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Abstract: Despite significant advancements in object detection technology, most existing detection
networks fail to investigate global aspects while extracting features from the inputs and cannot
automatically adjust based on the characteristics of the inputs. The present study addresses this
problem by proposing a detection network consisting of three stages: preattention, attention, and
prediction. In the preattention stage, the network framework is automatically selected based on
the features of the images’ objects. In the attention stage, the transformer structure is introduced.
Taking into account the global features of the target, this study combines a self-attention module in
the transformer model and convolution operation to integrate image features from global to local
and for detection, thus improving the ship target accuracy. This model uses mathematical methods
to obtain results of predictive testing in the prediction stage. The above improvements are based
on the You Only Look Once version 4 (YOLOv4) framework, named “Auto-T-YOLO”. The model
achieves the highest accuracy of 96.3% on the SAR Ship Detection dataset (SSDD) compared to the
other state-of-the-art (SOTA) model. It achieves 98.33% and 91.78% accuracy in the offshore and
inshore scenes, respectively. The experimental results verify the practicality, validity, and robustness
of the proposed model.

Keywords: object detection; detection network; transformer structure; computer vision; domain
adaptation; automatic detection

1. Introduction

Synthetic aperture radar (SAR) is an active microwave imaging radar. High-resolution
SAR has exceptional penetrating power, all-weather observation capabilities, and adapt-
ability to various environmental factors. SAR imaging technology for ship detection appli-
cations has recently improved due to the fast evolution of technologies such as TerraSAR-X
and Sentinel-1 [1–4]. TerraSAR-X has a single and dual polarization X-band steerable SAR
radar. An additional quadpolarization option is available for mission-specific captures. The
satellite can record photos in five different modes with resolutions ranging from 1 to 18.5 m.
TerraSAR-X has return intervals ranging from 2.5 to 11 days depending on the image mode.
The intricacy of the object layouts in the SAR images causes poor detection accuracy, mak-
ing it possible to ignore the edge information in significantly bigger ship targets. The target
size, position, and angle of view are some of the variables that might impact SAR images.
Therefore, to solve the above problem, this study combines the transformer mechanism
with a convolutional neural network (CNN) to propose a new detection model.

CNN, which mimics the mechanism of the human visual cortex, has shown promising
results in computer vision (CV) challenges. The CNN structure is composed of simple
and complex cells. CNN-based CV models, You Only Look Once (YOLO) series models,
have outperformed humans on tasks such as image categorization and object recognition.
For example, Liu et al. [5] introduced a YOLOv3-FDL to detect combined B-scan and
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C-scan GPR images subject to poor detection effects and a high missed detection rate of
small crack feature sizes. Wang et al. [6] proposed an efficient ship detection model based
on YOLOX named YOLO-Ship Detection (YOLO-SD). Transformers [7] are self-attention-
based approaches that have demonstrated excellent performance in vision tasks, such as
semantic segmentation and image categorization. Self-attention is an attentional process
that connects several points in a single sequence to build a representation of that sequence.
It is very useful in machine reading, abstractive summarization, and the creation of visual
descriptions. The primary distinction between CNN and transformer is that, in the input
feature map of CNN, the convolution kernel only interacts with immediate neighbors, while
in the transformer model, the self-attention among all tokens in the universe is calculated.

Although the transformer mechanism has been combined with CNN and employed
in many models for computer vision, it has not been coupled to address the ship detection
problem with various aspect ratio anomalies in remote sensing photos. Moreover, the model
cannot be designed automatically based on image size to mimic the process of human visual
information processing. Therefore, the present study proposed a two-stage target detection
model by combining the advantages of the above two models and imitating the human
visual mechanism, which consists of a preattention stage and an attention stage [8]. This
improvement will also enable deep CNN to analyze images more anthropomorphically,
increasing detection accuracy.

Although there are also models available for the automatic detection of targets. For
instance, Liu et al. [9] proposed a mask region-based convolutional neural network (R-CNN)
that automatically detects small cracks in asphalt pavement at the pixel level. However,
to the authors’ best knowledge, no model can simulate the human vision mechanism
and automatic selection of detection modules based on target features. The proposed
model automatically selects different network models for processing based on the different
features of the object. During the attention stage, the only change is that it replaces one
convolutional block in the feature fusion part without any other changes to fuse image
features from global to local when the model detects images of large-size targets [10]. This
improvement is more concise and practical. To validate the efficacy of Auto-T-YOLO in
remote sensing images object detecting tasks, experiments on the public SAR Ship Detection
dataset (SSDD) are also conducted. There are two types of images in the SSDD: inshore
and offshore. We evaluated the models on each type of dataset.

The present study contributes to the literature in the following ways:

• Auto-T-YOLO is divided into preattention, attention, and prediction stages. The
preattention module is introduced into the object detection network. The preattention
module automatically classifies the dataset according to the target size. The operation
of this module is used to simulate the process of human vision. In the attention module,
the image features are selectively focused autonomously and efficiently. Finally, the
prediction module performs the prediction frame accuracy evaluation mathematically.

• During the preattention stage, Auto-T-YOLO automatically classifies the images in
the dataset according to the target size. The definition of target size is learned from
the Microsoft Common Objects in Context (MS-COCO) dataset. Two types of images
in the dataset are classified: the type with large-size targets and the second type with
only small-size targets. In the experimental section, we analyze the definition of the
large-size target setting.

• In the attention stage, the MHSA module is introduced into the YOLOv4 network
framework by replacing the 3 × 3 convolution block with the MHSA module after the
SPP module.

• To analyze the performance of Auto-T-YOLO, two types of accuracy evaluation mea-
sures are employed. First, Pd (fault detection rate), Pm(missing alarm rate), and Pf
(false alarm rate) are evaluation indices in remote sensing. For deep learning object
detection, the evaluation indexes are precision, recall, F1-score (F1), mean Average
Precision (mAP), and Frames Per Second (FPS). The SSDD was divided into two
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subdatasets: inshore and offshore scenarios. Not only is the whole SSDD detected, but
also Auto-T-YOLO detects the two subdatasets mentioned above.

The remainder of the study consists of the following: In the second section, this work
describes the current status of research on some detection methods. In the third section,
this study describes the detection method and specific improvements of the model. In the
fourth section, this study proposes the Auto-T-YOLO detector and verifies the model’s
superiority on public SAR datasets over competitive models. The last part presents the
conclusions and possible future extensions of the study.

