling to achieve the same result.
According to experimental results, we find that this method performed similarly to max
pooling, while sometimes slightly higher than the max pooling, and both of them performed
better than the mean pooling. To make the model work better, we use this method to obtain
a single embedding from a sequence of embeddings.

3.5. Event Detection

Given an input sentence, we aim to detect the corresponding event type automatically.
In order to achieve this goal, we should capture the semantic correlation of instance
encoding to the event type. Thus, we adopt an attention mechanism to learn a weight
distribution over the two-level representation of the event type and obtain an event type
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aware two-level representation, where the two-level representation refers to context-level
representation and word-level representation.

Aword = αT·hword (12)

αk =
exp(hk · tT)

∑K
i exp(hi · tT)

(13)

Acontext = hcontext·tT (14)

where α = [α1, α2 · · · αk] is the attention vector, and Aword denotes the event type aware
word-level representation. Similarly, we use Acontext to indicate the event type aware
context-level representation. The semantic relevance captured using only the event type
provided by ACE205 is limited, so we use the type-hierarchy-enhanced concepts to com-
plete event detection without triggers after obtaining the word-level and context-level type
aware representations.

ssup
word = σ(AwordWVsup) (15)

ysup
word = ∑ ssup

wordSupScore (16)

Wherein W is a learnable parameter matrix, Vsup is a superordinate concept represen-
tation matrix and σ is the Sigmoid function. ysup

word is one of the outputs, which is designed
to capture the feature between word-level representation and the superordinate concept.
Similarly, due to the space limitations, we use ysub

word , ysup
context and ysub

context to denote the
results of the other three levels. Finally, y is defined as the weighted sum of four outputs.

y = λ(ysup
word + ysub

word) + (1− λ)(ysup
context + ysub

context) (17)

Here, λ ∈ [0, 1] is a hyperparameter for trade-off between word-level outputs and
context-level outputs. To determine whether the input sentence contains a certain event
type, we follow the settings in [10] as the following equation, where the number 1 indicates
that the sentence includes an event and otherwise denotes the label of “NA”.

ỹ =

{
0 y < 0.5
1 otherwise

(18)

In order to solve the multilabel problem in the input instance, our framework converts
multilabel classification into binary decoding. As shown in Table 2, each training sample
is a <sentence instance, event type> pair. Assume that the sentence has three predefined
event types t1, t2, t3, and t1, t3 are correct. Then, the label is 1, 0, 1.

Table 2. Example of binary classification of sentences.

Training Sample Label

<s, t1> 1
<s, t2> 0
<s, t3> 1

After analyzing the training corpus, we find that the quantity of positive samples
is much less than negative samples, and in general, positive samples will contain more
information. So, we use a bias term to strengthen the positive samples [42]. The training
objective is to minimize the following loss function:

L =
1
T

T

∑
i=1

(y(xi)− ŷi)
2
(1 + ŷi · β) + δ||θ||2 (19)
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Here, x is the training instances, ŷ ∈ {0, 1} is the label tag and (1 + ŷi · β) is the bias
term. θ is the parameter and δ > 0 is the weight of the L2 normalization term, which we
exploit to prevent overfitting.

4. Experiments and Evaluation
4.1. Dataset and Baselines

In this paper, we conduct extensive experiments on the ACE2005 dataset [43], which
contains 599 English documents and defines 33 event types. We split the dataset following
the previous event extraction work [1,8,22]. To evaluate our model, we adopt precision (P),
recall (R) and F1 scores, among which F1 is the most comprehensive measurement.

P =
TP

TP + FP
× 100% (20)

R =
TP

TP + FN
× 100% (21)

F1 =
2× P× R

P + R
× 100% (22)

where TP, FP and FN denote true positives, false positives and false negatives, respectively.
It is important to emphasize that our framework finishes event detection without

triggers. Therefore, we remove trigger annotations from the corpus. Finally, each sentence
is assigned only a set of labels based on event type annotations. If a sentence does not
contain a defined event, we will assign the label NA. Table 3 shows examples of annotated
sentences. It is noted that if a sentence contains the same event, our model still treats it as
multiple events.

Table 3. Examples of annotated instances.

Sentences Labels

Armored forces destroyed dozens of Iraqi tanks and personnel carriers
in their advance on Baghdad. Attack, Transport

They got married in 1985. Marry
We don‘t know that all foist is back, but at least some of it is. NA

In this paper, to evaluate the performance of our proposed THEED framework, we
compared our model with other advanced methods in the ACE2005 dataset.

