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Abstract

:

This paper proposes a new hybrid algorithm for grey wolf optimization (GWO) integrated with a robust learning mechanism to solve the large-scale economic load dispatch (ELD) problem. The robust learning grey wolf optimization (RLGWO) algorithm imitates the hunting behavior and social hierarchy of grey wolves in nature and is reinforced by robust tolerance-based adjust searching direction and opposite-based learning. This technique could effectively prevent search agents from being trapped in local optima and also generate potential candidates to obtain a feasible solution. Several constraints of power generators, such as generation limits, local demand, valve-point loading effect, and transmission losses, are considered in practical operation. Five test systems are used to evaluate the effectiveness and robustness of the proposed algorithm in solving the ELD problem. The simulation results clearly reveal the superiority and feasibility of RLGWO to find better solutions in terms of fuel cost and computational efficiency when compared with the previous literature.
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1. Introduction


Economic load dispatch (ELD) is considered the most elementary and computationally heavy optimization problem in electricity industry studies. ELD enables the power system to analyze the committed generating units to allocate the optimum level of active power output to achieve the total power demands at the cheapest operating cost while satisfying several physical and operational constraints [1]. Over the last few years, various mathematical programming techniques and optimization methods have been applied to solve ELD problems, such as the Newton method [2], the gradient method [3], the base point and participation factors method, and the Lambda-iteration method [2]. Nevertheless, none of the mentioned techniques perform well in addressing practical problems with nonlinear and discontinuous characteristics since these methods required the incremental cost of the generators to be increase in a monotonic or piecewise linear fashion [2]. Therefore, nonlinear programming [4], dynamic programming [5], and some of their modified applications have been employed to deal with ELD issues. Unfortunately, the drawback of these methods is their computational time, which when applied to modern power systems with a huge number of generating units is too long.



To overcome the downside of traditional mathematical programming, researchers around the world have introduced metaheuristic optimization algorithms, such as simulated annealing (SA) [6], genetic algorithms (GAs) [7], tabu searches (TS) [8], and artificial neural networks (ANNs) [9]. Yalcinoz [10] successfully addressed complex optimization issues. However, these probabilistic heuristic algorithms do not always guarantee the global search property. Recently, different kinds of global optimization algorithms have been proposed, such as particle swarm optimization (PSO) [11], modified particle swarm optimization [12], biogeography-based optimization (BBO) [13], modified genetic algorithm [14], bacteria foraging optimization [15], differential evolution (DE) [16], and ant colony optimization [17]. The application of these techniques in ELD has delivered some promising solutions in terms of minimizing total generation cost and improving convergence rate.



However, recent research has recognized a few deficiencies in stochastic algorithms like GA. This degradation in efficiency and limited search capability may be noticeable when applied to multimodal objective functions. Additionally, TS requires a suitable selection of control parameters to attain an optimal solution. Slow convergence can be considered a key disadvantage of GA, SA, TS, and ANN, making them unable to appropriately address real-time issues. Even though PSO has attracted research interest due to its rapid convergence characteristic and its flexibility, PSO is still restricted when applied to large-scale real-time ELD, since it is not always guaranteed that the total generation cost is the global best solution.



The modification of the presented algorithm can be a solution for achieving the global optimal solution and upgrading the convergence rate. Existing modified metaheuristic methods include chaotic differential evolution and sequential quadratic programming (DEC_SQP) [18], improved coordinated aggregation-based PSO (ICA_PSO) [19], quantum-inspired particle swarm optimization (QPSO) [20], modified shuffled frog leaping algorithm with GA crossover (MSFLA and GA) [21], a different version of PSO [19], shuffled differential evolution (SDE) [21], hybrid biogeography-based optimization with differential evolution (DE/BBO) [22], and adaptive hybrid backtracking search optimization [23]. Oppositional invasive weed optimization (OIWO) [24] improves the convergence rate of invasive weed optimization by incorporating opposite-based learning (OBL) [25]. Nevertheless, this OIWO relies heavily on the initial selection of control parameters to obtain the global best solution. Moreover, the solution is not unique for every trial, and this method also has the problem of long computational time.



In recent years, a new evolutionary optimization technique, called grey wolf optimization (GWO), which mimics the social hierarchy and hunting behavior of grey wolves, has been proposed by Mirjalili et al. [26]. There are several applications of GWO in power system optimization problems [27,28]. The outstanding characteristic of GWO compared with other stochastic heuristic algorithms is that it does not depend on accurate initialization of input parameters to obtain the global best solution. However, the parameters still need to be modified to avoid premature convergence, as well as to improve the convergence speed. To overcome the above limitation, a hybrid GWO algorithm with a robust learning mechanism (RLGWO) is introduced in this paper that incorporates opposite-based learning (OBL) as a candidate generation strategy. The main reason for selecting OBL is that it does not require any specific technique to speed up the convergence rate of different optimization algorithm. Additionally, the candidates generated by OBL are more likely to come closer to the global optimum solution than a solution using randomly generated candidates, because the technique simultaneously considers both the current population and its opposite. In only a short period of time, OBL, a new concept in computational intelligence, has attracted research attention with the aim of enhancing metaheuristic optimization algorithms to address large-scale ELD [24,29].



In this paper, the performance of a proposed grey wolf algorithm variant with robust tolerance-based adjust searching direction mechanism (RTASDM), called the robust learning grey wolf algorithm (RLGWO), is studied. The algorithm is tested on five test systems with different sizes and in consideration of power system constraints to evaluate the performance of the proposed approach in solving the ELD problem compared with other variants of the GWO. The reported results reveal the ability of RLGWO to archive superior solutions in terms of quality, consistency, and convergence rate compared to several other optimization methods.




2. Problem Formulation


Economic load dispatch is a classical optimization problem in power systems. The main goal is to obtain the cheapest fuel cost by allocating the optimal power output among the available generating units while satisfying various equality and inequality constraints.



2.1. Objective Function


The main objective of the ED problem is to minimize the total generation costs of a power system by determining the power output of generators that satisfies various constraints, such as the load demands of PD are met within an appropriate period (normally in one hour), the active balance constraint, and the limitation of the generator. The simplified cost function of ED can be written as:


  Minimize    F  c o s t   =   ∑   i = 1  g   F i   (   P i   )   



(1)






   F i   (   P i   )  =  a i  +  b i   P i  +  c i   P i 2   



(2)




where    F  c o s t     is the total generation cost,    F i    is the cost function of the ith generating unit in terms of    P i   , which is the power output of ith generating unit.    a i   ,    b i    and    c i    are the fuel cost coefficients of ith generating unit. Finally,  g  is the total number of generating units.



Practically, the generators with multiple valve steam turbines exhibit a wide variation with respect to the fuel cost function. This is because the valve-point creates a ripple, whereby the cost function cannot be represented by a quadratic polynomial function as in (2), since it contains nonlinear characteristics. Therefore, the cost function considered in this paper is a combination of quadratic functions and sinusoidal functions, which are represented as follows:


  Minimize    F  c o s t   =   ∑   i = 1  g   F i   (   P i   )  =   ∑   i = 1  g   (   a i  +  b i   P i  +  c i   P i 2  +  |   e i  sin  (   f i  ×  (   P  i , m i n   −  P i   )   )   |   )   



(3)




where    e i    and    f i    are the constants of the ith generating unit reflecting the valve-point effect [30].