2. Related Work
2.1. Methods of Constant False Alarm Rate (CFAR)

Constant false alarm rate (CFAR) is commonly used for traditional ship detection.
Rey et al. [11] introduced a model to recognize single-polarization SAR images. They use
a clutter CFAR-based model with K-distribution. Stagliano et al. [12] proposed a com-
bination technique of CFAR and wavelet transform for SAR image ship target detection.
Wang et al. [13] divided each candidate target’s context slice into grids after identifying
prospective targets using the maximum stable extreme region (MSER) approach. Tra-
ditional techniques are effective, but feature classifiers must be manually developed to
extract image features. For instance, a CFAR algorithm’s effectiveness depends on ocean
disturbance modeling. Additionally, training in complicated settings is not optimal, and
the generalization is poor since the structure cannot be modified in accordance with the
objective properties. The techniques are also not an entire training model.

2.2. Deep Neural Network

Deep learning approaches are now being applied in CV applications due to advance-
ments in computer hardware and neural network (NN) algorithms [14–16]. Research
on deep learning backbone networks has achieved great success, i.e., AlexNet [17], VG-
GNet [16], GoogleNet [18], ResNet [19], DenseNet [20], and EfficientNet [21]. Target
identification techniques in deep learning are either one- or two-stage systems. SSD [22],
RFBNet [23], and YOLO [24–27] are examples of one-stage detectors. The main two-stage
target detector is Faster-RCNN [28,29]. Chen et al. [30] explicitly employed context to fuse
characteristics to enhance the efficacy of small-size object detection. Li et al. [31] introduced
the kind of original dataset. In the meantime, they proposed a model by enhancing the
Faster R-CNN method. In the streamlined YOLOv2 model, some convolutional layers are
removed, reducing the computational complexity while maintaining accuracy in detecting
ship images of SAR [32]. Lin et al. [33] proposed a combination of squeeze stimuli and
accelerated the Faster R-CNN architecture. Mao et al. [34] streamlined feature extraction
using a U-net network as the foundation to find ship targets. Zhang et al. [35] developed
HyperLi-Net, a high-accuracy and fast SAR ship detection system.

Over the last decade, object identification in natural images has made significant
progress. When ordinary image target detection methods are directly used for satellite
image target detection, the results are far from satisfactory. This is because of the inherent
variations in object size and orientation brought by satellite images’ eagle-eye viewpoint.
Satellite images have a complex background and a tiny object area [36]. An improved
YOLOv3 object detection model combining data augmentation and structure optimization
is proposed in this study [37]. Furthermore, the YOLOv7 model applied to the LB dataset
outperformed existing reported studies. This study illustrates the potential of the YOLOv7
model for weed detection [38]. Huang et al. [39] implemented a YOLOv three-based
detection model of infusion. All the above research works demonstrate the excellence of
the YOLO algorithm in the field of deep learning. They also provide a research basis for us
to adopt improvements based on the YOLOv4 model.

The YOLOv4 detector, shown in Figure 1, utilizes CNN and comprises four com-
ponents. In object detection algorithms, the “backbone” network could extract the basic
features of input images. Cross Stage Partial (CSP) Darknet53 serves this role as the
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“backbone” network for YOLOv4. The “Neck” module is the third part of top-down and
bottom-up propagation with semantic information features through the spatial pyramid
pooling (SPP) module. Following the SPP module, the top-down feature pyramid network
(FPN) and bottom-up feature pyramid network (PANet) modules are coupled. The de-
tecting head of YOLOv3 is still used in the prediction section. To calculate the distance
between the prediction box and the ground truth, the Complete Intersection over Union
(CIOU) loss function is employed. To estimate the position of the target frame, the Distance
Intersection over Union (DIOU) Non-Maximum Suppression (NMS) approach is adopted.
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Figure 1. Components of the YOLOv4 model (Including Input, Backbone, Neck, and Head).

Figure 2 shows the specific modules in the YOLOv4 structure diagram. * represents
the multiplication sign. CBM: This component includes operations of convolution (conv),
batch normalization (BN), and mish activation function; CBL: This component includes
operations of conv, BN, and Leaky_ relu activation function; Resunit: This module is similar
to the residual unit used in the Resnet model to help build deeper networks; CSPX: These
are a CBM and X Resunits in series; SPP: This is a multiscale fusion module through 1 × 1,
5 × 5, 9 × 9, and 13 × 13 maximum pooling methods. Figure 3 reprents 3D process of
feature extraction operation by FPN and PANet.

2.3. Attention Mechanism

The neural network may concentrate on only a portion of its input due to the devel-
opment of an attention mechanism, which also contributes to the neural network’s high
interpretability. As a result, the best-performing models employ an attention mechanism
to connect input and output. Vaswani et al. [7] developed the transformer, a new, simple
model that depends on the attention mechanism used in machine translation jobs and
is free of recurrence and convolutions. This new design takes less time to train. Then,
Carion et al. [40] proposed the Detection Transformer (DETR) model, which features a
transformer architecture and a global loss-based set that requires predictions. DETR is
a based set that constructs a top convolutional backbone using a Transformer model. A
standard CNN backbone is capable of learning 2D representations of input pictures. After
flattening the transformer encoder, the model adds position encoding. In terms of runtime
and accuracy, DETR is comparable to the Faster RCNN baseline for the COCO dataset.
The COCO dataset is a collection of demanding, high-quality computer vision datasets
that make use of cutting-edge neural networks. The entire dataset’s information is stored
in its five components, which are further subdivided into subsections. This highlights
the effectiveness of the transformer strategy for CV and machine translation difficulties.
Srinivas et al. [41] developed the BoTNet, a backbone architecture, by substituting global
self-attention, the main operating unit in the transformer model, for ResNet’s last three
bottleneck blocks. A “botnet” is a collection of malware-infected machines supervised
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by a “bot herder”. In contrast to BoTNet, blocks are added to a ResNet backbone as new
blocks rather than replacing existing convolutional blocks. This architecture can perform
CV tasks, such as instance segmentation, object detection, and image categorization. As
a result, activities involving target recognition in SAR images may also be accomplished
using this attention strategy.
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3. Materials and Methods

By mimicking the biological visual selection mechanism, the proposed model (Auto-
T-YOLO) becomes increasingly similar to the processing of the human visual system,
enhancing detection accuracy. During the preattention stage, Auto-T-YOLO automatically
identifies the image based on the size of the ship in the image. This stage separates the
images into two types: those with large objects and those with only small objects. Moreover,
it is analogous to the human preattention visual attention selection mechanism, as it selects
simulations based on the size of the targets. The YOLOv4 framework was selected as the
core network structure in the attention stage because YOLOv4, a one-stage target detector,
can ideally balance speed and accuracy and satisfy the goal of real-time and accurate
detection of ship targets. Following that, the notion of global feature precedence in visual
perception [10] is incorporated into the proposed model design.

