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Abstract: The seasonal nature of fruits and vegetables has an immense impact on the process of
seeking methods that allow extending the shelf life in this category of food. It is observed that through
continuous technological changes, it is also possible to notice changes in the methods used to examine
and study food and its microbiological aspects. It should be added that a new trend of bioactive
ingredient consumption is also on the increase, which translates into numerous attempts that are made
to keep the high quality of those products for a longer time. New and modern methods are being
sought in this area, where the main aim is to support drying processes and quality control during
food processing. This review provides deep insight into the application of artificial intelligence (AI)
using a multi-layer perceptron network (MLPN) and other machine learning algorithms to evaluate
the effective prediction and classification of the obtained vegetables and fruits during convection
as well as spray drying. AI in food drying, especially for entrepreneurs and researchers, can be a
huge chance to speed up development, lower production costs, effective quality control and higher
production efficiency. Current scientific findings confirm that the selection of appropriate parameters,
among others, such as color, shape, texture, sound, initial volume, drying time, air temperature,
airflow velocity, area difference, moisture content and final thickness, have an influence on the yield
as well as the quality of the obtained dried vegetables and fruits. Moreover, scientific discoveries
prove that the technology of drying fruits and vegetables supported by artificial intelligence offers an
alternative in process optimization and quality control and, even in an indirect way, can prolong the
freshness of food rich in various nutrients. In the future, the main challenge will be the application of
artificial intelligence in most production lines in real time in order to control the parameters of the
process or control the quality of raw materials obtained in the process of drying.

Keywords: artificial intelligence; machine learning; deep learning; convective drying; spray drying;
fruit and vegetable

1. Introduction

Human intelligence has been the subject of research and interest for many years for all
of us [1]. Scientists strive to solve complex problems, trying to understand abstract terms [2].
They seek to find fast and effective answers to questions. They build up a knowledge base
on the basis of experience and use methods to support working with the environment.
The study on the mechanisms of human intelligence had an impact on creating the field
of science called artificial intelligence (AI) [2]. When defining artificial intelligence, one
could use a purely IT statement that it is an algorithm that processes information obtained
from the environment with the intention of using it to make decision-making problems to
effectively achieve a goal [2,3].

AI is widely used in various scopes, starting from industry through engineering
and ending with medicine and agriculture. In food technology, AI also has practical
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applications; among others, it is used to preserve, improve, simplify, support or monitor
raw materials or products obtained using numerous technological processes. Currently, AI
in food technology makes it possible, among other things, to assess the quality of collected
food samples by classifying them. AI manages food storage collections by sorting, packing
and cleaning them. AI optimizes technological processes in order to increase the yield of
raw materials that are obtained by improving operations to automate, among other things,
quality evaluation of raw materials in real time (such evaluations will soon be available
online). AI performs repetitive process tests to obtain homogeneous agri-food products.
AI seeks appropriate methods to support microbiological safety for currently developed
food products and optimizes the performance of many daily tasks, resulting in increased
process efficiency and food safety and sustainability. AI is based on various methods such
as decision trees [4], artificial neural networks, expert systems [5], machine learning [6] or
hybrid models (LSTM-ALO, ANFIS-GBO, ELM-PSOGWO, LSSVM-IMVO, SVR-SAMOA,
ANN-EMPA, ELM-CRFOA) [7–13], which allows for creating increasingly complex and
advanced applications.

The origins of AI date back to the 1940s and 1950s [14], but the actual flowering of
AI took place from 1956 to 1974 [15], when the two visions emerged: based on fuzzy logic
and computer programs that solved some mathematical problems. With the advent of
the 1980s, so-called machine learning (ML) gained much popularity [16,17]. The idea of
machine learning is based on using computers that can analyze data and produce models
that are adequate to the constantly posed phenomena and requirements. Machine learning
algorithms can then be applied to predict the quality and shelf-life of food products,
allowing better storage management [18].

ML can also be applied to identify; remove blemishes and contaminants; and monitor
and realize data flow in industrial production between different machines, i.e., their sensors
and cloud processing. ML will be able to analyze a considerable amount of data generated
and use the skills gained to apply them (online) to food products. Finally, ML algorithms
can be applied to optimize production processes, allowing increased productivity and
efficiency in the food industry. In the next step, ML, through the mentioned activities,
implemented them in food processing (Industry 4.0). In the future, in cooperation between
man and machine (Industry 5.0), ML will make it possible to direct processes in such a way
as to anticipate every next step. It will efficiently assess the shelf life of each food product
during and after its production. Thus, it will translate into reduced waste and lower the
scale of food waste.

The current smart reality offers solutions also using deep learning to recognize, identify,
transcribe, optimize and predict the problems posed. The popularity of deep learning
started to be noticeable at the beginning of the year 2010 [19]. Deep learning (DL) is
defined as one of the subcategories of machine learning. The essence of the operation is the
creation of artificial neural networks aimed at improving, for example, image recognition
(commonly used in food, among other applications) or speech [20]. The process of learning
is defined as deep learning because the structure of artificial neural networks consists of
numerous inputs, outputs and hidden layers. Each layer also contains units that convert
input data into information that subsequent layers can use to perform the prediction task.
In this way, the machine learns by means of its own data processing. In the food industry,
where deep learning is applied, it is of crucial importance to put special emphasis on
subcategories responsible for image analysis and image recognition.

Considering the seasonal nature of fruits and vegetables, all methods that are aimed
at preserving food and prolonging its shelf life are of fundamental importance. In view
of the above, more active efforts are being made to search for methods supporting the
preservation of food, especially those rich in nutrients [5,6]. It is worth knowing that
changes in the metabolic transformation of vegetables and fruits are dependent on the
action of high temperatures. Even room temperature affects the deterioration of vegetables
and fruits by degradation of compounds, such as oxidation of vitamins, increased moisture
and water activity leading to microbiological spoilage. When using the right method to fix
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the quality condition of vegetables and fruits, it is possible to eliminate their spoilage and
the development of bacteria and other microorganisms [14,15]. Controlling water content
will help extend their shelf life during storage (especially for fruits harvested seasonally).