Additionally, thermal dispatching units are realistically supplied from different fuel sources with several types of fuel. The operation of each dispatching unit should be mathematically represented under multiple piecewise functions to emphasize the effect of multiple fuel sources. Both the valve-point effect and multiple fuel options should be combined to acquire a practical and reliable ELD. Finally, the cost function of the ith generating unit can be realistically expressed as below:


   F i   (   P i   )  =  {           a  i 1   +  b  i 1    P  i 1   +  c  i 1    P  i 1  2  +  |   e  i 1   sin  (   f  i 1   ×  (   P  i 1 , m i n   −  P  i 1    )   )   |         a  i 2   +  b  i 2    P  i 2   +  c  i 2    P  i 2  2  +  |   e  i 2   sin  (   f  i 2   ×  (   P  i 2 , m i n   −  P  i 2    )   )   |              i f  P  i 1 , m i n   ≤  P i  ≤  P  i 1           i f  P  i 2 , m i n   ≤  P i  ≤  P  i 2            …   …       a  i k   +  b  i k    P  i k   +  c  i k    P  i k  2  +  |   e  i k   sin  (   f  i k   ×  (   P  i k , m i n   −  P  i k    )   )   |      i f  P  i k , m i n   ≤  P i  ≤  P  i k          



(4)








2.2. Equality and Inequality Constraints


	(a)

	
Active power balance constraint



The total generated power output     ∑   i = 1  g   P i      should be the same as the sum of the total power demand    P D    and the total system loss    P  L o s s    . This is represented as follows:


    ∑   i = 1  g   P i  =  P D  +  P  L o s s    



(5)








	(b)

	
The limitations of the generator



The power output of each generating unit should be limited to between its minimum and maximum power outputs, as shown in the inequality constraint in (6):


   P  i , m i n   ≤  P i  ≤  P  i , m a x    



(6)




where    P  i , m i n     and    P  i , m a x     are the minimum and maximum real power output of the generating unit i.









3. GWO Algorithm


The Grey Wolf Optimizer (GWO) was modeled by Mirjalili et al. [26] based on the social hierarchy and the hunting behavior of grey wolves.



3.1. Social Hierarchy


The grey wolf belongs to the Canidae family, and they are considered to be apex predators, which means that they are at the top of the food chain. They mostly prefer to live in packs, and they have a very strict social dominance hierarchy, consisting of alpha, beta, delta, and omega [26].



To mathematically model the GWO based on the social hierarchy characteristics of wolves, the alpha (α) is considered to be the fittest solution. The beta (β) and the delta (δ) are consequently utilized as the second- and third-best solutions, respectively. The omega (ω) corresponds to the remainder of the candidate solutions. The hunting (optimization) in the GWO algorithm is guided by α, β, and δ. The ω follows these three leaders.




3.2. Encircling Prey


Group hunting is another interesting social behavior that emphasizes the social hierarchy of grey wolves, as described above. According to Muro et al. [31], the hunting process of grey wolves includes three main steps: (1) tracking, chasing, and approaching the prey; (2) encircling, pursuing, and harassing the prey until it stops moving; and (3) attacking the prey. The following equations show the mathematical modeling of encircling behavior [26]:


   D →  =  |   C →  ·   X →  p   ( t )  −  X →   ( t )   |   



(7)






   X →   (  t + 1  )  =   X →  p   ( t )  −  A →  ·  D →   



(8)




where     X →  p    is the position vector of the prey,    X →      is the position vector of the grey wolf, t indicates the current iteration,   A →   and   C →   are coefficient vectors.



The vectors   A →   and   C →   are calculated as follows:


   A →  = 2  a →  ·   r →  1  −  a →   



(9)






   C →  = 2   r →  2   



(10)




where    a →      decreases linearly from 2 to 0 over the course of multiple iterations, and     r →  1   ,     r →  2    are random vectors [0,1].




3.3. Hunting


The alpha, beta, and delta are assumed to have the ability to recognize potential locations of prey, since they hold the three best solutions obtained so far. Hence, their solution positions are utilized to update the positions of all of the other (omega) wolves. The updated position formulation proposed above is as follows:


    D →  α  =  |    C →  1  ·   X →  α  −  X →   |  ,   D →  β  =  |    C →  2  ·   X →  β  −  X →   |  ,     D →  δ  =  |    C →  3  ·   X →  δ  −  X →   |   



(11)






    X →  1  =   X →  α  −   A →  1  ·   D →  α  ,     X →  2  =   X →  β  −   A →  2  ·   D →  β  ,     X →  3  =   X →  β  −   A →  3  ·   D →  β   



(12)






   X →   (  t + 1  )  =     X →  1  +   X →  2  +   X →  3   3   



(13)







After repeatedly applying the encircling and hunting techniques, the prey (the fittest solution) will be located.





4. Robust Learning-Based GWO Algorithm (RLGWO)


All omega members of the hunting group in the original GWO learn from the first three best leaders to update their position until the termination condition is reached, even if the fittest solution (alpha) is trapped in a local optimum. This kind of learning algorithm can work well in the exploitation phase and has the ability to converge rapidly, but is invalid when solving problems with such large and complex search spaces. Some methods have been proposed for GWO incorporating strategies to restrict the learning mechanism of omega to maintain the diversity of the population, like EEGWO [32] and GWO-ABC [33]. These strategies result in good exploration performance. However, it takes a longer time to reach a solution and slows down the convergence rate of the algorithm.



The algorithm (RLGWO) proposed in this paper achieves a balance between exploitation and exploration. In RLGWO, a robust tolerance-based adjust searching direction mechanism is used. This method gives omega the ability to adjust their search direction to avoid falling into local optima and to diminish the size of the search space. Additionally, an opposition learning-based candidate grey wolf strategy is utilized to generate candidate leaders that replace the position of alpha as well as beta and delta, in which the hunting group can perform in different areas within the search space. Subsequently, looking toward guaranteeing the efficiency and accuracy of the algorithm, a potential position update scheme is introduced to adapt the potential ability of the candidate leader to guide the grey wolf for exploitation in divergent dimensions.



4.1. Robust Tolerance-Based Adjust Searching Direction Mechanism (RTASDM)


It is widely known that the grey wolf in the original GWO had a high possibility of getting stuck in local optima when operating in a large and complex search space. In Figure 1a, the hunting mechanism for a one-dimensional problem is presented, where the blue curve illustrates the object function.    P α      is the alpha position (the best solution) that leads the rest of the population. In Figure 1a, it is clear that each omega can move along the guiding direction of the alpha fitness value    P α    and the hunting group will be trapped in a local optimum after several iteration. Assume   f    (   X ω n   )   k    indicates the objective value of the nth omega in the population at the kth iteration.    X ω n    will be updated in the next iteration using Formula (13). Then, it will generate a new fitness denoted by   f    (   X ω n   )    k + 1    . The total difference between   f    (   X ω n   )    k + 1     and   f    (   X ω n   )   k    in the population can be described as shown in (14), where N is the population size.