The priority of global features stated by Navon et al. [10] highlights that global aspects
are more effective than local features in terms of cognition. Perceptual processes are orga-
nized because they progress from global structuring to increasingly fine-grained analysis.
After identifying and classifying the target size of remote sensing images through the
preattention stage, the YOLOv4 framework processes the semantic aspects of the images
sequentially from global to local following the notion of global features preceding local
features for large-size target images. In the feature fusion stage, the MHSA module repre-
sents a 3 × 3 convolution block for global feature reasoning. This operation analyses and
aggregates the global information contained in the feature map that was gathered earlier in
the process. The convolution block is connected after the MHSA module to complete the
interactive fusion of features from global to local. For images containing only small targets,
the YOLOv4 architecture continues to employ the original framework for feature extraction
and fusion.

Finally, the two types of images are sent into the network for detection. Figure 4 shows
the flow chart of Auto-T-YOLO. * represents the multiplication sign.

As shown in Figure 4, CSPDarknet53 is used for image feature extraction in the
YOLOv4 model. For the A subdataset, the MHSA module was proposed to replace the
3 × 3 convolution block with after SPP module. The image obtained through the MHSA
module is transferred to FPN and PANet to accomplish the fusion of global and local
features. For the B subdataset, our model uses SPP, FPN, and PANet to fuse context-
sensitive features in the Neck module. CNN has a limited receptive field because of the
convolutional kernel size restriction. This feature allows the model to be more selective in
assessing small targets. The feature maps produced from the A and B subdatasets by the
aforementioned methods are detected by YOLOv3′s head.

Figure 5 shows the structure of Auto-T-YOLO through the above flow chart pre-
sentation. This model aims to perceive global to local features to better integrate image
information and improve target detection. In the third section, the basic operating principles
of the algorithm are explained.

The network structure of the model, as illustrated in Figure 5, is separated into three
parts: preattention, attention, and prediction module. * represents the multiplication sign.
As stated in the introduction, the dataset is divided into A and B based on the target size in
the pre-attention module. Following the preattention module, extracting and integrating
each image’s characteristics in the SSDD differs in the attention module, and the red font
indicates where improvements were achieved. The two subdatasets share a prediction
module; the green connecting line represents features taken from the A subdataset for
detection, and the yellow arrow represents the B subdataset.
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3.1. Preattention Module

According to signal processing, visual attention includes two stages: the preattention
stage and the attention stage [42,43]. The preattention stage selects stimuli based on single
object attributes, such as color and size, before moving on to the next processing step. In this
stage, this study focuses on certain objects and background features. In the attention stage,
the features collected from the objects attract human attention. Meanwhile, feature-based
attention (FBA) enhances the representation of image attributes across the visual field,
which is particularly useful when searching for a specific stimulus feature. In the attention
stage, this study can focus on this target first if we can identify key semantic information in
the target during the preattention stage. Preattention examines the characteristics since it
bases its function on a single feature [8]. Meanwhile, the fusion feature is an operation in
the attention stage. The combination of the two stages forms the process of visual attention.

Regarding the sizes of large, medium, and small targets, as shown in Table 1, this
study uses the target size definitions in the COCO dataset as a reference. However, con-
sidering that the targets in the remote sensing dataset are relatively small compared to the
conventional dataset, targets larger than the medium size (area >32 × 32) defined in the
COCO dataset are collectively referred to as large-size targets in this study. In addition, the
rationality of this setting is justified in the experimental section. This study first classifies
the images according to target size. One is an image containing only small-size targets, and
the other is an image with large-size targets. Because the visual attention mechanism is
simulated in this target detection model, a preattention module is proposed. In the preat-
tention phase, images are classified by target size to better integrate the semantic features
of the targets from global to local in the attention phase. The purpose of this operation is
based on Navon’s principle of prioritization of global features in visual perception.
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Table 1. Explanation of large, medium, and small target sizes from the COCO dataset.

small objects area < 32 × 32
medium objects 32 × 32 < area < 64 × 64

large objects area > 64 × 64

The Navon task is a well-known letter identification exercise in which participants are
presented with enormous letters made up of a number of much smaller letters as stimuli
and are instructed to respond to one type of letter while ignoring the other. Additionally, it
monitors global and local processes separately. In Navon’s proposed precedence of global
features in visual perception, the visual perception system first deals with the global features
and then processes the local features. In the compound stimulus, Navon proposes that
the nature of the large images is defined as the global features, and the nature of the small
images is defined as the local features, which is equivalent to calling the global features
large-scale characteristics and the local features small-scale characteristics. Similarly, the
large object in each image is considered a large-scale feature in the task of target detection,
and the small-size object is considered a small-scale feature [10].

Previous models used CNNs. However, the size of the convolution kernel limits
the receptive field of CNNs. Thus, its modeling range can only be within the receptive
field of a convolution kernel. MHSA is a module of the attention mechanism where a
separate attention output is combined with a linear transformation to produce a predictive
dimension. Meanwhile, the transformer’s MHSA mechanism models global information [7].
Its perception range of self-attention is the entire image. In images with large-size targets,
because it is easy for the CNN to fall into the calculation features of the local optimal
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solution, it usually ignores the surrounding associated features of the large-size targets
resulting in insufficient detection accuracy. Therefore, this study introduces the MHSA
mechanism into the model and merges the features from global to local in the attention stage.
For images that only contain small-size targets, because of the transformer’s superiority
in global feature perception, it is easy to ignore the local features of small-size targets.
Therefore, small-size targets still use deep CNNs to detect targets.

In the preattention stage, the operation of this module is expressed as follows:

Input image =
{

A subdataset, All target− size area in image < 32× 32
B subdataset, the le f t images in dataset

(1)

3.2. Attention Module
3.2.1. Backbone: Feature Extraction Network (CSPDarknet53)

Regardless of the subdataset in Figure 5, the YOLOv4 model’s backbone module is
still used to extract image features. CSPDarknet53 can extract important semantic features
from the YOLOv4 model. As a result, it is employed as a backbone network. As shown
in Figure 5, CSPDarknet53 is a CNN that acts as the foundation for object detection by
employing DarkNet-53. The feature map on the base layer of a CSPNet network is divided
into two parts that are linked together using a CSP-stage hierarchy. The complexity of
network optimization can be considerably decreased while keeping accuracy with this
network by identifying problems with redundant gradient information. It is compatible
with a variety of networks, such as DenseNet, ResNeXt, and ResNet.