Among those methods, the most important are the ones that allow the preservation of
fruits and vegetables and guarantee that the obtained final products will have favorable
forms. Drying allows for slowing down physiochemical changes, which translates into
maintaining high-quality dried raw materials [2]. However, this process also sometimes
triggers unfavorable chemical reactions such as the process of oxidization, non-enzymatic
browning and vitamin transformation. It can also lead to structural changes (volume,
porosity, density), sensory changes (taste, smell), textural changes, nutritional changes or
visual changes (appearance, color). Nevertheless, drying has become very popular in the
food industry, especially in the process of preserving food articles at the last stage of food
production. Therefore, this process is often responsible for the final quality and properties
of the product and can be shaped by an appropriate selection of parameters. Recently, the
first fundamental progress in drying was made via applications of algorithms of machine
learning, which allowed for optimizing the process of food drying [21]. This progress in
artificial intelligence technology can substantially improve the food drying industry and
ensure numerous benefits for both producers and consumers. The present review is based
on studies to classify the quality of dried material and prediction drying kinetics using
artificial intelligence.

2. Methodology
2.1. Multi-Layer Perceptron Technique

The structure of a multi-layer perception network is mainly based on one input
layer, information processing elements (neurons) in the hidden layer and one output layer
(Figure 1) [22,23]. In artificial neural networks (ANN) elements processing information,
so-called artificial neurons are nothing else but the reflection of a real model of neurons
(nerve cells), which is part of the nervous system responsible for processing and analysis of
information in the human body. This information is processed inside the cells via inputs
(dendrites). Then the processed signal is sent to other cells via axons. Information via
inputs (dendrites) is processed inside the cell [24].
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Figure 1. Structure of multi-layer perceptron (MLP): (a) input layer; (b) hidden layer; (c) output
layer. Description: i—neuron index, ni—an “i” index neuron, wi—the weigh vector of “i” neuron
connections, wj,i—the weigh vector of connections from the previous layer with neuron from the
present layer, x—input descriptors, y—output descriptors.
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The most difficult stage seems to be determining the appropriate number of neurons in
each layer. The characteristic of neurons determines both linear and non-linear dependency
(logistic or hyperbolic, among others). A basic algorithm in supervised MLP learning is
back propagation (BP) [25]. The algorithm is based on minimizing the error function or
the sum of square errors, which is used to modify the vector of weights to determine the
direction to decrease the errors made by the aforementioned network.

2.2. Radial Basic Function Technique

Radial basic function (RBF) was widely used in pattern classification, signal process-
ing, non-linear system modeling and other areas because of its non-linear adaptability
capabilities [26,27]. Networks with radial base functions consist of three layers [28], namely
the input layer (linear neurons), the hidden layer (radial neurons) and the output layer
(linear neurons). The flow of information proceeds without the exchange of information
between neurons in a single layer. In the first stage of learning, base function centers are
selected by determining values of weight for each radial neuron. The second stage allows
for determining radial deviations, which is the process of determining the width of the
activation function. The parameter determining the shape of the activation function is
stored as the threshold value of the radial neuron. The third stage determines the values
of weights in the output layer. The determination of centers, respectively, is used for
comparison with the input vector to obtain a radially symmetric response. The elements of
the learning set are divided into groups of derived elements [29]. It should be noted that
the centers of gravity of each distinguished group are used as weights of radial neuron
weights [30].

2.3. Deep Neural Networks Technique

Deep neural networks (DNN) are defined as artificial neural networks that are a
collection of units, among which each neuron in a layer −n is connected behind each neuron
n + 1 by a weighting factor [31]. DNN is a typical feed-forward neural network, which
updates parameters such as network weighting and deviations via back-propagation of
errors [32]. It is characterized by the ability to create mappings on the basis of dependencies
in the training set, whereby the complexity of the decision-making boundary depends on
the number of layers used. The input layer is used to feed the network with features related
to the training target. The hidden layer usually consists of multiple layers of neurons
stacked on top of each other with only adjacent layers of connected neurons. The output
value is used to derive the training target. Data are transferred between the input layer,
each level of the hidden layer and the output layer using the activation function, with the
output of the previous layer used as the input for the next layer [32,33].

The network that is built up from two layers is characterized by better capabilities for
determining decision-making boundaries. Networks with a number of layers n ≥ 3 are
capable of mapping any relationship, with the number of layers and the number of neurons
in each layer depending on the complexity of training data depicting the prediction or
classification problem under consideration [24,34].

Factors that affect the choice of appropriate hyperparameters are the type of problem
under consideration (whether the model is aimed at prediction or classification). Among the
algorithms that are applied to minimize the value of the loss function, one can distinguish
the methods based on the so-called Stochastic Gradient Descent (SGD) and on momen-
tum or so-called Nestrov moments. These methods include, among others, “adam” [35],
“adadelta”, “adamax”, ”adagrad”, “nadam” and “RMSprop” [36,37]. The algorithm should
be properly selected for the problem under consideration. In classification problems, it is
common to encounter the use of the “adam algorithm” [16,38].

2.4. Convolutional Neural Networks Technique

Convolutional neural networks (CNN) are used for bitmap image analysis [31,39,40].
The concept has its basis in biological systems and refers to receptor fields present in the
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retinas of animal eyes. It should be noted that on the basis of the input tensor obtained in
the result of uniform scaling with the coefficient of 1/255 of the image pixel values, the
so-called convolutional window is cut out [41]. Convolution operation consists of mowing
the convolution windows by a defied stride. Successive windows interlock by using a step
size of 1. If the convolution stride is bigger than 1, then the whole process is called stride
convolution. After extracting the convolution window, the resulting three-dimensional
tensor of shape (window width, window height, window depth) is transformed through
a tensor product with a tensor of weights called the convolution kernel into a feature
vector of length corresponding to the predefined output depth. The output map of features
is created by arranging the output vectors of features obtained from other convolution
windows in two-dimensional space. Artificial convolutional neural networks entail creating
models characterized by huge depth. In the case of very deep networks, one can observe
the phenomenon of gradient disappearance, with the result that further deepening of
the network for better performance becomes impossible. Thanks to the application of
residual neural networks (ResNet) [42] architecture, it was possible to solve the problem of
disappearing gradients. The principle of operation of this specific type of network is to pass
the values returned from the layer with index n not only to the n + 1st layer but also to the
n + k-th layer, where k is a natural number. In addition to the mechanism mentioned above,
parcel normalization and other methods of modifying the operation of the network are
also used. A specific type of ResNet network is a network type called densely connected
convolutional neural networks (DenseNet) [43,44]. In DenseNets, each other convolutional
layer receives, as augments, the output tensors from each previous convolutional layer [43].