    ∑   n = 1  N   (  f    (   X ω n   )   k   )  −   ∑   n = 1  N   (  f    (   X ω n   )    k + 1    )  = A    (  A ∈ ℝ  )   



(14)







After the course of iteration, the solution may finally converge to the optimum solution (global or local optimum). This situation indicates that  A  is more likely to be close to 0. Assuming that  φ  is a small value around 0, we can determine when the hunting group is going to converge by setting  A  that belongs to a range of    [  − φ , φ  ]   . Therefore, Formula (14) can be rewritten as:


    ∑   n = 1  N   (  f    (   X ω n   )   k   )  −   ∑   n = 1  N   (  f    (   X ω n   )    k + 1    )  ∈  [  − φ , φ  ]   



(15)







To avoid the hunting groups getting stuck in the local optimum and to ensure the efficiency of the algorithm, the omega’s search direction can be adjusted every time Equation (15) is satisfied. Nevertheless, when dealing with a large and complex space, we cannot rely on the circumstances described above to change the search direction of the omega. It can be clearly seen in Figure 1b that when the alpha position (global best solution) gets close to the global optimum, it leads the other members of the hunting group to search in the direction towards    P α   . This also means that the solution of the generation   k + 1   may not be improved by the alpha, while also satisfying the conditions shown in Equation (15). Therefore, depending on the potential ability of    P α   , the hunting group can be led to a promising global optimum over the next few iterations [34].



After several iterations, as the number of satisfied conditions increases, meaning that there is no difference between the current solution and previous solutions, it can be concluded that the grey wolf is stuck around a local optimum. Therefore, the grey wolf needs to modify its search direction. Let  h  be a tolerance variable, where  h  is initially set to 0 and is used as a counter. In cases where (15) is satisfied,  h  can be updated via Equation (16), as follows.


  h = h + 1  



(16)







As the value of  h  becomes greater, the probability of becoming trapped in the local optima of a hunting group also increases [34]. However, in cases where    P α    is searching around the global optimum, as described above, the omega should not change their search direction, but rather move along the alpha direction. Therefore, we introduce the probability    P  a d j u s t    , which enables the omega to adjust its search direction.    P  a d j u s t     can be achieved experimentally using Equation (17), below, where  k  is the current iteration and   M a x I t   is the maximum number of iterations.


   P  a d j u s t   =   e x p  ( h )  − 1   e x p  (  10 +   k × 10   M a x I t    )  − 1    



(17)







As can be seen from Figure 2, the    P  a d j u s t     is not fixed throughout the course of iterations; rather, its value is updated according to  h  and  k . When the value of    P  a d j u s t     is larger than a random number with a range of [0,1], the leader alpha (beta or gamma) will be replaced by another candidate solution, which will continue to guide the hunting group.



Algorithm 1, below, shows the details of the approach.



	Algorithm 1. Robust tolerance-based adjust searching direction mechanism



	1: At iteration kth;



	  2 :   Initialize   h = 0  



	  3 :   if     ∑   n = 1  N   (  f    (   X ω n   )   k   )  −   ∑   n = 1  N   (  f    (   X ω n   )    k + 1    )  ∈  [  − φ , φ  ]    then



	  4 :   h = h + 1  



	5: end if



	6: generate a random number in the range of [0,1];



	  7 :   if    (    e x p  ( h )  − 1   e x p  (  10 +   k × 10   M a x I t    )  − 1   > r a n d ( )  )    then



	8: Finding another candidate solution to replace alpha (beta or gamma)



	9: end if








It is clear from Figure 2 and Algorithm 1 that the    P  a d j u s t     depends on  h  and  k , especially the tolerance value  h . When the value of  h  is small,    P  a d j u s t     has a high probability of becoming smaller than the random number; then, the first three best leaders continue to guide the hunting group, and their leading ability will be useful for the next several iterations. When  h  increases to the threshold,    P  a d j u s t     increases dramatically. This indicates that the number of solutions has still not improved over the next several iterations, and the hunting group is more likely to become trapped in a local optimum. Therefore, the value of    P  a d j u s t     is probably greater than the random number, and a new leader will be used to lead the omega search direction.



On top of that,    P α    is more likely to get close to the global optimum when the number of iterations is increased, especially with numbers of iterations greater than half, as can be seen in Figure 3. Therefore, to ensure convergence, the value of  h  should be increased to get rid of the omega and change its search direction.




4.2. Opposition-Based Learning for Candidate Generation Strategy


Opposition-based learning (OBL) [25] has recently been utilized to accelerate the convergence rate of several optimization algorithms. The OBL technique can be used to generate potential candidate solutions by considering both the current population and its opposite population. It has been proved in many studies worldwide that opposition candidate solutions are more likely to get closer to the global optimum solution than a randomly generated candidate solution. There have been many advanced applications of this learning mechanism in several soft computing techniques, as reported in [35,36,37,38].



The two definitions below show the important aspects of OBL, the opposite number and opposite point [25]:



Definition—Let   x ∈ ℝ   be a real number defined in a certain interval:   x ∈  [  a , b  ]   . The opposite number    x  o p p     is defined as follows:


   x  o p p   = a + b − x  



(18)







Definition—Let   P  (   x 1  ,  x 2  , … ,  x n   )    be a point in an n-dimensional coordinate system with    x 1  ,  x 2  , … ,  x n  ∈ ℝ   and   x ∈  [   a i  ,  b i   ]   . The opposition point    P  o p p     is completely defined by its coordinates    x 1  o p p   ,  x 2  o p p   , … ,    x n  o p p     where


   x 1  o p p   =  a i  +  b i  −  x i    i = 1 ,   2 , … , n  



(19)







In the proposed RLGWO, after defining the replacement of the leader with a candidate solution in Section 4.1, a random candidate solution can easily be created in the search space to guide the hunting group to get rid of the current local optimum solution. However, the random candidate may not be guaranteed to improve the solution; in particular, when dealing with large and complex spaces, it is probable that it will lead the hunting group into another local optimum. Using the OBL can ensure the generation of a candidate more effectively.



In Figure 3, it is clear to see that the difference between the current and the previous solution in the first half of the iteration changes violently. This circumstance can be explained by the fact that the hunting group is carrying out the exploration phase. This means that the grey wolves are attempting to search the hold space to figure out promising areas for the global optimum. The alpha will have a significant influence on the hunting group, since it is the best solution. Therefore, in this certain period, replacing the alpha with its opposite position is a wise course of action to escape the local optimum.



The remaining half of the total course of iteration is the exploitation phase, when the grey wolf scales down the search space and concentrates on a certain area to find the optimum solution. To prevent the omega from moving away from the global optimum and to ensure the efficiency of the algorithm, the alpha acts as the main leader and the beta (or gamma) may be replaced by its opposite position. Since the beta and gamma have almost the same potential ability, the beta will be removed if the random number is greater than 0.5, and conversely, gamma will be substituted if it is less than this value.