In CSPDarknet53, there are five residual blocks that are labeled CSP 1-5. Each residual
block (Resunits) has several residual units. Resunit employs the 3 × 3 convolution opera-
tion. This convolution operation includes two steps. The second convolution operation
(3 × 3 conv and 1 × 1 conv) is then conducted on each residual block. The overall output
is the outcome of these two methods. Figure 6 depicts the particular operational technique.
As a result, each residual block can resolve the vanishing gradient problem.
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Therefore, the backbone network could extract image features. In our model, the two
subdatasets automatically classified after the preattention stage still use CSPDarknet53
to extract target features. CSPDarknet53 enters the feature fusion stage after performing
feature extraction since it has a large receptive field and a minimal number of parameters.

Figure 6 contains 29 convolutional layers of 3 × 3 and 5 residual blocks. * represents
the multiplication sign. The residual units in each block are 1, 2, 8, 8, and 4. The resolution
of the input image of 618 × 618 is set; thus, the output resolution of the third residual
block is 76 × 76. The fourth output resolution is 38 × 38, and the fifth output resolution is
19 × 19.

3.2.2. Neck: SPP-MHSA, FPN, and PANet

The extraction of fusion features for target identification is often improved by adding
layers between the backbone network and the output layer. YOLOv4′s Neck module
includes FPN, PANet, and SPP. The pooling layer, known as SPP, frees the network from
the fixed-size constraint, resulting in the CNN no longer having a fixed-size input. The
study, in particular, constructs an SPP layer above the final convolution layer. A top-
down architecture with horizontal linkages is developed to generate a high-level map
of semantic features on a global scale. The FPN design significantly outperforms other
generic feature extractors in various applications. Further, PANet is quick, easy, and very
efficient. It comprises components that improve information transmission across pipelines.
It combines characteristics from all levels and even reduces the distance between the bottom
and top layers. Moreover, each level’s elements are enhanced by utilizing augmented
routes. This study introduces the transformer’s MHSA module for obtaining important and
prominent features from diverse places in images following the SPP module and replacing
the convolution block. Figure 7 shows the precise operational procedure. From global to
local elements in the images, modeling may be performed. This procedure can be more
simply integrated than before and extracts useful semantic and geographical information.
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Transformer’s MHSA. The transformer model mainly introduces MHSA, composed of
multiple self-attention mechanisms. For this self-attention model, the calculation process
could be summarized as a function:

Att(Q, K, V) = softmax
(

QKT
√

d

)
V (2)

Q = WQ · x, K = WK · x, V = WV · x (3)

The input is x, representing a matrix in image processing, and the elements in the
matrix are called tokens. Linear operations are performed on x to obtain Q, K, V, where
Q, K are calculated for similarity and obtain the correlation between each element in Q
and K. According to this correlation, the corresponding elements in K are used to construct
the output. Similar to the parallel branch in CNN, self-attention can also be designed as
a parallel structure called multihead self-attention (MHSA). In Auto-T-YOLO, this study
used four heads:

headi = Attention
(

QWQ
i , KWQ

i , VWV
i

)
, i = 1, 2, 3, 4 (4)

MHAtt(Q, K, V) = Concat(head1, · · · , headh)WO, iε[1, h] (5)

The specific self-attention structure diagram is shown below.
Relative Position Encodings: To perceive the position when performing attention

operations, relative position coding is used in the transformer architecture [10]. However,
recently, relative-distance-aware position encodings have been found. Relative Position
Encodings are a sort of position embedding for Transformer-based models that aim to
take advantage of pairwise, relative positional information. The model receives relative
positioning information at two levels: values and keys.

The coding approach proposed by Shaw et al. [44] is more suitable for visual processing
tasks [45,46]. This can be attributed to the attention mechanism considering the content
information and the relative distance of the features in different positions. Based on these
considerations, the perception of information and location can be linked more effectively. In
SPP-MHSA, this study uses relative position-coding to perform self-attention operations [44,47].

SPP-MHSA. According to the previous analysis, deep CNNs can easily lead to the
optimal local solution. It is easy to ignore the salient global features of some targets. The
MHSA mechanism aims to model global features. Based on the precedence of global
features in visual perception, the fusion order of semantic features for each target is from
global to local. Therefore, to detect images with large targets, this study proposes replacing
the convolutional block in the feature fusion stage and at various positions in images with
the MHSA module. After replacing the convolution block with the SPP module, this study
renames the transformer’s MHSA as the SPP-MHSA module.

Figure 8 depicts the particular operation. The model’s first spatial (3 × 3) convolutions
are replaced by an MHSA layer that employs global self-attention of a 2D feature map.
This was included at the beginning, as shown in Figure 8. The beginning of FPN coincides
with the end of CSPDarknet53 because every residual block typically exhibits its strongest
characteristics at its deepest layer, and the strongest feature retrieved is in the output of
the deepest block at the end of the network. CSPDarknet-53, the YOLOv4 backbone, is
responsible for extracting numerous characteristics from images via 5 Resblocks (C1–C5).
The network has 53 convolution layers ranging in size from 1 × 1 to 3 × 3. The feature
map generated from the MHSA operation can be considered by each succeeding layer and
multiscale feature fusion and extraction based on FPN and PANet network design. This
is also analogous to transferring the global features perceived by the MHSA layer to the
succeeding deep CNN, thus modeling semantic information from global to local using the
MHSA layer first, then the convolutional layer. After replacing the block with the MHSA
layer, no further operations are necessary because the stride of the convolution block is 1.
This enhancement (SPP-MHSA) permits global information to be acquired from feature
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maps with varying receptive field sizes, and a multiscale fusion of global information can
be conducted in subsequent operations. This enhances the model’s detection accuracy for
large-size targets.
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As shown in Figure 7, the present study used four heads. * represents the multipli-
cation sign. The 3D nature of the feature map passed to the module is determined by the
H ×W × d, putting these feature maps as WQ, WK, WV . Pointwise convolution is repre-
sented by 1× 1, ⊕ is the element-wise sum, and ⊗ represent matrix multiplication. When
h represents height and w represents width, Rh and Rw are t relative position encodings.
Add the Rh and Rw together and output as r, representing the position distance coding. Ma-
trix multiplication of qr obtains content-position (content-position) output qrT , and matrix
multiplication of qk obtains content-content (content-content) output qkT . After qkT + qrT ,
softmax normalization is applied to the obtained matrix, where q, k, r represent query, key,
and position encodings, respectively (this study uses relative distance encodings [38,41–43]).
After processing, the matrix is HW × HW, and then this matrix is multiplied by the weight
V. The final output z. In addition to using multiple heads, we introduce a two-dimensional
position encoding in the content-position section to accommodate the matrix form in image
processing. It differs most from the Transformer mechanism [38,48,49].