2.5. Random Forest, k-NN, SVM, SVR Technique

Random forest (RF) is a classification or regression method that is based on the
generation of multiple decision trees [45]. Currently, it is becoming an alternative to the
methods used in classification problems. The idea of the RF algorithm is to build a base
of random decision trees, where, unlike classical decision trees, random trees are built
on the principle that a subset of analyzed features at a node is selected randomly [45].
The k-nearest neighbors (k-NN) algorithm is one of the machine learning methods [6].
This algorithm estimates the value of a point according to its neighborhood relative to
the selected class, calculating the average distances between samples. The most similar
samples belonging to the same class have a high probability [46,47]. The purpose of the
kNN algorithm is to search the k nearest neighbors in the learning dataset and then predict
them with the selected class among the k nearest neighbors [48]. The aforementioned
qualities of learning the k-NN algorithm are heavily dependent on the k parameter [49,50].
At present, the specialized literature describes the application of the above algorithm as
highly effective [49].

SVM is a two-class linear classifier [45,51]. SVM separates data along the decision-
making border, called hypersurface [52]. In general, it outlines the border between classes
and maps the input space formed by independent variables with non-linear transformation
in accordance with the kernel function. If the learning vectors are separated without error
by the optimal hyperplane, the expected value of the probability of error in the test is
bounded by the ratio of the expected value to the value of the indicated vector and the
learning vectors [51]. At present, SVM can also be applied in non-linear classification
tasks [6,53,54]. Support vector machines are often used to classify points in Hilbert space
with infinite dimensions [55,56].

However, three parameters determine the SVR algorithm, namely [51,57]:

• capacity (C), which presents a compromise between model complexity and size, to
which deviations bigger than (C) are tolerated;

• epsilon (ε), which controls insensitive space, and ε is used to adjust training data;
• gamma (γ), which is the parameter of the kernel function.

The idea of the SVR algorithm is dependent on the epsilon parameter, which can have
an impact on the number of support vectors used in constructing the regression function.
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The bigger the value of epsilon, the fewer selected support vectors, which translates into less
complex evaluations of the aforementioned regression and a shorter time of learning [45].

3. Results and Discussion
3.1. Multi-Layer Perceptron vs. Convective Drying

Recently changing consumer habits, food supply and economic aspirations require the
optimization of processes and applications of modern technology aimed at preserving food
and obtaining a high-quality index of finished food articles. High level of food waste causes
food producers to lean towards ways of extending the shelf life of food articles. Efforts are
being made to reduce industrial energy consumption in the process of food production
via automatization, optimization and applications of artificial intelligence in individual
processes. New ways of production management, production organization, processing,
marketing and waste management are also applied. Therefore, it seems justified to apply
artificial intelligence in the process of quality evaluation of the final product obtained in the
process of drying (Figure 2) and during the process of kinetic control of drying parameters
also online.
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Within the space of the last ten and twenty years, much research has been carried
out related to the field of drying. This paper highlights the use of vegetables and fruits in
convection drying. Convective drying is the most widespread method in the food industry.
This technique is based on using drying agents such as hot air or gas, which have direct
contact with the product during the drying process. The idea of drying kinetics is based on
the simultaneous movement of mass and heat, i.e., the drying agent gives off heat to the
moist raw material and simultaneously absorbs moisture from it [58].
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Unfortunately, convective drying can have a negative impact on the quality of the
obtained product because it leads to far-reaching physiochemical changes. At present,
actions are taken to preserve food in a slow way in order to retain the content of bioactive
compounds in dried fruits and vegetables and to keep a high-quality index [59]. That
is why removing an appropriate amount of water from fruits and vegetables requires
preparing an intelligent model of drying, allowing for determining optimal parameters
of the drying agent, humidity, temperature and stream, among others, in order to obtain
the highest possible quality index of the final product. Convective drying can be carried
out with the implementation of recommended movement of the dried material. In such
a situation, the raw material that is to be dried is in the direction with the co-current or
counter-current of the drying agent [59]. Countercurrent-flow drying is used when raw
material is characterized by properties that are highly resistant to high temperatures. Such
material has direct contact with the drying agent throughout the whole process of drying.
It translates into obtaining more dried fruits or vegetables than in the case of co-current
drying. In co-current drying, the flow of raw material and the drying agent moves in the
same direction. When the drying agent combines with raw material, it can have an impact
on destroying the tissue structure of the latter. This method, as it was mentioned before,
allows for obtaining products with higher humidity than the counter-current method
because the drying agent emits thermal energy and increases its humidity while flowing.

As part of the research made by Przybył team et al., (2022) [60], an endeavor was
made to create effective neural models with machine learning, i.e., multi-layer perceptron
network (MLPN) (Table 1) and DL in the process of quality evaluation of slices of dried
sweet potatoes. Sweet potatoes (named in Latin Ipomoea batatas) are one of the healthiest
foods in the world [61], and it is recommended by NASA as a superfood used in space
expeditions [62]. Experimental data were obtained by drying the slices of sweet potatoes
(2 ± 0.1 mm) at four different air temperatures (60, 70, 80 and 90 ◦C) and a fixed air velocity
value of 1.0 m·s−1. The results showed that the proposed MLP network using Gray Level
Co-occurrence Matrix (GLCM)-based texture descriptors [63] did not meet the expected of
classifying research samples. Therefore, Przybył team et al. (2022) [60] used the method
of deep learning for comparison, which substantially improved the effectiveness of the
classification of dried fruits and vegetables [60].

In the same year, Çetin [64] also conducted research aimed at improving the character-
istic of convective drying and optimizing drying conditions for selected varieties of oranges,
i.e., Valencia, Washington and Navel. As a result of the research [64], Çetin designed two
structures for the MLP model, which became one of the methods of using machine learning
in his research. The results showed the effective prediction of moisture ratio with MLPN in
the case of Valencia, Washington and Navel varieties. Nevertheless, the Valencia variety
obtained a higher determination ratio. The model structure characteristics for MLP learning
consisted of five neurons in the input layer, three neurons in the hidden layer and one
output layer responsible for moisture ratio. The coefficient of determination for the 5-3-1
MLP network was at R2 = 0.981. For comparison, the author evaluated the drying rate (the
deponent variable in the output player) in MLPN by modifying the independent variables
in the input layer and in the hidden layer. As a result of the prediction for the second
structure of the MLP 3-2-1 in orange fruit for the same Valencia variety, a lower rate was
obtained than in the case of the Washington and Navel variety, and its value was R2 = 0.862
(Table 1).