The details of the generating candidate are described in Algorithm 2.



	Algorithm 2. Opposition-based learning for candidate generation strategy



	1: At iteration kth;



	  2 :   Generate   a   random   number   r a n d ( )   between [0,1];



	  3 :   if    P  a d j u s t   < r a n d ( )  



	4: Keep alpha, beta, and gamma as the leader;



	5: else



	  6 :   if   k th <   M a x I t  2    then



	  7 :    X α  ← min  (  a l p h a  )  + m a x  (  a l p h a  )  −  X α   ;



	8: else



	  9 :   Generate   a   random   number   r a n d ( )   between [0,1];



	  10 :   if   r a n d ( ) > 0.5  



	  11 :    X β  ← min  (  b e t a  )  + m a x  (  b e t a  )  −  X β   ;



	12: else



	  13 :    X δ  ← min  (  g a m m a  )  + m a x  (  g a m m a  )  −  X δ   ;









4.3. RLGWO Algorithm for Economic Load Dispatch


The computational mechanism for the proposed RLGWO algorithm to solve ELD problems is described in the following steps.



Step 1. Initialization



Step 1.1: Arbitrarily generate the initial value for all of the active power of the generating units belonging to their lower and upper real power operating limits except the last unit. Equation (4) is used to compute the amount of active power output of the last unit to guarantee whether it satisfies the inequality constraint or not. The solution will be discarded whenever it violates the inequality constraint. Let D be the dimension of the hunting group. The initial position of the grey wolves is given as a matrix,  X , below:


  X =  [           X 1 1       X 2 1     ⋯       X 1 2       X 1 2     ⋯     ⋯   ⋯   ⋯             X i 1     ⋯     X g 1         X 1 2     ⋯     X g 2       ⋯   ⋯   ⋯               X 1 i       X 2 i     ⋯     ⋯   ⋯   ⋯       X 1 D       X 2 D     ⋯             X i i     ⋯     X g i       ⋯   ⋯   ⋯       X i D     ⋯     X g D           ]   



(20)







Step 1.2: Substitute the matrix  X  into (3) and calculate the fuel cost for each solution of the current population.



Step 1.3: Evaluate the cost value of all search agents (grey wolves), which determine    X α   ,    X β   ,    X δ    as the first three best solutions by simple comparison of their cost value.



Step 1.4: Set all the parameters, including   M a x I t  ,   φ = 0  , coefficient vector   A →   and   C →  , initial variable tolerance   h = 0  .



Step 2. Repeat this step until the stopping criterion is satisfied.



Step 2.1: Update the position of all search agents using (11)–(13).



Step 2.2: Calculate the fuel cost for all members of the hunting group using (3) and compare the results to figure out    X α   ,    X β   ,    X δ   .



Step 2.3: Evaluate   A =   ∑   n = 1  N   (  f    (   X ω n   )   k   )  −   ∑   n = 1  N   (  f    (   X ω n   )    k + 1    )   , and then check whether  A  fulfills Condition (15) or not. In cases where  A  belongs to the range    [  − φ , φ  ]   ,  h  will be increased by 1.



Step 2.4: Compute the probability of    P  a d j u s t     using (17) and select a random number   R ∈  [  0 , 1  ]   . If    P  a d j u s t   < R  , meaning that the three best leaders still potentially have the ability to guide all search agents, then return to Step 2. Otherwise, follow Algorithm 2 to generate a suitable candidate to lead the hunting group and move back to Step 2.





5. Simulation Results and Discussion


Five different benchmark test systems were applied to evaluate the performance of the proposed RLGWO algorithm. Its performance was also compared with that of several optimization techniques reported in the literature. The nature-inspired RLGWO was executed using MATLAB 7.1 (R2010a) on Intel (R) 1GB RAM, 2.60 GHz CPU.



Dissimilar to other metaheuristic computations that require suitable values for the algorithm’s input parameters in order to improve their convergence rate, like particle swarm optimization (PSO) or evolutionary algorithms (ED), GWO has the advantage of being free from the initialization of input parameter. In this paper, the initial parameter for population size and the maximum number of iterations is selected as 50 and 200, respectively.



5.1. Test Systems and Results


5.1.1. Test System 1


This system contained 13 thermal units with a fuel cost function having a valve-point effect is used. The power demand, in this case, it is assumed to be 2520 MW, including transmission losses. The detailed parameters of the system were adopted from [24]. The solution obtained from the proposed RLGWO is compared with oppositional real coded chemical reaction optimization (ORCCRO) [29], a different version of PSO [19], shuffled differential evolution (SDE) [39], biogeography-based optimization (BBO) [13], DE/BBO [22], and OIWO [24], where Table 1 shows their best results. The convergence characteristic of the 13-unit test systems with the original GWO and RLGWO algorithms for fitness value are presented in Figure 4. This shows that the result of RLGWO is lower than the result of GWO.



The statistical results of RLGWO and other published algorithms are listed in Table 2, showing the maximum, minimum, and average cost obtained using different methods over 50 trials. Figure 5 shows a visualization of the results presented in Table 2 of the different algorithms. The box graphs in Figure 5a show that the RLGWO always produces one of the lowest results for this problem. The ICA-PSO, on the other hand, has result statistics that are scattered over a wider range of cost. Figure 5b shows the time and number of hits of the minimum result. The RLGWO computational time is one of the fastest, with one of the highest number of hits to its minimum solution.




5.1.2. Test System 2


The medium-size ELD problem with 40 thermal units with the valve-point loading effect and transmission loss is considered. The total power demand is 10,500 MW, with input data taken from [24]. The total power output and fuel cost were determined for the 40-unit systems using several metaheuristic techniques, including OIWO [24], BBO [13], DE/BBO [22], SDE [39], and GAAPI [40], alogn with the proposed RLGWO, and the results are given in Table 3. A comparison of the convergence characteristics of the 40-unit system between the original GWO and RLGWO algorithms with respect to fitness value is shown in Figure 6. The magnified results in Figure 6 show that RLGWO obtained a lower cost for this system.



Table 4 presents the maximum, minimum, and average fuel cost obtained using the RLGWO, DE/BBO, SDE, OIWO, and GAAPI methods over 50 trials. These results are visualized in Figure 7. The OIWO produced the lowest and densest results of the five algorithms, as seen in Figure 7a. The RLGWO was second in terms of identifying the lowest cost, but was still always able to identify the lowest cost. As seen in Figure 7b, RLGWO and ORCCRO found the minimum result 50 times among 50 trials, but the solution found by ORCCRO was higher than that determined using RLGWO. Furthermore, RLGWO found the solution the fastest among the five algorithms.




5.1.3. Test System 3


A test system with 110 generating units possessing quadratic fuel cost characteristics is utilized. The details of the input parameters were taken from [41]. The load demand is assumed to be 15,000 MW. The best solution obtained by the proposed RLGWO can be seen in Table 5. A comparison of the convergence characteristics of 110 generators between the GWO and RLGWO methods with respect to fitness value is presented in Figure 8.