MHSA focuses more on global information. In Figure 9, the important semantic
features of small target images are in the surroundings of the targets and are transferred
between contexts. Global information can sometimes cause redundancy in the transfer of
essential features of small-size targets. Therefore, this study used convolution operations
and attention mechanisms to separate the most significant context features instead of using
the self-attention mechanism in the attention stage for detecting small-size target images.
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In Figure 9, the bold red part is to replace the 3×3 convolution block position with the
MHSA layer.

3.3. Prediction Module
3.3.1. CIoU Loss Function

The loss function of object detection usually is constructed from a classifying loss
function and a regression loss function for boundary box regression. Because the initial
bounding boxes for the truth and bounding boxes for candidates overlap, their intersection
ratio is IoU. Scale invariance is a desirable characteristic of IoU. This indicates that the
two bounding boxes are considered together with their width, height, and placement. The
area of the forms, regardless of their size, is the focus of the normalized IoU measure. The
change from Ln′s norm loss to IoU loss in boundary box loss functions is based on the
application of the metric as a loss function. Thus, the IoU’s mathematical formula is given:

IoU =

∣∣B ∩ Bgt
∣∣∣∣B ∪ Bgt
∣∣ (6)

This relevant loss function is:

LIoU = 1−
∣∣B ∩ Bgt

∣∣∣∣B ∪ Bgt
∣∣ (7)

The prediction box is B after training. Bgt is called a ground truth bounding box, which
is also the premarked target ground. If the extracted candidate object is not covering the
box delimiting the main claim, LIoU is 1. The Generalized Intersection over Union (GIoU)
loss [50] will put a large box outside, which is equivalent to a penalty item. DIoU loss [51]
considers the distance between the overlapping area and the center point. If the target
frame contains a prediction frame, the distance between them can be calculated directly.
However, specific to our prediction task, this study must also consider the geometric factor
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of the target frame aspect ratio; thus, CIoU has also made improvements to this point, for
example, by increasing the compliance limit.

LCIoU = 1− IoU +
ρ2(b, bgt

)
c2 + αυ (8)

Positive weight parameters are denoted by α. The function measuring the consistency
of the aspect ratio is denoted by ν. The width of the target bounding box is w. The target
bounding box‘s height is h.

α =
υ

(1− IoU) + υ
(9)

υ =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(10)

This study should consider the overlap area, the distance from the center, and the
aspect ratio. This study applies the objective box for the regression loss function as the CIoU
loss. This loss function speeds up and improves the regression accuracy of prediction boxes.

3.3.2. DIoU-NMS

In order to filter the projected bounding boxes, this study applies nonmaximum
suppression operation (NMS). The CV technique known as NMS is used for many tasks. It
is a sort of algorithm that chooses one entity from among numerous overlapping instances.
A set of criteria is chosen to produce the intended effects. In NMS, which suppresses
redundant boxes by taking into consideration both the overlap area and the separation
distance between two center points in two bounding boxes, DIoU can be utilized as a
criterion. This makes NMS more resistant to occlusion conditions. The typical NMS
approach is utilized the most frequently out of all the target detection methods. Our model
employs DIoU instead of the computed portion of the IoU and is based on the DIoU/CIoU
loss approach. The DIoU loss remains insensitive to the size of the regression problem. If
the bounding box does not overlap with the target box, such as GIoU loss, DIoU loss might
offer movement directions. It converges significantly more quickly than GIoU loss because
DIoU loss may directly decrease the distance between two boxes. As a result, DIoU serves
as NMS’s judgmental foundation. DIoU-updated NMS’s formula considers both the area of
overlap and the center space distance between the two boxes. Si can be formally defined as:

Si =

{
Si, IoU − RDIoU(BM, Bi) < ε
0, IoU − RDIoU(BM, Bi) ≥ ε

(11)

If the center lengths of the IoU and the two boxes are also taken into account, the Bi can
freely eliminate. Si means the categorization score, while NMS denotes the NMS threshold.
Two boxes, with a central point located apart from each other, can be placed on a large
number of objects according to the DIoU-NMS technique. The main difference between
DIoU-NMS and NMS is not to delete the two boxes mentioned earlier. At each threshold, the
tests in the program [52] show that DIoU-NMS outperforms ordinary NMS. Consequently,
the final prediction box in Auto-T-YOLO is screened using the DIoU-NMS approach.

4. Experiments and Results

The inshore and offshore scenarios from two subdatasets of the public SSDD were used
in the experiments in this paper. These allow us to validate the efficiency, generalizability,
and robustness of Auto-T-YOLO. This part presents the dataset content, the experimental
platform, the experimental results, and some analysis.

4.1. SSDD

The SSDD made the first ship-specific dataset in SAR images available to the public.
Additionally, labels and bounding boxes are designed following the Pattern Analysis,
Statistical Modeling, and Computational Learning Visual Object Classes (POACAL VOL)
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standard. The information that can be seen in Table 2 reveals that SSDD has a total of
1160 images. Out of these images, a total of 947 were offshore and 213 were inshore images.
The majority of the images were taken through sensors. The study used the COCO dataset
for the definition of target size and counted the number of images. The number of images
whose target size area is >64 × 64 is the least inshore or offshore in Table 2. If the pre-
attention stage is divided into A and B subdatasets, the threshold is set to be >64 × 64, and
the help for the improvement of model accuracy will be small. SSDD dataset details are in
Table 3. Our conjecture has also been verified in Section 4.3.1. In the experimental section
of Section 4, the ratio of the training set is 70%. The ratio of the validation set is 20%, and
the test set is 10% [31].

Table 2. There are statistics about the ships’ target-size area in the SSDD dataset. When there is more
than one target size area of the ship in the image larger than 64 × 64, this study will count this image
as “the number of areas > 64 × 64”. The same as “the number of areas > 32 × 32” is also counted like
this. When the target size area of all ships in the image is smaller than 32 × 32, we count this image
as “the number of all area < 32 × 32”.

Name Number of Areas
>64 × 64

Number of All Area
>32 × 32

Number of All Area
<32 × 32 Total

Inshore 82 150 64 213

Offshore 206 647 300 947

Total 288 797 363 1160

Table 3. SSDD dataset details.