In his research, Dalvi-Isfahan (2022) [65] also evaluated and compared the effectiveness
of two different methods of forecasting models for moisture ratio when drying apple slices.
Golden Delicious variety was used as research material. The first stage required preparing
raw materials for drying. Apples were washed and peeled, the cores were hollowed out,
and the raw material was cut into 20 × 20 × 6 mm cubes. Another step involved convective
drying. Experiments were carried out at four different temperatures of drying using a
drying agent (air) similar to the team of Przybył team et al. (2022) [60]. In the above research,
there was no fiche airflow. The drying process was performed at different air speed levels
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in a convection dryer. As a result of the drying and forecasting process using the MLP in the
work of Dalvi-Isfahan (2022) [65], the best results were obtained. The topology of the MLP 3-
10-10-1 included two hidden layers, and the coefficient of determination was R2 = 0.999 [65].
For comparison, the teams of Winiczenko et al. (2018) [66] and Nadian et al. (2015) [67],
concerning apple fruit drying, developed dedicated solutions using an MLP-type network
as well. Winiczenko et al. (2018) [66] experimentally researched the impact of drying
temperate and air velocity on the quality parameters of apples based on the input data
consisting of color difference, volume ratio and water absorption capacity in convective
drying. On the other hand, Nadian et al. (2015) [67] devised MLPN as a non-invasive
tool supporting fast evaluation and control of changes in the color and moisture of apples
during drying. MLPN achieved a satisfying quality factor value higher than 0.92 [67] based
on the changes in color and moisture of apple slices.

Another team consisting of Chasiotis et al. (2020) [68], in similar drying temperature
conditions, carried out forecasting of moisture content for quince fruits. Quince (named in
Latin (Cydonia oblong a Mill) is an edible fruit similar in shape to apples; it is also a yellow
fruit with a slightly hairy peel. Quince, similar to apples, is used in the food industry to
produce jams, jellies and preserves and can also serve as an addition to baked and dried
food articles [69]. Quince are characterized by medicinal and antioxidant properties and
are also rich in various polyphenolic compounds [70]. After the appropriate preparation of
research material for drying, changes in the moisture ratio of quince slices were evaluated
during convective drying with a thermo-convection dryer as part of the research. The
obtained experimental data concerning moisture content as a function of drying time
for nine measurements, i.e., from the group of drying air temperatures of 40, 50 and
60 ◦C and with the proper preset and supplied velocity of air flow at the level of 1, 2 and
3 m·s−1, respectively, made it possible to obtain the most optimal MLPN [68]. As a result of
numerous configurations with MLPN, the best-performed ANN based on cross-validation
contained two hidden layers and consisted of 90 artificial hidden neurons in each hidden
layer. The predictions were found to be consistent with the experimental data and were
noted, achieving a coefficient of determination (R2) higher than 0.99.

In the same year, the team of Przybył et al. (2020) [71] used convective drying combined
with innovation in the form of an acoustic wave to classify the obtained dried strawberry
fruits. The growing interest in sound emission and the way of obtaining acoustic wave
frequency spectrum was dependent on the availability of advanced electronic devices,
including computer systems.

The data extracted from the sound required the construction of measurement and
a research station beforehand. The utilitarian goal was to produce an artificial neural
network MLP capable of classifying the qualitative state of the obtained dried fruit [71].
The research material consisted of two varieties of wild strawberry: the Chilean variety
(Fragaria chiloensis) and the Virginian variety (Fragaria virginiana). In the study, strawberry
fruits belonging to the ripe and overripe groups were dried: ripe and overripe. Fresh
strawberry fruits were dried using a convective method at the temperature of the drying
agent at 60 ◦C, with determined drying air velocity at v = 1.0 m·s−1 in co-current in a thin
stationary layer.

In accordance with the author’s original research methodology, in the next stage of
the study, using a measuring and testing station that was designed to mimic the free fall
of fruit during transport to the production line [71], sound measurements were carried
out for the resulting dried strawberries. In the last step, the ANN consisted of an input
layer, for which input variables such as frequency (Hz) were specified, and an output layer
corresponding to the degree of quality of the strawberry (ripe or overripe). The research
showed that the MLP 2:14:1 with 14 neurons in the hidden layer was characterized by the
highest classification capabilities, and its classification rate was 98%. For comparison, one
analysis of the wave spectrum shift of the acoustic signal was used as a basic method for
the non-invasive evaluation of quality conditions in watermelon [72]. It proved to be an
effective method, and its low evaluation cost made it possible to determine the quality
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class of watermelons efficiently using acoustic resonance. The efficiency of identifying
watermelon ripeness was achieved at 95% [72].

Another interesting research was conducted by Marić et al. (2020) [73] and was based
on the physicochemical properties of root vegetables after drying. It is worth noting that
this method entailed applications of ANN using the MLP topology in convective drying in
order to identify the above root vegetables. The research material comprised the following:
celeriac root (Apium graveolens), fennel (Foeniculum vulgare), carrot (Daucus carota), yellow
carrot (Daucus carota) (Petroselinum Hortense) and purple carrot (Daucus carota). Prior
to conducting the experiment, a pre-treatment was performed; namely, the vegetables
were washed, peeled and cut into slices with a diameter of d = 1.5–2 cm and thickness of
h = 0.3–0.5 mm [73]. The process of convective drying was carried out at the temperature
of T = 50 ◦C and T = 70 ◦C. After drying, a number of physiochemical analyses were carried
out in order to design MLP-type neural networks. Marić et al. (2020) [73] devised two
solutions with ANN. The first MLP model was aimed at predicting color parameters (Lab),
the concentration of vitamin C and β-carotene, and the second MLPN model was to forecast
the physical properties (completely dissolved solid substance and extraction effectiveness)
and the chemical properties (i.e., the total content of polyphenols and antioxidant activity)
of extracts of the aforementioned root vegetables [73]. The first model comprised data
on the type of root vegetables and drying method in the input data, and the output data
were responsible for parameters concerning color, vitamin C concentrations and β-carotene
concentrations. The second MLP model aimed at forecasting physiochemical characteristics
(information included in the output layer) consisted of the input data such as the type of
root vegetables, drying method and the type of prepared extract. As a result of the learning
process, the two optimal MLP networks were obtained with a high determination rate of
R2 = 0.887 for the first solution and R2 = 0.878 for the second solution, respectively. MLPN
effectively forecasted the way of drying and the type of prepared extract on the basis of the
type of root vegetables [73].