The maximum, minimum, and average achieved over 50 trials are given in Table 6. Figure 9 presents a visualization of Table 6. The RLGWO produced the lowest cost among the five algorithms and was able to find the minimum cost the most times (as can be seen from Figure 9b). Still, it is the fastest algorithm among the five algorithms tested.




5.1.4. Test System 4


This case study considers 140 generators belonging to Korea’s power system. Twelve generating units possessing a cost function with the valve-point loading effect are utilized, while ramp rate limits, prohibited operating zones and system losses are neglected; the input parameters are available in [14]. The cheapest operating cost obtained using the RLGWO technique is shown in Table 7. The convergence characteristics for 140 generators using GWO and RLGWO methods for the fitness value are presented in Figure 10.



The statistical results, listed in Table 8, present the maximum, minimum, and average cost obtained by the OIWO method and the proposed RLGWO method over 50 trials. Figure 11 presents a visualization of Table 8. For this test problem, RLGWO produced a lower result than OIWO, as seen in Figure 11a. Compared to OIWO, it found the lowest cost more times out of 50 trials, and was faster than OIWO. This may mean that the increase in problem size affects the RLGWO less than OIWO.




5.1.5. Test System 5


This case considers a complex system with 160 testing units having multiple options and a valve-point effect. The total load demand is 43,200 MW. The input parameters for 160 generators are generated by multiplying those for the 10-unit system up to reflect a 160-unit system. The data system for 10 generators was taken from [14]. Transmission loss is ignored in this case. The best generating cost obtained by the proposed RLGWO is shown in Table 9. The convergence characteristic of 160 generators with GWO and RLGWO methods for fitness value is presented in Figure 12.



The maximum, minimum, and average fuel costs acquired by various techniques are represented in Table 10. For this 160-unit system, it can be clearly seen that the proposed algorithm still produced the lowest result (Figure 13a), and the number of times this minimum result was found was the greatest among the algorithms tested (Figure 13b). Furthermore, the RLGWO is still the fastest algorithm of the five algorithms.





5.2. Comparative Study


5.2.1. Solution Quality


Table 1, Table 3, Table 5, Table 7 and Table 9 present the cheapest generation cost determined by the RLGWO algorithm for five different test systems. It can be clearly seen that the proposed approach usually provides a better solution compared to the results obtained by various most technique. Additionally, the maximum, minimum, and average values acquired using different methods are illustrated in Table 2, Table 4, Table 6, Table 8 and Table 10. These results emphasize the ability of RLGWO to achieve better solutions than most existing techniques.




5.2.2. Computational Efficiency and Robustness


Addressing a large and complex system can increase the time consumption of any algorithm. Therefore, we used execution time to judge the computational efficiency of the optimization technique. The results shown in Table 2, Table 4, Table 6, Table 8 and Table 10, with their corresponding figures, Figure 5, Figure 7, Figure 9, Figure 11 and Figure 13, respectively, prove that the proposed RLGWO requires shorter CPU time to obtain the minimum fuel cost when compared to other reported techniques, except for in the cases of Test 1 and Test 2, where the proposed algorithm ranked second to the least cost. Additionally, those tables and figures also reveal the robustness of the proposed approach. Of the 50 trials performed for the five different test systems, RLGWO obtained the minimum costs 50, 50, 49, 49, and 48 times, respectively. In other words, the efficiency of the RLGWO algorithm for the first two test systems is 100%, and in the remaining cases is 98% or 96%. Additionally, OIWO obtained the minimum cost 47, 46, 46, 46, and 46 times. These results confirm that the performance of RLGWO is outstanding compared to several other methods.



Consequently, the results mentioned above emphasize the ability of RLGWO to obtain high-quality solutions in a way that achieves computational efficiency and robustness.






6. Conclusions and Future Work


This paper presented a newly developed RLGWO algorithm for solving various complex, large-scale economic dispatch problems. To evaluate the feasibility and robustness of the proposed algorithm, five test systems, with 13, 40, 110, 140, and 160 units, respectively, were used. The simulation results revealed the competitive performance of RLGWO when compared to other optimization methods, successfully determining the cheapest generation cost in all cases. GWO is considered a straightforward optimization technique that obviates the need for the initialization of input parameters and has demonstrated its superiority in several optimization problems. The robust tolerance-based adjust searching direction mechanism and opposite-based learning combined with GWO allow it to improve the convergence rate and generate promising search agents. Future work for this research will include applying RLGWO in solving complex real-world power system problems.
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Figure 1. The hunting mechanism of GWO in one-dimensional minimization. (a)    P α    falls into a local optimum; and (b)    P α    reaches the global optimum.. 
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Figure 2. Adjustment probability at different iteration periods. 
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Figure 3. The convergence rate of the search mechanism. 
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Figure 4. Comparative convergence characteristic of original GWO and proposed RLGWO algorithm for the 13-unit system. 
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Figure 5. Results for different methods for the 13-unit system (50 trials): (a) boxplot of the final generation cost; (b) time and number of hits of the minimum solution. 
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Figure 6. Comparative convergence characteristics of the original GWO and the proposed RLGWO algorithms for the 40-unit system. 
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Figure 7. Results for different methods for the 40-unit system (50 trials): (a) boxplot of the final generation cost; (b) time and number of hits of the minimum solution. 
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Figure 8. Comparative convergence characteristics of the original GWO and the proposed RLGWO algorithms for the 110-unit system. 
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Figure 9. Results for different methods for the 110-unit system (50 trials): (a) boxplot of the final generation cost; (b) time and number of hits of the minimum solution. 
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Figure 10. Comparative convergence characteristic of original GWO and proposed RLGWO algorithm for the 140-unit system. 
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Figure 11. Results obtaind using different methods for the 140-unit system (50 trials): (a) boxplot of the final generation cost; (b) time and number of hits of the minimum solution. 
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Figure 12. Comparative convergence characteristic of original GWO and proposed RLGWO algorithm for the 160-unit system. 
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Figure 13. Results for different methods for the 160-unit system (50 trials): (a) boxplot of the final generation cost; (b) time and number of hits of the minimum solution. 
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Table 1. Best simulation results of the 13-unit system with loss (   P D  = 2520   MW).
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Unit Number

	
Methods




	
RLGWO

	
SDE

	
OIWO

	
ORCCRO






	
1

	
628.3112

	
628.32

	
628.3185

	
628.32




	
2

	
299.1788

	
299.2

	
299.1989

	
299.2




	
3

	
299.1798

	
299.2

	
299.1991

	
299.2




	
4

	
159.7297

	
159.73

	
159.7331

	
159.73




	
5

	
159.7297

	
159.73

	
159.7331

	
159.73




	
6

	
159.7297

	
159.73

	
159.7331

	
159.73




	
7

	
159.7284

	
159.73

	
159.733

	
159.73




	
8

	
159.7297

	
159.73

	
159.7331

	
159.73




	
9

	
159.7284

	
159.73

	
159.733

	
159.73




	
10

	
77.3839

	
77.4

	
77.3953

	
77.4




	
11

	
113.1011

	
113.12

	
113.1079

	
112.14




	
12

	
92.3254

	
92.4

	
92.3594

	
92.4




	
13

	
92.3891

	
92.4

	
92.3911

	
92.4




	
Total generating output

	
2560.2446

	
2560.44

	
2560.3686

	
2559.44




	
Power loss

	
40.2446

	
40.43

	
40.3686

	
39.43




	
Fuel cost

	
24,514.78

	
24,514.95

	
24,514.83

	
24,513.99
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Table 2. Comparison between different methods taken after 50 trials (13-unit system with loss).
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Method