Sensors Polarization Scale Resolution Position

RadarSat-2 TerraSAR-X Sentinel-1 HH, VV, VH, HV 1:1 1:2 2:1 1 m-15 m In the sea and offshore

4.2. Settings

The Python language used in our experiment was based on the PyTorch framework.
PyTorch is a free, open-source machine learning framework built using Python and Torch
libraries. It is one of the most recognized research platforms for deep learning. The frame-
work is intended to minimize the length between the research prototype and deployment.
This study used Ubuntu 18.04.2 as the operating system with the graphics card of Nvidia
RTX 2080Ti. The Turing GPU architecture and the all-new RTX platform power GeForce
RTXTM graphics cards. It delivers up to six times the speed of the previous generation of
graphics cards and introduces real-time ray tracing and AI in games. Because the weights
of YOLOv4 are obtained by training the COCO dataset, in order to obtain the weight values
of SSDD, this study trained the SAR image dataset from scratch. The pulse was set to 0.9
and the learning rate to 0.001. The maximum number of iterations was 20,000, and the
input image size was 608 × 608.

4.3. Standard of Evaluation

The probability that the classifier categorizes the items correctly is referred to as
accuracy. If a ship target is detected, the object will likely be accurately identified as a ship.
Two types of accuracy measures were considered to evaluate the prospective performance
of Auto-T-YOLO. Pd is the fault detection rate.

Pd =
TP
Ngt

(12)

Pm is missing the alarm rate.

Pm =
FN
Ngt

(13)



Appl. Sci. 2023, 13, 2488 16 of 25

P f is the false alarm rate.

Pf =
FP

TP + FP
(14)

recall, precision, map, and FPS are defined by:

Precision =
TP

TP + FP
(15)

recall means the chance of judging objects. It is the rate that the model predicts
correctly in data of true.

Recall =
TP

TP + FN
(16)

Sometimes these two metrics do not change in a synchronized manner. If it is not
intuitive to determine which algorithm is superior, the F1 indicator can be used:

F1 =
2× P× R

P + R
(17)

In the above formulas, precision is P, and recall is R. Ngt is the number of the ground
truth. TP represents a true positive number; FP represents a true negatives number; FN
is a false positives number; and TN is a false negatives number. In general, precision and
recall are detection metrics used by a single image. For the whole dataset, this study needs
to introduce one evaluation standard AP. It represents the accuracy of the whole dataset
and the regional curve under accurate recall.

AP =
∫ 1

0
P(R)dR (18)

The relationship between the detection time (s) and frames per second (FPS) of a SAR
image is:

FPS =
1

Time
(19)

4.3.1. Target Size Threshold Setting

The study trains Auto-T-YOLO on SSDD (including offshore and inshore scenes). In
the preattention module, Auto-T-YOLO divides the entire dataset into two subdatasets, A
and B, based on the target size with an explanation of the target size in the COCO dataset.
Due to the difference between the object characteristics in remote sensing and the COCO
dataset, the classification process cannot fully operate depending on the definition of the
target size for the COCO dataset. Therefore, to identify the appropriate target size for the
actual case, the experiments were based on the large-size target (64 × 64) and medium-size
target (32 × 32) to train the dataset. The training results illustrated in Table 4 indicate
that splitting the dataset based on the target size (32 × 32) is more appropriate for remote
sensing images and more efficient in detection.

Table 4. Experimental results for models with different target classifications on SSDD.

Method AP Recall Presion F1 Pd Pm Pf

YOLOv4 90.15% 0.86 0.94 0.90 0.86 0.14 0.15

92.48% 0.92 0.89 0.90 0.92 0.08 0.07

96.3% 0.96 0.86 0.91 0.96 0.04 0.09

As shown in Table 2, there are a few large-size targets defined by the COCO dataset in
the remote sensing images. As shown in Tables 4–6, the scores for Auto− T −YOLO32×32
are all higher than those of Auto − T − YOLO64×64. In the inshore scenes, our model
has a much higher accuracy than the YOLOv4 model because the ship target size in the
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inshore scenes is slightly larger. We can also incorporate a transformer mechanism to
make it concentrate more on the useful information of the object and extract the essential
semantic characteristic information from the overall information because the complicated
background has an impact. For offshore scenes, due to the simple background, the character-
istics of the area near the ship targets do not contribute much to the target itself. The original
YOLOv4 model already has an ideal detection accuracy. The number of images with a
target-size area >32 × 32 is three times greater than the number of images with a target-size
area > 64 × 64 in Table 2, indicating that the performance of Auto − T − YOLO32×32
is superior to those of Auto − T − YOLO64×64 after adding the MHSA module, and the
detection accuracy of medium-size targets can be increased once the MHSA module is
added. It can be seen that the associated modeling of global semantic information can also
supplement the feature information of targets that was lost in the deep CNN. Therefore,
Tables 4–6 exhibit a combination of experimental findings and target size features from
the remote sensing dataset. As shown in Figures 10–12, the histograms show the effect of
different target size classifications on the experimental results. To employ the SPP-MHSA
model for feature fusion extraction, we recommend setting the target area to 32 × 32 in the
preattention module stage. If all target sizes in the images are less than 32 × 32, the image
features should be processed using the YOLOv4 module.

Table 5. Experimental results for models with different target classifications on offshore scenes.

Method AP Recall Presion F1 Pd Pm Pf

YOLOv4 97.98% 0.97 0.98 0.97 0.97 0.03 0.03

98.01% 0.97 0.98 0.97 0.97 0.03 0.03

98.33% 0.98 0.96 0.97 0.98 0.02 0.02

Table 6. Experimental results for models with different target classifications on inshore scenes.

Method AP Recall Presion F1 Pd Pm Pf

YOLOv4 78.73% 0.72 0.75 0.73 0.72 0.28 0.29

85.98% 0.85 0.89 0.87 0.85 0.15 0.16

91.78% 0.89 0.93 0.91 0.89 0.11 0.13
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4.3.2. Impact of the Preattention Module on SSDD including Offshore and Inshore Scenes

Using the logic discussed in the earlier sections, this study divided the datasets into
two subdatasets, A and B, based on whether or not the target size of the dataset in the
experiments is more than 32 × 32. The model without the preattention module is known as
YOLOv4-MHSA. Experiments were run on both datasets to see if there was a preattention
module and how it affected the detection accuracy of Auto-T-YOLO.

The detection results of the two accuracy evaluation indicators on YOLOv4, YOLOv4-
MHSA, and Auto-T-YOLO on SSDD, including offshore and offshore scenes, are shown in
Tables 7–9, respectively. On the SSDD, without the preattention module, indicators such
as detection accuracy are lower than in the models with preattention modules. On the
SSDD dataset, the accuracy of Auto-T-YOLO is 1.4% greater than that of YOLOv4-MHSA.
When compared to YOLOv4, Auto-T-YOLO has a 6.3% higher accuracy. This shows
the effectiveness of the preattention module. Moreover, it has been demonstrated that
incorporating the biological optic nerve into the working principle of CV image processing
is the appropriate research direction. It enables the network mode to replicate the human
brain for image processing features, enhancing detection accuracy.
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Table 7. Influence of preattention module on SSDD.