In other research aimed at modeling neural networks based on MLP, the authors used
a combination of various layers and neurons with different activation functions. Neural
networks with one or two hidden layers were randomly selected with a pre-determined
number of neurons (from 3 to 15 neurons) for each network. The next step entailed
determining a network aimed at forecasting the moisture ratio for the research material,
namely dried kiwi fruits [74].

In other research, experiments on mulberry fruit drying were carried out at the tem-
perature level of 50, 60 and 70 degrees Celsius and with air velocity at the level of 1.5, 2
and 2.5 m·s−1. MLPN with different thresholds and neurons, as well as the Levenberg–
Marquardt algorithm and Tanh–Sigmoid threshold function, was used to model the drying
quality. The results showed that the best type of neural network with a 3-12-3 structure
and threshold function (Logsig i Purelin) obtained the best result in comparison with other
topologies with the highest coefficient at the level of 0.9998 [75].

Between 2007 and 2010, several other MLP-assisted convection drying studies were
conducted with sweet potatoes [76], beetroot and potatoes [77], and tomato, among
others [78,79] (Table 1). In these studies, the results for MLPN were also promising and even
provided an opportunity to be tried in further research experiments, as mentioned above.

In summary, in the works, the effect of changes in drying air temperature and speed
shortened the drying time, while higher relative humidity prolonged the process itself. The
speed and relative humidity of the drying air improved the energy indicators. The use of
MLPN practically gave high efficiency in predicting and classifying the dried material and
parameters in the drying process. The high determination rate can be translated into the
high popularity of using just this topology in this research problem.
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Table 1. Applications of multi-layer perceptron by using convective drying from 2007 to present.

No. Application Descriptors
Air

Temp
[◦C]

Air
Velocities

[m·s−1]
Fruit and
Vegetable * Structure R2 Year Ref.

1.

various temperatures
evolution

(classification of
texture parameters)

GLCM texture feature 60, 70, 80,
90 1.0 sweet potato 6-11-4 0.55 2022 [60]

2. moisture ratio

drying time, initial
volume, area difference,
moisture content, final

thickness

50–60 0.5 orange Valencia 5-3-1 0.9811 2022 [64]

3. drying rate
effective moisture

diffusivity, moisture
content, final volume

50–60 0.5 orange Valencia 3-2-1 0.8618 2022 [64]

4.
predict the moisture

concentration changes
during drying of apple

air temperature, airflow
velocity, drying time

45, 50, 55,
60

0.75, 1.0,
1.25 apples 3–10–10–1 0.99 2020 [65]

5. moisture content
evolution (predictions)

temperature, flow
velocity, time 40, 50, 60 1.0, 2.0,

3.0 quinces 3-90-90-1 0.99 2020 [68]

6. classification (ripe and
over-ripe fruits)

frequency (Hz) and the
level of luminosity (dB) 60 1 strawberry 2-14-1 0.980 2020 [71]

7.

prediction of color
parameters, vitamin C

concentrations and
β-carotene

concentrations

type of root vegetables
and drying method 50, 70 -

celery, carrot,
fennel, purple

carrot,
parsley, yellow

carrot

2-8-6 0.887 2020 [73]

8.

physical and chemical
characteristics of the

root, vegetable extracts
prepared after

different drying
methods

type of root vegetables,
drying method and the
type of prepared extract

50, 70 -

celery, carrot,
fennel, purple

carrot,
parsley, yellow

carrot

3-10-4 0.878 2020 [73]

9.

optimization color
difference (CD),

volume ratio (VR) and
water absorption
capacity (WAC)

drying temperature,
drying air velocity, 50–70 0.01–6 apple 2-5-3-3 0.98 2018 [66]

10. prediction (moisture
ratio)

drying temperature,
drying time 50, 60, 70 - kiwi slice 2-13-13-1 0.997 2017 [74]

11. prediction - 50, 60, 70 1.5, 2.0,
2.5 mulberry 3-12-3 0.9998 2017 [75]

13. prediction (moisture
ratio)

air temperature, air
velocity, thickness,

drying time,
50, 60, 70 1.0, 1.5,

2.0 apple 4-()-()-5 0.92 2015 [67]

14. online predictions of
moisture kinetics

temperature of heated
air velocity of air, size of

sample cube,
drying time

50, 60, 70,
80, 90

1.5, 2.5,
3.5, 4.5,

5.5
sweet potato 4-8-4-1 0.9987 2010 [76]

15. prediction (kinetics of
drying)

the material moisture
content in the
previous step,

process temperature
and shape factor

50, 70, 90,
106 - beetroot and

potatoes 3-3-1 0.999 2010 [77]

16. prediction (estimate
the drying behavior)

air temperature, slice
thickness, drying time

60, 80, 100,
120 - tomato 3–17–5-1 0.992 2008 [78]

17. predictions power of heater, air
velocity and time

43,
51.5, 56, 72 1.0, 1.9 tomato 3-4-1 - 2007 [79]

* Structure of artificial neural network: input layer-hidden layer (one and two)—output layer.

3.2. Multi-Layer Perceptron vs. Spray Drying

Spray drying is the most commonly used method of drying liquid products due to
the possibility of obtaining a powder in one short operation and the relatively short time
during contact between the product and the heating agent. The spray drying method
started to be developed at the end of the XIX century. The method started to be used on
a large scale in the second decade of the XX century to obtain, among other things, milk
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powder [80]. Next, it was applied to dry eggs and coffee [81]. Currently, this method is
applied when drying food articles in the form of solutions and suspensions of milk [82],
honey [83,84], juices and fruit concentrates, for example, strawberry [85], chokeberry [86],
rhubarb [87] or raspberry concentrates [23,88,89].