	
Generation Cost

	
Time (s)

	
No. of Hits of the Minimum Solution




	
Max

	
Min

	
Average






	
RLGWO

	
24,514.78

	
24,514.78

	
24,514.78

	
3.7

	
50




	
ORCCRO

	
24,513.91

	
24,513.91

	
24,513.91

	
8

	
50




	
OIWO

	
24,514.83

	
24,514.83

	
24,514.83

	
5.3

	
47




	
SDE

	
NA

	
24,514.88

	
24,516.31

	
NA

	
NA




	
DE/BBO

	
24,515.98

	
24,514.97

	
24,515.05

	
11

	
46




	
BBO

	
24,516.09

	
24,515.21

	
24,515.32

	
15

	
44




	
ICA-PSO

	
24,589.45

	
24,540.06

	
24,561.46

	
10.4

	
NA
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Table 3. Best simulation results for the 40-unit system with loss (   P D  = 10,500   MW).
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Unit Number

	
Methods




	
RLGWO

	
OIWO

	
DE/BBO

	
ORCCRO

	
BBO

	
SDE

	
GAAPI






	
1

	
113.9954

	
113.9908

	
111.04

	
111.68

	
112.54

	
110.06

	
114




	
2

	
114

	
114

	
113.71

	
112.16

	
113.22

	
112.41

	
114




	
3

	
119.99885

	
119.9977

	
118.64

	
119.98

	
119.51

	
120

	
120




	
4

	
183.0428

	
182.5131

	
189.49

	
182.18

	
188.37

	
188.72

	
190




	
5

	
88.1189

	
88.4227

	
86.32

	
87.28

	
90.41

	
85.91

	
97




	
6

	
140

	
140

	
139.88

	
139.85

	
139.05

	
140

	
140




	
7

	
299.99995

	
299.9999

	
299.86

	
298.15

	
294.97

	
250.19

	
300




	
8

	
296.0327

	
292.0654

	
285.42

	
286.89

	
299.18

	
290.68

	
300




	
9

	
299.94085

	
299.8817

	
296.29

	
293.38

	
296.46

	
300

	
300




	
10

	
279.7137

	
279.7073

	
285.07

	
279.34

	
279.89

	
282.01

	
205.25




	
11

	
197.0559

	
168.8149

	
164.69

	
162.35

	
160.15

	
180.82

	
226.3




	
12

	
94.08905

	
94

	
94

	
94.12

	
96.74

	
168.74

	
204.72




	
13

	
484.1729

	
484.0758

	
486.3

	
486.44

	
484.04

	
469.96

	
346.48




	
14

	
484.19005

	
484.0477

	
480.7

	
487.02

	
483.32

	
484.17

	
434.32




	
15

	
484.044

	
484.0396

	
480.66

	
483.39

	
483.77

	
487.73

	
431.34




	
16

	
484.08385

	
484.0886

	
485.05

	
484.51

	
483.3

	
482.3

	
440.22




	
17

	
489.248

	
489.2813

	
487.94

	
494.22

	
490.83

	
499.64

	
500




	
18

	
489.27865

	
489.2966

	
491.09

	
489.48

	
492.19

	
411.32

	
500




	
19

	
511.328

	
511.3219

	
511.79

	
512.2

	
511.28

	
510.47

	
550




	
20

	
511.41705

	
511.335

	
544.89

	
513.13

	
521.55

	
542.04

	
550




	
21

	
536.7086

	
549.9412

	
528.92

	
543.85

	
526.42

	
544.81

	
550




	
22

	
548.3222

	
549.9999

	
540.58

	
548

	
538.3

	
550

	
550




	
23

	
523.33305

	
523.2804

	
524.98

	
521.21

	
534.74

	
550

	
550




	
24

	
523.32785

	
523.3213

	
524.12

	
525.01

	
521.2

	
528.16

	
550




	
25

	
523.4937

	
523.5804

	
534.49

	
529.84

	
526.14

	
524.16

	
550




	
26

	
523.44335

	
523.5847

	
529.15

	
540.04

	
544.43

	
539.1

	
550




	
27

	
10.0081

	
10.0086

	
10.51

	
12.59

	
11.51

	
10

	
11.44




	
28

	
10.0086

	
10.0068

	
10

	
10.06

	
10.21

	
10.37

	
11.56




	
29

	
10.03725

	
10.0123

	
10

	
10.79

	
10.71

	
10

	
11.42




	
30

	
87.83375

	
87.8664

	
90.06

	
89.7

	
88.28

	
96.1

	
97




	
31

	
190

	
190

	
189.82

	
189.59

	
189.84

	
185.33

	
190




	
32

	
189.99915

	
189.9983

	
187.69

	
189.96

	
189.94

	
189.54

	
190




	
33

	
190

	
190

	
189.97

	
187.61

	
189.13

	
189.96

	
190




	
34

	
199.997

	
199.994

	
199.83

	
198.91

	
198.07

	
199.9

	
200




	
35

	
200

	
200

	
199.93

	
199.98

	
199.92

	
196.25

	
200




	
36

	
164.86345

	
164.8283

	
163.03

	
165.68

	
194.35

	
185.85

	
200




	
37

	
110

	
110

	
109.85

	
109.98

	
109.43

	
109.72

	
110




	
38

	
109.997

	
109.994

	
109.26

	
109.82

	
109.56

	
110

	
110




	
39

	
110

	
110

	
109.6

	
109.88

	
109.62

	
95.71

	
110




	
40

	
530.92635

	
550

	
543.23

	
548.5

	
527.82

	
532.43

	
550




	
Total generating output

	
11,456.05

	
11,457.2965

	
11,457.83

	
11,458.75

	
11,470

	
11,474.43

	
11,545.06




	
Power loss

	
956.05

	
957.2965

	
957.83

	
958.75

	
970.37

	
974.43

	
1045.06




	
Fuel cost

	
136,548.3499

	
136,452.677

	
136,950.77

	
136,855.19

	
137,026.82

	
138,157.46

	
139,864.96
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Table 4. Comparison between different methods taken after 50 trials (40-unit system with loss).






Table 4. Comparison between different methods taken after 50 trials (40-unit system with loss).





	
Method

	
Generation Costs

	
Time (s)

	
No. of Hits of the Minimum Solution




	
Max

	
Min

	
Average






	
RLGWO

	
136,548.3499

	
136,548.3499

	
136,548.3499

	
8.6

	
50




	
ORCCRO

	
136,855.19

	
136,855.19

	
136,855.19

	
14

	
50




	
OIWO

	
136,452.677

	
136,452.677

	
136,452.677

	
10.7

	
46




	
DE/BBO

	
137,150.77

	
136,950.77

	
137,116.58

	
32

	
45




	
BBO

	
137,587.82

	
137,026.82

	
137,116.58

	
40

	
41
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Table 5. Best simulation results for the 110-unit system with loss (   P D  = 15,000   MW).