Method AP Recall Presion F1 Pd Pm Pf

YOLOv4 90.15% 0.86 0.94 0.90 0.86 0.14 0.15

YOLOv4-MHSA 94.9% 0.96 0.89 0.83 0.96 0.04 0.12

Auto-T-YOLO 96.3% 0.96 0.86 0.91 0.96 0.04 0.09

Table 8. Influence of preattention module on the offshore scenes.

Method AP Recall Presion F1 Pd Pm Pf

YOLOv4 97.98% 0.97 0.98 0.97 0.97 0.03 0.03

YOLOv4-MHSA 98.1% 0.96 0.89 0.92 0.96 0.04 0.04

Auto-T-YOLO 98.33% 0.98 0.96 0.97 0.98 0.02 0.02

Table 9. Influence of preattention module on the inshore scenes.

Method AP Recall Presion F1 Pd Pm Pf

YOLOv4 78.73% 0.72 0.75 0.73 0.72 0.28 0.29

YOLOv4-MHSA 89.36% 0.89 0.87 0.88 0.859 0.11 0.14

Auto-T-YOLO 91.78% 0.89 0.93 0.91 0.89 0.11 0.13

Auto-T-YOLO has the best performance, as shown in Table 8, with 98.33% mAP. When
combined with the image characteristics of offshore scenes, the accuracy of Auto-T-YOLO
is only 0.23% higher than that of YOLOv4-MHSA. We believe this is because images of
offshore scenes have a simple background, making the MHSA mechanism, which focuses
more on global information and senses the larger field, unable to extract more valid infor-
mation. The accuracy of the YOLOv4 model and YOLOv4-MHSA models can be improved
by adding the preattention stage. This also indicates that automatically classifying the
target size can enhance the accuracy value of target detection. The improvement of the
proposed model’s accuracy also shows that deep CNN can focus more on effective semantic
information for images of small-size targets. The results demonstrate that Auto-T-YOLO is
more accurate than the other two models, indicating that the detection method for target
size classification is effective.

For the inshore scenes on SSDD, the accuracy and other indicators of Auto-T-YOLO is
also higher than those of YOLOv4-MHSA and YOLOv4, as illustrated in Table 8. From our
previous analysis of SSDD, it can be seen that there are some complex backgrounds for the
inshore scenes. Accordingly, the YOLOv4-MHSA is 10.63% more accurate than the YOLOv4.
After incorporating the MHSA mechanism, more information is retrieved from the features
of the ship’s target region, compensating for YOLOv4’s lack of global information. After
including the automatic target size selection mechanism in our model, various network
structures are employed for target images of varying sizes. The advantages of the two
network structures are pooled, resulting in more accuracy than a single fixed YOLO-MHSA.
Moreover, the accuracy of YOLOv4-MHSA is higher than that of YOLOv4, demonstrating
the MHSA module’s superiority for identifying medium- and large-size objects and further
validating it for image capture global features. The accuracy of Auto-T-YOLO is higher
than that of YOLOv4-MHSA, demonstrating that, compared to the transformer mechanism,
the convolutional network has certain advantages in detecting small-size targets. Using
the precedence of global features in visual perception to detect medium- and large-size
targets and incorporating the MHSA module into the model to fuse feature information
from global to local can considerably increase the accuracy of target identification tasks.
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4.3.3. Figures of the Results of Some Ablation Experiments

In Figure 13, the first two lines are inshore scenes. The remaining two lines are
offshore scenes. The red detection box is the ship target not detected by models. As
shown in the figure, the detection accuracy of Auto− T−YOLO32×32 is higher than that of
Auto− T −YOLO64×64 in rows 1 and 2. The red ground represents the ship target that the
model failed to detect. Therefore, it can be seen that the Recall of Auto− T −YOLO32×32
in the inshore scene is also higher than that of Auto− T −YOLO64×64. This demonstrates
how we use the MHSA mechanism to extract target semantic information from global to
local, allowing critical aspects to be highlighted while reducing the impact of redundant
information. In the preattention stage, setting the threshold to Auto—T—YOLO (32 × 32)
is also more appropriate for remote sensing image features and considerably enhances
accuracy. When comparing the images of YOLO-MHSA and Auto-T-YOLO in rows 1 and 2,
it can be seen that for some small-size ship targets that are reasonably close, the MHSA
mechanism will incorrectly classify the two ship targets as one because it focuses on global
information. Therefore, we can demonstrate the need to include a preattention stage.
Following automatic classification, different feature extraction and fusion models can be
employed to target features of varying sizes to improve accuracy and efficiency. Although
the overall accuracy for the offshore images in rows 3 and 4 is already strong, there are
still numerous missed targets in the YOLOv4-MHSA model. This also demonstrates that
the MHSA mechanism’s detection accuracy is not optimal for small-size objects. In the
next step, this is where we need to work on making improvements. However, based on
the visual ship detection findings, it is concluded that Auto-T-YOLO is the best in terms of
detection results.
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4.4. Comparison with SOTA Models

To validate this study’s findings, Auto-T-YOLO was compared to current SOTA models.
The field of target detection was introduced to remote sensing imaging. In addition, two
accuracy assessment measures were used to assess the effectiveness of the detecting model.
Figure 14 depicts the visualization results of different detection models on inshore and
offshore scenes from the SSDD dataset. The following discussions and conclusions are
based on Tables 10–12.
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In Table 10, the Auto-T-YOLO model has the highest accuracy compared to the other
SOTA models. In terms of accuracy, Auto-T-YOLO is 2.1% is better than the Retinanet
model, which is the second best. Model detection is also faster than Retinanet. However,
the added characteristics and computational complexity of the model cause a drop in
speed compared to one-stage detectors (YOLOv2 and YOLOv3). However, the proposed
model is more accurate. Compared to two-stage detection systems, Auto-T-YOLO has
fewer parameters, reduced computing complexity, and higher accuracy. Although the
FPS of our proposed model is not the highest, as shown in Table 10, yet, when compared
to the highest FPS of YOLOv2, the model’s detection accuracy improves by 6% without
significantly increasing detection time. Based on the above discussions, it can be concluded
that improving Auto-T-YOLO results in a notable improvement in accuracy.