In the process of spray drying, the direct parameters that affect the product obtained
are the drying parameters that are properly selected, including drying air inlet temperature,
drying air flow rate, liquid stream feed rate and spray air pressure. It is worth considering
that the temperature of the drying air at the outlet; the droplet size; the drying capacity
(product weight); and the physical properties of the dried product, e.g., particle size (size),
moisture content, hygroscopicity and texture (texture consistency), also indirectly affect
the quality of the resulting powdered product. The basic principle of the process is to
increase the evaporation surface area of the spray-dried liquid, and the result is a rapid
discharge of water in the form of steam. The raw material that undergoes the drying
process is atomized in the drying chamber and takes the form of small, fine droplets. When
a small area of material (droplets) is obtained, faster evaporation of water is possible.
The atomized material droplets come into contact with the drying air. Dried fruits and
vegetables obtained by this method are characterized by loose form, mostly powder and
granules. A short evaporation time of water is obtained due to the high temperature of
drying air. The drying time is 1–20 s [82,90,91].

Various carrier substances are used in the process of spray drying. They are one of
the most important factors in spray drying because the raw materials that are rich in sugar,
such as fruit and vegetable juices, are difficult to spray directly without a proper carrier [92].
In the case of drying fruit and vegetable juices, an additive in the form of carries such as
starch [86] and its derivatives (maltodextrin [88], cyclodextrin), gum arabic [23], acacia
senegal gum or protein substances (gelatin, milk proteins and soya proteins), can prevent
glutinousness [93]. Starch and its derivatives are said to be good carriers in the process of
spray drying. They are characterized by high molecular weight and high glass transition
temperature but, unfortunately, have a low membrane-forming ability [94,95]. One of the
less invasive methods of modifying starch grains that are also popular in the literature
is physical modification [96–98]. Walkowiak and Przybył et al. (2022) [99] estimated the
legitimacy of the physical modification of starch. The aim of the study was a non-invasive
physical modification of native starch via the application of temperature changes and the
evaluation of the impact of the above modification on the process of grueling and gelling
of the samples, which were subject to analysis based on LF-NMR [99].

Despite the fact that the research results regarding spray drying showed that efforts
that were made to apply mathematical modeling aimed at supporting the process simula-
tion, mass exchange and quality evaluation were part of successfully conducted research, it
still seems that the above results are not satisfactory enough to determine physiochemical
properties of the obtained powders successfully. In the specialist literature, Kwapińska and
Zbiciński [100] made an endeavor to develop several ANNs based on shallow learning
with only one hidden layer. Their solution applied in spray drying using ANN (Figure 3)
was to predict the physical attributes of maltodextrin (17.5 DE) as a function of spray dryer
operating parameters and feed conditions. The authors made use of the two-layer MLPN
for predicting, for which the physical properties of powders were determined, namely
the disintegration of particle size, bulk density, sedimentation density, apparent density,
moisture content and morphology as a function of pre-drying and atomization of the
powders [67]. Youssefi and others [101] presented comparative research between ANN
and RSM in order to predict the quality parameters of spray-dried pomegranate juice. In
the research, an endeavor was made to evaluate the type of carrier, concentration carrier,
and crystallization of granulated cellulose for physiochemical parameters such as drying
effectiveness, solubility, change in color and anthocyanin (in general antioxidant content
and activity). In this particular case, ANN obtained better results than RSM [101]. Azadeh
and others [76] presented a rather flexible approach to the meta-analysis of the prediction
model with particle sizes being controlled by PLS-ANFIS and ANN in the process of spray
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drying. The PLS-ANFIS model resulted in being more effective and successful compared
with a classical solution using ANN [76].
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Chegini et al. (2008) [102] researched the impact of the strength of the raw material flow,
the temperature of the inlet air and the velocity of the sprayer in a semi-industrial dryer on
the properties of orange juice. Seven performance indicators were studied, i.e., residual
moisture content of orange juice powder, particle size, bulk density, average moisturizing
time, insoluble solids, outlet air temperature and dryer performance. Supervised artificial
neural network MLP trained by back propagation algorithms were developed to predict
seven performance indicators based on three input variables (feed flow rate, atomizer speed
and inlet air temperature).

Youssefi et al. (2009 [101] devised artificial neural networks in order to predict certain
quality parameters such as the effectiveness of drying, solubility, color, total anthocyanin
content and anti-oxidation activity of the spray-dried pomegranate juice. In developing
predictive models, the type of carrier (gum arabic, maltodectin, wax starch) was determined.
Spray drying was conducted at an inlet air temperature of 130 ◦C for all experiments [101].
The optimal MLP model (3-10-8-5) was compared with the RMS model because of its ability
to model and predict. It turned out that the MLPN was more precise and accurate in
predicting than the RMS, even with the limited number of experiments [101].

Przybył et al., 2018 [85], in this work, designed an innovative solution with electron
microscopy, image analysis and artificial intelligence in order to differentiate the classes of
fruit powders obtained in the process of spray-drying. The author made an endeavor to
compare microscope images with digital images, including selected quality parameters such
as color, shape coefficients and the coefficients of shape and image texture. The research
material consisted of strawberry powders. The process of spray-drying was carried out at
the same inlet air temperature of 165–170 ◦C for each class. It is worth noting that the same
carrier, namely maltodextrin, was used in all the research to obtain strawberry powders.
Learning sets were designed on the basis of the sets of representative characteristics, such
as color and texture for images with a digital camera and color and texture for images with
SEM. As a result, it was possible to create MLP neural networks characterized by a high
determination ratio (Table 2). The first model consisted of 30 descriptors (12 parameters of
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RGB and 18 parameters of GLCM) responsible for the color and texture of images; there
were four neurons responsible for the classes of strawberry powders in the hidden layer.
The MLP 30-19-4 network with 19 neurons in the hidden layer reached a quality rate at
the level of R2 = 0.998. For comparison, another MLPN, in which SEM image analysis was
applied, determined the coefficients of shape such as (Circ), aspect ratio (AR), roundness
(Round), solidity (Solidity), skewness (Skew), kurtosis (Kurt), Feret factor (Wsp.Feret),
circularity factor W1 (W1) and area (Area) in the output layer. It should be noted that
the MLP 9-9-4 model with nine neurons in the hidden layer reached the coefficient of
quality at the level of 0.944. The last model with the MLP structure consisting of 12 neurons
(selected texture parameters on the basis of GLCM matrix) in the input layer and 1 neuron
in the hidden layer responsible for the same number of classes (the output layer), like
the two previous models, reached the effectiveness of recognizing at the level of 0.944.
Due to the fact that the above research showed a high ratio of recognizing fruit powders
through coloring strength [86], it induced the researchers to conduct further research
works on other solutions using artificial neural networks. The above research focused on
analyzing the possibilities of applying computer image analysis and neural modeling in
order to evaluate selected quality discriminants of the spray-dried chokeberry powders.
Two imaging techniques were used using a digital camera and a scanning microscope. It
was found that effective recognition of quality classes of juice from dried chokeberries
occurs using color. The best color space model affecting the recognition ability of digital
images turned out to be the YCbCr and RGB color space models (Table 2).