Table 5. Best simulation results for the 110-unit system with loss (   P D  = 15,000   MW).





	
Unit

	
Power Output (MW)

	
Unit

	
Power Output (MW)

	
Unit

	
Power Output (MW)

	
Unit

	
Power Output (MW)

	
Unit

	
Power Output (MW)






	
1

	
2.34

	
24

	
350.0000

	
47

	
5.4008

	
70

	
360.0000

	
93

	
440.0000




	
2

	
2.3985

	
25

	
400.0000

	
48

	
5.4000

	
71

	
400.0000

	
94

	
499.972




	
3

	
2.3985

	
26

	
400.0000

	
49

	
8.4012

	
72

	
400.0000

	
95

	
600.0000




	
4

	
2.3991

	
27

	
499.9991

	
50

	
8.4000

	
73

	
107.8423

	
96

	
469.2669




	
5

	
2.3991

	
28

	
500.0000

	
51

	
8.4000

	
74

	
188.8107

	
97

	
3.6000




	
6

	
4.0006

	
29

	
199.9902

	
52

	
12.0000

	
75

	
89.9956

	
98

	
3.6000




	
7

	
4.0000

	
30

	
99.9986

	
53

	
12.0000

	
76

	
49.9991

	
99

	
4.4000




	
8

	
4.0000

	
31

	
10.0003

	
54

	
12.008

	
77

	
160.0137

	
100

	
4.4002




	
9

	
4.0000

	
32

	
19.9852

	
55

	
12.0006

	
78

	
291.3489

	
101

	
10.0075




	
10

	
63.0201

	
33

	
79.4518

	
56

	
25.2000

	
79

	
176.9972

	
102

	
10.003




	
11

	
59.2256

	
34

	
250.0000

	
57

	
25.2000

	
80

	
97.7541

	
103

	
20.0037




	
12

	
35.5324

	
35

	
359.9998

	
58

	
35.0000

	
81

	
10.0007

	
104

	
20.0036




	
13

	
57.4253

	
36

	
399.9929

	
59

	
35.0000

	
82

	
12.3103

	
105

	
40.0000




	
14

	
25.0000

	
37

	
39.9998

	
60

	
45.0013

	
83

	
20.0453

	
106

	
40.0011




	
15

	
25.0000

	
38

	
69.9965

	
61

	
45.0013

	
84

	
199.9869

	
107

	
50.0000




	
16

	
25.00011

	
39

	
99.9896

	
62

	
45.0000

	
85

	
324.5166

	
108

	
30.0000




	
17

	
155.0000

	
40

	
120.0000

	
63

	
184.9962

	
86

	
439.9885

	
109

	
40.0000




	
18

	
155.0000

	
41

	
156.8012

	
64

	
184.9953

	
87

	
18.8657

	
110

	
20.0000




	
19

	
155.0000

	
42

	
219.9997

	
65

	
184.9997

	
88

	
23.3351

	
Fuel Cost ($/h)

	
197,952.36




	
20

	
154.9936

	
43

	
440.0000

	
66

	
185.0000

	
89

	
84.4017




	
21

	
68.89

	
44

	
560.0000

	
67

	
70.0000

	
90

	
91.9005




	
22

	
68.89

	
45

	
660.0000

	
68

	
70.0000

	
91

	
58.2891




	
23

	
68.89

	
46

	
619.5389

	
69

	
70.0006

	
92

	
98.38849
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Table 6. Comparison between different methods taken after 50 trials (110-unit system with loss).






Table 6. Comparison between different methods taken after 50 trials (110-unit system with loss).





	
Method

	
Generation Costs

	
Time (s)

	
No. of Hits of the Minimum Solution




	
Max

	
Min

	
Average






	
RLGWO

	
197,952.88

	
197,952.36

	
197,952.62

	
28

	
49




	
ORCCRO

	
198,016.89

	
198,016.29

	
198,016.32

	
45

	
48




	
OIWO

	
197,989.93

	
197,989.14

	
197,989.41

	
31

	
46




	
DE/BBO

	
198,828.57

	
198,231.06

	
198,326.66

	
132

	
43




	
BBO

	
199,102.59

	
198,241.166

	
198,413.45

	
115

	
41
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Table 7. Best simulation results of 140-unit system with loss (   P D  = 49,342   MW).






Table 7. Best simulation results of 140-unit system with loss (   P D  = 49,342   MW).





	
Unit

	
Power Output (MW)

	
Unit

	
Power Output (MW)

	
Unit

	
Power Output (MW)

	
Unit

	
Power Output (MW)

	
Unit

	
Power Output (MW)






	
1

	
116.74945

	
29

	
501

	
57

	
103

	
85

	
115

	
113

	
94




	
2

	
189

	
30

	
501

	
58

	
198

	
86

	
207

	
114

	
94




	
3

	
190

	
31

	
506

	
59

	
312

	
87

	
207

	
115

	
244




	
4

	
190

	
32

	
506

	
60

	
281.8723

	
88

	
175

	
116

	
244




	
5

	
168.53975

	
33

	
506

	
61

	
163

	
89

	
175

	
117

	
244




	
6

	
190

	
34

	
506

	
62

	
95

	
90

	
175

	
118

	
95




	
7

	
490

	
35

	
500

	
63

	
160.442

	
91

	
175

	
119

	
95




	
8

	
490

	
36

	
500

	
64

	
160

	
92

	
580

	
120

	
116




	
9

	
496

	
37

	
241

	
65

	
490

	
93

	
645

	
121

	
175




	
10

	
496

	
38

	
241

	
66

	
196.13105

	
94

	
984

	
122

	
2




	
11

	
496

	
39

	
774

	
67

	
490

	
95

	
978

	
123

	
4




	
12

	
496

	
40

	
769

	
68

	
489.80065

	
96

	
682

	
124

	
15




	
13

	
506

	
41

	
3

	
69

	
130

	
97

	
720

	
125

	
9




	
14

	
509

	
42

	
3

	
70

	
234.70625

	
98

	
718

	
126

	
12




	
15

	
506

	
43

	
250

	
71

	
137

	
99

	
720

	
127

	
10




	
16

	
505

	
44

	
248.19195

	
72

	
325.6586

	
100

	
964

	
128

	
112




	
17

	
506

	
45

	
250

	
73

	
195

	
101

	
958

	
129

	
4




	
18

	
506

	
46

	
250

	
74

	
175.3892

	
102

	
1007

	
130

	
5




	
19

	
505

	
47

	
245.45

	
75

	
175

	
103

	
1006

	
131

	
5




	
20

	
505

	
48

	
250

	
76

	
175.9936

	
104

	
1013

	
132

	
50




	
21

	
505

	
49

	
250

	
77

	
175.4087

	
105

	
1020

	
133

	
5




	
22

	
505

	
50

	
250

	
78

	
330

	
106

	
954

	
134

	
42




	
23

	
505

	
51

	
165

	
79

	
531

	
107

	
952

	
135

	
42




	
24

	
505

	
52

	
165

	
80

	
531

	
108

	
1006

	
136

	
41




	
25

	
537

	
53

	
165

	
81

	
382.3908

	
109

	
1013

	
137

	
17




	
26

	
537

	
54

	
165

	
82

	
56

	
110

	
1021

	
138

	
11.211




	
27

	
549

	
55

	
180

	
83

	
115

	
111

	
1015

	
139

	
7




	
28

	
549

	
56

	
180

	
84

	
115

	
112

	
94

	
140

	
26.06515




	
Fuel Cost ($/h) = 1,559,390

	

	

	
Load demand = 49,342 MW
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Table 8. Comparison between different methods taken after 50 trials (140-unit system with loss).