As shown in Table 11, while the accuracy of Auto-T-YOLO is 0.07% lower than
that of the ARPN model, it is 1.6 times faster in terms of operating speed. In addition
to the ARPN model, Auto-T-YOLO outperforms Retinanet by 0.32% and is 1.7 times
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faster. Speed and accuracy are important indicators for assessing the model’s performance
in terms of real-time target detection. There is sufficient evidence that suggests that
Auto-T-YOLO optimally balances the relationship between accuracy and speed in real-
world application scenarios. The results in Table 12 show that Auto-T-YOLO has the
highest accuracy in inshore scenarios. The AP of 91.87% achieves gains of 11.78%, 10.64%,
9.68%, and 7.68% using HR-SDNet, Fater RCNN, RetinaNet, and ARPN, respectively,
with an accuracy rate of more than 80%. On inshore scenarios, our model outperforms
the ARPN model. This demonstrates that for complicated backgrounds and large-size
targets, the approaches of automatically selecting the suitable structure based on image
size and the MHSA mechanism for feature extraction from global to local provide a more
successful approach. Therefore, combining the transformer mechanism and the deep CNN
is feasible to perform a multiscale fusion of features from the global to the local. Moreover, a
model that simulates human visual selective attention mechanisms can be used to improve
object detection accuracy. Comparison with detection results of different SOTA algorithms
in the SSDD (containing inshore and offshore scenarios) reveals that Auto-T-YOLO has
strong generalization capability. Compared to SOTA models, Auto-T-YOLO achieves the
appropriate balance of accuracy and speed and the optimal speed and accuracy.

Table 10. Experimental results of SOTA models on SSDD dataset.

Method AP Recall Precision F1 Pd Pm Pf FPS Param(M)

YOLOv2 90.10% 0.89 0.91 0.91 0.89 0.11 0.11 27 217

YOLOv3 91.84% 0.90 0.92 0.91 0.90 0.10 0.10 20.1 243.5

SSD 80.77% 0.72 0.80 0.76 0.72 0.28 0.31 21.3 297.8

Fater R-cnn 92.94% 0.71 0.92 0.76 0.71 0.29 0.38 13.3 482.4

Mask R-cnn 92.43% 0.95 0.89 0.92 0.92 0.05 0.04 12.5 503.4

RetinaNet 94.1% 0.94 0.92 0.93 0.94 0.06 0.05 12.8 442.3

YOLOv4 90.15% 0.86 0.94 0.90 0.86 0.14 0.15 24 244.2

Auto-T-YOLO 96.3% 0.96 0.86 0.91 0.96 0.04 0.09 20.9 247.8

Table 11. Experimental results of SOTA models on offshore scenes.

Method AP Recall Precision F1 Pd Pm Pf FPS Param(M)

YOLOv3 95.39% 0.99 0.95 0.97 0.99 0.01 0.01 20.1 243.5

Fater R-cnn 97.74% 0.96 0.97 0.97 0.96 0.04 0.03 13.3 482.4

RetinaNet 97.81% 0.96 0.95 0.96 0.96 0.04 0.04 12.8 442.3

DAPN 95.93% 0.99 0.96 0.98 0.99 0.01 0.01 24 244.2

HR-SDNet 92.10 % 0.94 0.95 0.94 0.94 0.06 0.06 11 598.1

ARPN 98.20 % 0.96 0.97 0.96 0.96 0.04 0.04 13 490.7

Auto-T-YOLO 98.33% 0.98 0.96 0.97 0.98 0.02 0.02 20.9 247.8

In Figure 14, the first three rows are inshore scenes. Others are offshore scenes. The
red detection box represents the ship target not detected by the detection model. These
visualization results also corroborate what is shown in the tables above. Compared with
the SOTA method, Auto-T-YOLO has the highest accuracy. In inshore scenes, Auto-T-
YOLO showed a significantly reduced missed detection rate (1-recall) compared with the
values of YOLOV2, YOLOV3, and SSD. The accuracy rate for the offshore scenes was
also significantly improved. These visualization results also represent the superiority of
the model.
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Table 12. Experimental results of SOTA models on inshore scenes.

Method AP Recall Precision F1 Pd Pm Pf FPS Param(M)

YOLOv3 78.50% 0.71 0.73 0.72 0.71 0.29 0.30 20.1 243.5

Fater R-cnn 81.14% 0.82 0.63 0.71 0.82 0.18 0.14 13.3 482.4

RetinaNet 82.1% 0.83 0.86 0.84 0.83 0.27 0.18 12.8 442.3

DAPN 77.20% 0.72 0.69 0.70 0.72 0.28 0.27 24 244.2

HR-SDNet 80.0% 0.84 0.66 0.73 0.84 0.26 0.16 11 598.1

ARPN 84.1 % 0.85 0.73 0.79 0.85 0.15 0.13 13 490.7

Auto-T-YOLO 91.78% 0.89 0.93 0.91 0.89 0.11 0.13 20.9 247.8

5. Discussion and Conclusions

The current study addresses the issue of edge features for ship objects with large sizes
or irregular aspect ratios, which result in poor detection accuracy. Moreover, deep CNN
only mechanically learns image features and cannot automatically update the structure
with the image features during computation. To solve these issues, the present study intro-
duced an enhanced object detection model that combines the features of the transformer
mechanism and CNN. To overcome the problem of the target’s edge features, which are
easily ignored, feature fusion is accomplished from global to local for large-size images and
medium-size targets. The proposed method, which simulates the human visual attention
pattern, chooses distinct structures based on image attributes for target detection. Moreover,
the adopted Auto-T-YOLO model autonomously selects different structures to process
different image information to improve the model’s detection level. The results showed
that once the network structure is incorporated into the preattention and attention stages,
the detection accuracy improves, providing some interpretability for the deep CNN’s
black-box operation.

Inshore and offshore images for remote sensing have distinct characteristics. Offshore
images feature small ship targets against plain backgrounds, and inshore images feature
larger ship targets against complex backgrounds. As a result, individually detecting various
types of images can show the model’s adaptability and usefulness. In addition, the study
used two distinct assessment indexes to validate the detection performance, both of which
improved the detection accuracy of the YOLOv4 model. Compared to the SOTA technique,
the experimental findings proved the efficacy and superiority of Auto-T-YOLO over existing
SOTA ship detectors in terms of target detection.

Although this study’s findings indicated that the proposed model achieves high
detection accuracy, there is still potential for improvement. Due to model limitations, it is
impossible to change the position of the inspection frame to the ship’s bow clew angle for
more accurate detection. Researchers should focus on better integrating the transformer
mechanism with the CNN in the future to improve decontamination accuracy and make
the network structure consciously detect and process the ship based on its bow clew
angle. There is also potential to improve the model’s detection accuracy on inshore images.
Meanwhile, the model’s framework will be modified to lower the algorithm’s complexity
in the subsequent study.
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