Table 2. Applications of multi-layer perceptron by using spray-drying from 2007 to present.

Application Descriptors Inlet Air
Temp. [◦C] Carrier Fruit and

Vegetable * Structure R2 Year Ref.

classification

Circularity (Circ.),
Solidity, Round, Feret

factor, AW (water
activity), MC

(moisture content),
W1, W2

80 maltodextrin, gum
arabic, inulin raspberry 8-44-9 0.999 2021 [88]

classification
based on color

features
RGB, YCbCr, HSV

and HSL -

Maltodextrin used
during the research has

dextrose equivalent
(DE), respectively:
“H”—DE 26 and

“L”—DE 12

rhubarb 46-11-10 0.91 2020 [87]

classification YCbCr 150, 160, 170 maltodextrin chokeberry 15-25-3 0.994 2019 [86]

classification RGB 150, 160, 170 maltodextrin chokeberry 15-10-2 0.999 2019 [86]

classification GLCM feature 165–170 maltodextrin strawberry 12-1-4 0.944 2018 [85]

classification shape factors 165–170 maltodextrin strawberry 9-9-4 0.944 2018 [85]

classification color coefficients 165–170 maltodextrin strawberry 30-19-4 0.998 2018 [85]

prediction

Yield (%) Solubility
(%), Antioxidant
activity (%), Total

anthocyanin content
(mg = L), Color (DE)

130 maltodextrin, arabic
gum, waxy starch pomegranate 3-10-8-5 0.87 2009 [101]

predict
feed flow rate,

atomizer speed, inlet
air-temperature

110, 130, 150,
170, 190

maltodextrin, liquid
glucose, and

methylcellulose
orange 3-14-10-7 0.966 2008 [102]

* Structure of Artificial Neural Network: input layer-hidden layer (one and two)—output layer.

However, another research concentrated on the analysis of rhubarb powders [87].
The aim of the above research was to classify spray-dried powders based on graphic data
obtained from bitmap obtained in the process of spray-drying.

The neural model was developed with a multi-layer perceptron topology. There
were variables expressed in the form of 46 image descriptors in the input layer, i.e., RGB,
YCbCr, HSV (B) and HSL color models [103–105]. As a result of the learning process,
it was possible to create MLPN 46-11-10, which was characterized by a high coefficient
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of quality at the level of 0.91. The aforementioned ANN consisted of 11 neurons in the
hidden layer and 10 neurons in the output layer. The results allowed for demonstrating
that color characteristics have an impact on the effective differentiation of the research
material consisting of the spray-dried powder from rhubarb juice with different powder
content: 30, 40 and 50% and high (“H”) and low (“L”) level of saccharification of the
selected carrier (maltodextrin).

In 2021, research was conducted to test the effectiveness of fruit recognition at low inlet
temperatures in spray drying. Based on the experience of previous work and using scanning
microscopy techniques, image analysis, artificial neural networks, as well as modeling
changes in water activity, Przybył et al. [23,88,89] carried out additional experiments on
raspberry fruits. In one of the research, an endeavor was made to evaluate the impact of
the type of carrier (maltodextrin, arabic gum and inulin) with dry mass content at the level
of 50, 60 and 60% on the quality of raspberry powders [88]. Different types of powders
were compared, taking into consideration the structure of micro-particles, water activity
and moisture. It should be added that modern methods were applied in this research,
such as low-temperature spray-drying and artificial intelligence with visual technique
supported by an electron microscope. The aim of the study was to monitor the process of
spray-drying in order to obtain raspberry powders characterized by high-quality properties.
As a result of the research, it was possible to create the MLPN, for which the output layer
of the network defined a nine-state variable, i.e., raspberry powder samples with different
proportions and types of carriers. The MLP 8-44-9 network (Table 2) was determined from
a set containing 8 neurons in the input layer (circularity, solidity, round, feret, W1, W2,
water activity, moisture content) and 44 neurons in the hidden layer (Table 2).

In summary, the qualitative assessment of the obtained powder, in terms of customer
requirements, requires a wide range of physicochemical determinations. Producers of fruit
and vegetable powders struggle with the problems of repeatability of nutritional properties
of powders both between batches and within one production batch. Appropriate selection
of input parameters in the MLPN resulted in high efficiency of quality assessment of fruit
and vegetable powders, considering the amount and type of carriers. In order to obtain
homogeneous powders, it is necessary to monitor the quality and drying parameters of food
powders (including the selection of the amount of carrier) online using artificial intelligence.

3.3. Other Algorithms in Artificial Intelligence vs. Drying

The most well-known neural model has become the MLP-type network. The choice of
the model is identified by a simple structure with which any computational operation can
be effectively implemented. This has also translated into the use of this topology, most often
in convection spray drying. At present, there is little work using other artificial intelligence
learning methods in spray and convection drying. Table 3 shows other methods of learning
that appeared in the last few years. In 2020, Khaled et al. [54] conducted a study to predict
the moisture ratio in persimmon fruit. Persimmon fruit is characterized by a high content of
bioactive components; it contains fiber, phenolic compounds and minerals, among others.
The above features make persimmon fruit a preferred choice for healthy eating [106,107]. It
is worth noticing that apart from the MLP network, the support vectors method (SVM) and
k-nearest neighbors (k-NN) were also applied. The SVM tool, as a method of computational
intelligence, gave better results compared to ANN and k-NN. SVM helped give a view
of a wider range of experimental data. Khaled et al. (2020) [54] claimed that ANN was
limited to determined experimental conditions in most cases. Application of SVM, for
which the aforementioned determination reached the ideal level of R2 = 1.00, presented
an alternative modeling method of behavior during the process of drying the slices of
persimmon fruit [54].