• DMCNN [8], extracting word-level and sentence-level features from text automatically
using dynamic multipooling layers.

• JRNN [23], a joint framework of bidirectional recurrent neural networks, is used for
event extraction.

• TBNNAM [10], which encodes the representation of sentences according to the target
event type without triggers.

• Text2Event [32] is a sequence-to-structure model that directly learns from text annota-
tion and requires no trigger offsets.

• DEEB-RNN3 [25], which uses chapter-level embedding representation as a reinforce-
ment for sentence-level event detection.

• OntoED [29], a novel framework for event detection with the help of ontology embed-
ding, describing event detection as the process of ontology filling.

• Query and Extract [9], which refines event extraction as a query-and-extract paradigm
and leverages rich semantics of event types.

4.2. Experiment Settings

Regarding the settings of the model training process, the Adam [44] optimizer is used,
with 100 iterations of training. In our experiment, the dimension of word embedding is
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200, entity type and part-of-speech set is 50 and the maximum length of a sequence is 128.
In THEED, a dropout rate of 0.2 is used to avoid overfitting, the L2 norm is set to 10-5 and
β in the bias term is 1. Furthermore, we dynamically adapt the parameter λ on the dev
dataset, and according to the F1 scores in Figure 5, we take the value of λ as 0.3.

Figure 5. Experimental results on test dataset with different settings of λ.

4.3. Overall Evaluation

In this section, we analyze the results of the proposed framework (see Table 4). They
show that the overall performance of this model is better than other baselines. Specifically,
we can have the following points from the results.

Table 4. Experimental results of event detection on ACE2005 corpus.

Model P (%) R (%) F1 (%)

DMCNN 75.7 66.0 70.5
JRNN 66.0 73.0 69.3

TBNNAM 76.2 64.5 69.9
TEXT2EVENT 69.6 74.4 71.9
DEEB-RNN3 72.3 75.8 74.0

OntoED 76.6 75.0 76.2
Query-And-Extract - - 73.5

THEED (ours) 78.1 71.6 74.7

• Our approach is significantly improved compared with the traditional neural network
models DMCNN and JRNN for event extraction methods. It indicates that bi-LSTM
can enrich semantic information. Furthermore, we add part-of-speech features that
also help the event detection task.

• THEED attains a much better performance improvement (about 4.5% and 2.5% in
F1 scores) compared with TBNNAM and TEXT2EVENT, respectively, which do not
have access to the trigger annotations or the trigger offsets. The results show that our
proposed type hierarchy concept modular component is useful. Compared with the
other methods of querying an event type/subtype in the “embedding table” to obtain a
single semantic piece of information, the type hierarchy concept can effectively enrich
the representation of event types. However, TEXT2EVENT exploits the event schema
to guide event generation and uniformly predicts all event types, The nonbalanced
distribution of event types will have less impact on the model, so its recall is higher
than THEED. However, the model is much more complex than THEED, and the F1
value is lower than THEED
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• Although our proposed approach does not use annotated triggers, it achieves im-
provements over other models, namely DEEB-RNN3 and Query-And-Extract. This is
because our method adopts both word-level and context-level representations, which
is helpful for the event detection task. On the other hand, DEEB-RNN3 exploits docu-
ment embedding, which may learn the relationship between event types in the same
document, leading to a higher recall than our method. However, the method requires
annotated event information.

• THEED can outperform all compared methods except OntoED, which formulates
event detection as a process of event ontology population; it enables the utilization and
propagation of event knowledge, especially from high-resource to low-resource event
types. Despite the lack of propagation and inference of knowledge, our model has a
close F1 score to OntoED. However, our method requires fewer manual annotations.

• From the experimental results, we can observe a phenomenon that the recall of the
model is relatively lower. This is because if a sentence contains two identical event
types, such as “Attack, Attack”, we treat them as two different events, while other
models treat them as only one event. On the other hand, the nonbalanced distribution
of the number of training events also affects the recall of our method.

4.4. Ablation Study

In our proposed method, we undertake an ablation study to evaluate the effect of
the word-level and context-level representations and type hierarchy concepts. Firstly,
since we perform type hierarchy concept enhancement for each event type, we report
our framework’s performance without a hierarchy concept and concept confidence. In
particular, an average score will replace concept confidence when removing it. Table 5
illustrates that our model is not affected by sparsity, and confidence measures the similarity
of the hierarchy concept to the event type. Additionally, the results show that hierarchical
concepts have a more significant impact on the model, which proves the effectiveness of
our proposed method.