Table 8. Comparison between different methods taken after 50 trials (140-unit system with loss).





	
Method

	
Generation Costs

	
Time (s)

	
No. of Hits of the Minimum Solution




	
Max

	
Min

	
Average






	
RLGWO

	
1,559,389.896

	
1,559,389.595

	
1,559,389.746

	
44.2

	
49




	
OIWO

	
1,559,405.88

	
1,559,405.45

	
1,559,405.61

	
46.8

	
46
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Table 9. Best simulation results for the 160-unit system with loss (   P D  = 43,200   MW).






Table 9. Best simulation results for the 160-unit system with loss (   P D  = 43,200   MW).





	
Unit

	
Power

Output (MW)

	
Unit

	
Power

Output (MW)

	
Unit

	
Power

Output (MW)

	
Unit

	
Power

Output (MW)

	
Unit

	
Power

Output (MW)

	
Unit

	
Power

Output (MW)






	
1

	
221.00035

	
28

	
231.8196

	
55

	
270.9179

	
82

	
201.35535

	
109

	
430.44955

	
136

	
237.9752




	
2

	
205.7281

	
29

	
425.93425

	
56

	
248.48075

	
83

	
314.73155

	
110

	
269.64185

	
137

	
295.55395




	
3

	
317.75575

	
30

	
279.58085

	
57

	
281.2539

	
84

	
237.5059

	
111

	
217.76425

	
138

	
235.6813




	
4

	
234.41735

	
31

	
196.63605

	
58

	
238.18815

	
85

	
275.93495

	
112

	
205.1143

	
139

	
430.2502




	
5

	
2912142

	
32

	
207.35155

	
59

	
412.3851

	
86

	
224.36975

	
113

	
318.7791

	
140

	
268.2663




	
6

	
244.9315

	
33

	
314.11745

	
60

	
278.72325

	
87

	
284.14205

	
114

	
245.6407

	
141

	
223.00885




	
7

	
297.5845

	
34

	
229.92935

	
61

	
229.1329

	
88

	
247.8263

	
115

	
271.79755

	
142

	
197.70995




	
8

	
229.63355

	
35

	
280.2443

	
62

	
212.27065

	
89

	
419.6053

	
116

	
246.03355

	
143

	
325.12455




	
9

	
382.95085

	
36

	
242.2372

	
63

	
310.3729

	
90

	
274.05395

	
117

	
288.0778

	
144

	
229.6929




	
10

	
274.7838

	
37

	
299.5748

	
64

	
244.48875

	
91

	
205.04785

	
118

	
237.1986

	
145

	
270.23625




	
11

	
202.63435

	
38

	
238.49285

	
65

	
254.77565

	
92

	
206.14835

	
119

	
379.98875

	
146

	
237.61965




	
12

	
203.3912

	
39

	
385.28865

	
66

	
242.9497

	
93

	
315.2499

	
120

	
289.60535

	
147

	
293.18245




	
13

	
316.69635

	
40

	
306.1279

	
67

	
297.698

	
94

	
249.54195

	
121

	
227.5547

	
148

	
241.3283




	
14

	
240.61475

	
41

	
223.84795

	
68

	
236.58335

	
95

	
283.55655

	
122

	
209.27635

	
149

	
408.69515




	
15

	
274.9389

	
42

	
210.5801

	
69

	
391.7068

	
96

	
233.38845

	
123

	
308.35835

	
150

	
273.40185




	
16

	
234.0219

	
43

	
310.6721

	
70

	
280.0213

	
97

	
292.58485

	
124

	
225.3519

	
151

	
201.19515




	
17

	
281.37655

	
44

	
236.8065

	
71

	
218.70865

	
98

	
232.1082

	
125

	
258.85355

	
152

	
211.8315




	
18

	
232.42195

	
45

	
288.09185

	
72

	
215.8047

	
99

	
398.45225

	
126

	
243.2848

	
153

	
328.14365




	
19

	
417.2048

	
46

	
251.70135

	
73

	
311.6729

	
100

	
283.92175

	
127

	
289.6619

	
154

	
244.37645




	
20

	
296.69975

	
47

	
264.1946

	
74

	
245.34615

	
101

	
222.28885

	
128

	
243.20055

	
155

	
277.40895




	
21

	
211.53615

	
48

	
226.43815

	
75

	
274.99975

	
102

	
211.05235

	
129

	
430.75805

	
156

	
231.75945




	
22

	
205.97795

	
49

	
396.5202

	
76

	
228.8927

	
103

	
321.53435

	
130

	
263.69975

	
157

	
274.733




	
23

	
327.2297

	
50

	
291.1473

	
77

	
295.2527

	
104

	
231.10145

	
131

	
208.5112

	
158

	
237.31805




	
24

	
237.09925

	
51

	
199.54815

	
78

	
242.0892

	
105

	
255.53405

	
132

	
214.2303

	
159

	
410.52905




	
25

	
280.7248

	
52

	
211.2342

	
79

	
391.79425

	
106

	
236.2335

	
133

	
310.9484

	
160

	
282.7046




	
26

	
230.7831

	
53

	
322.1792

	
80

	
275.43885

	
107

	
283.8343

	
134

	
234.9219

	
Fuel Cost (S/h)

	
9914.7123




	
27

	
269.3144

	
54

	
237.0891

	
81

	
220.4749

	
108

	
238.32985

	
135

	
263.6612
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Table 10. Comparison between different methods taken after 50 trials (160-unit system).






Table 10. Comparison between different methods taken after 50 trials (160-unit system).





	
Method

	
Generation Costs

	
Time (s)

	
No. of Hits of the Minimum Solution




	
Max

	
Min

	
Average






	
RLGWO

	
9916.4457

	
9914.7123

	
9915.579

	
13.7

	
48




	
ORCCRO

	
10,004.45

	
10,004.2

	
10,004.21

	
19

	
48




	
OIWO

	
9983.998

	
9981.9834

	
9982.991

	
17.3

	
46




	
DE/BBO

	
10,010.25

	
10,007.05

	
10,007.56

	
35

	
42




	
BBO

	
10,010.59

	
10,008.71

	
10,009.16

	
44

	
40
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