Table 5. Performance of framework without hierarchy concept and hierarchy concept confidence.

Model P (%) R (%) F1 (%)

without hierarchy concept 77.2 68.0 72.3
without confidence 77.3 69.3 73.1

Secondly, we verify the effect of word-level representation, context-level representa-
tion, superordinate concepts and subordinate concepts on the model. For example, if we
only use word-level representation, the hierarchy concept remains unchanged. As Table 6
shows, all of the modular components display significant benefits to event detection. Specif-
ically, we can see that using a single representation of a sentence will cause a significant
drop in results, which demonstrates the effectiveness of two-level representation.

Table 6. Performance of the effect of word-level representation, context-level representation, superor-
dinate concepts and subordinate concepts on the model.

Model P (%) R (%) F1 (%)

only word-level 76.6 68.2 72.2
only context-level 76.7 69.0 72.6
only sup-concept 77.7 69.0 73.1
only sub-concept 77.4 68.6 72.7

To further verify the effect of the hierarchy concept, we replace it with the prototype
triggers mentioned in the previous work [9]. Taking the event type Contact:Meet as an
example, we finally represent it as Meet meet reunited retreats. Table 7 shows experimental
results. From the table, we observe that the hierarchy concept achieves better performance,
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which is understandable as prototype triggers may be ambiguous triggers for event de-
tection, such as “meet”. However, compared with other ablation experiments, the results
show some improvement, indicating that semantic enhancement of event type is effective
for event detection.

Table 7. Performance of the framework replacing hierarchy concept with prototype triggers.

Model P (%) R (%) F1 (%)

prototype triggers 77.8 70.2 73.8
THEED (ours) 78.1 71.6 74.7

4.5. Case Study

To verify whether the word-level representation modular components work as we
designed, we conduct a case study. As Figure 6 shows, we visualize the attention score αj of
our framework on a random sentence: “the army‘s 3rd infantry division 1st marine division,
leading the assault against Baghdad”, and its event type is Attack. From the experimental
results, we can see that the word “assault” has the highest score, and according to the
ranking, we obtain the top K words as follows: army infantry 1st division the assault against
Baghdad. In this way, we successfully captured the word-level representation associated
with the event type while filtering out irrelevant words.

Furthermore, to verify the effect of the type hierarchy concept modular components,
we also conduct a case study. As Figure 7 shows, we visualize the final scores of the sentence:
“the army‘s 3rd infantry division 1st marine division, leading the assault against Baghdad”
on word-level representation, context-level representation, superordinate concepts and
subordinate concepts, where T denotes the correct classification and F denotes incorrect.
Due to the small granularity of scores, the difference between heatmaps at the same
level is not apparent. However, the scores between correct and incorrect event types are
still obvious.
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Figure 6. The attention scores for the hidden embeddings of words, which our model learns from a
sample instance.
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Figure 7. Heatmap for final scores to verify the effect of the type hierarchy concept modular compo-
nents, and the input sentence is “the army‘s 3rd infantry division 1st marine division, leading the
assault against Baghdad”.

4.6. Error Analysis

We analyze the errors according to the event detection results on the test set. On the
one hand, our proposed framework does not perform well in low-resource scenarios. For
event types that frequently appear in the training corpus, such as Attack Die, the model
can achieve better performance. As for the lower frequency event types, such as nominate
Merge-Org event types, the results of F1 are not good. On the other hand, we can see that the
recall of our experimental results is low from Table 4, which indicates that our framework
still learns limited features. Although we use an external knowledge graph to extend the
event types, the effect is still restricted. We will try to use more effective methods to solve
this problem in our future work.

5. Conclusions and Future Work

This paper proposes a novel event detection framework with enahnced type hierarchy
called THEED. We construct a type hierarchy concept module using Probase to enhance the
semantic representation of event types, and we assign hierarchy concepts with confidence.
In addition, dividing the input into word-level and context-level representations helps the
model extract different features. Experimental results demonstrate that our approach per-
forms better on event detection without triggers. Notably, our proposed method achieves
competitive performances compared with state-of-the-art trigger-based models. In the
future, we will explore better representations with the help of external knowledge graphs
to improve the accuracy and generalizability of event detection without triggers. We also
plan to complete the event extraction task without triggers.
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