For comparison, the application of the k-NN method, for which the coefficient of
determination was R2 = 0.9591, served as one of the regression models, which were created
for the needs of predicting moisture ratio in date fruits. Date fruits are one of the most
popular fruits, especially in Iran, both in fresh and dried forms [108]. Date fruits are rich
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in fiber, vitamins, minerals and antioxidants [109–111]. Date consumption can prevent
atherosclerosis development, which translates into a lower risk of other cardiovascular
diseases. A dried date has similar nutritional values, which is why the process of date
fruit drying turned out to be so important [108]. In the above case, the researchers used
both methods using the k-NN random forest algorithm, for which it was possible to obtain
coefficient R at the level of R2 = 0.959. Three RF models were trained with different sets of
parameters. In order to optimize the above method, on account of the bigger number of
parameters of the RF method than in the k-NN model, Keramat-Jahromi et al. (2021) [108]
proposed the combination of calculations obtaining approximately 4000 possibilities.

Simulations of the drying process were also based on RBF neural network topology.
Dalvi-Isfahan (2022) [65] compared the learning results of MLP with RBF. In RBF, as in
MLP, the input variables were air temperature, air velocity and drying time, and the output
variable was the moisture concentration of the apple slice. The number of neurons is based
on the input and output parameters. The coefficient of determination using RBF to evaluate
apple slice moisture reached a value of R2 = 0.98.

On the other hand, carrot is a type of vegetable that is well-known for their high
content of β-carotene. B-carotene plays an important role in the human diet due to its high
content of vitamin A [112]. It is also known for its antioxidant activity, which involves the
physical and chemical scavenging of free radicles [73,113]. In the study, different types
of drying and different drying conditions were used, as a result of which six groups of
samples were obtained, among others, in the process of convective drying. It is worth
adding that in this case MobileNet architecture was applied in the process of learning,
which was based on separate convolutions [114]. On the basis of the experiment that was
carried out, it can be concluded that effective discrimination of the objects contained in
digital images, i.e., dried carrots samples, is possible using CNN. The best results were
observed precisely in the differentiation of dried carrots obtained by convective drying
(R2 = 0.998).

Huang et al. (2022) [115] carried out an experiment on apples in the process of
convective drying. The process of drying was performed at the temperature of about 50,
60 and 70 ◦C with the air velocity of 1, 2 and 3 m·s−1. As a result, a deep neural network
(DNN) was developed based on 4526 groups of apple slice drying data. It was used to
predict changes in moisture ratio (MR), for which R2 = 0.998, and dry matter (DBMC),
where R2 = 1.00.

As it was mentioned before, Çetin, 2022 [64] conducted a number of studies aimed at
predicting the moisture ratio in the drying process of the two varieties of oranges. Apart
from the aforementioned typology, the author took advantage of the other methods of
learning, such as support vector regression (SVR), gaussian processes (GP), random forest
and k-NN. Each of the above algorithms demonstrated a high coefficient of prediction
effectiveness of dried orange fruits. The results of predicting the speed of drying showed
that k-NN obtained the highest levels of R2 at the level of 1.0000 and 0.9954 for the Navel
and Valencia varieties, respectively.

Przybył et al. (2022) [60], as mentioned above in this study, used deep artificial neural
networks to improve classification performance using image texture based on GLCM. In
this case, the network analyzing the images was expressed in eight-bit grayscale, and this
translated into achieving 100% four-class classification quality. This leads us to believe that
the deep applied networks with MobileNet architecture seek solutions to the classification
problem within the boundaries defined in the considered hyperspace by the training set.
This increases the reliability of the results returned by the obtained models. MobileNet
(grayscale) for four-class classification also achieved high values of testing and validation
quality. In the test set, the best-discriminated class was class 4 (with a temperature of
90 ◦C during drying), for which 83% of cases were classified correctly. The remaining
18% of misclassified cases were evaluated by the network as class 3 (including drying
temps of 80 ◦C). For the validation set, 78% of the validation cases belonging to class 3
were classified correctly, and the mistaken cases were evaluated as belonging to classes 1
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and 2. Seventy-two percent of the cases belonging to class 2 were classified correctly, while
twenty-two percent were mistaken for class 3. This indicates some similarity in the texture
of the cases from classes 2 (drying temp. equals 70 ◦C) and 3. Only 6% of the cases were
falsely assigned to class 1 (drying temp. equals 60 ◦C). Seventy-eight percent of cases
belonging to Class 1 were classified correctly, while seventeen percent were falsely assigned
to Class 2. Only 6% were misclassified as Class 3.

Table 3. Other methods of AI in drying.

Application Descriptors
Air

Temp.
[◦C]

Air
Velocities

[m·s−1]
Fruit and
Vegetable Type R2 Year Ref.

various
temperatures

evolution
(classification of

texture parameters)

GLCM texture feature by
vegetable image 60, 70, 80, 90 1.0 sweet potato MobileNet 0.778 2022 [60]

moisture ratio
drying time, initial volume,

area difference, moisture
content, final thickness

50–60 0.5 orange
Valencia k-NN 0.9898 2022 [64]

moisture ratio
drying time, initial volume,

area difference, moisture
content, final thickness

50–60 0.5 orange
Valencia

Random
Forest (RF) 0.9840 2022 [64]

moisture ratio
drying time, initial volume,

area difference, moisture
content, final thickness

50–60 0.5 orange
Valencia GP 0.9435 2022 [64]

moisture ratio
drying time, initial volume,

area difference, moisture
content, final thickness

50–60 0.5 orange
Valencia SVR 0.9803 2022 [64]

prediction
(moisture ratio

(MR))

the weights of the apple
slices, drying time, drying

temperature, drying air
velocity and infrared

radiation distance

50, 60, and 70 1.0, 2.0, 3.0 apples DNN 0.998 2022 [115]

prediction (dry
basis moisture

content (DBMC))

the weights of the apple
slices, drying time, drying

temperature, drying air
velocity and infrared

radiation distance

50, 60, and 70 1.0, 2.0, 3.0 apples DNN 1.000 2022 [115]

classification
included both the

type of drying
process and the

quality of drying
for binary division
on account of the

applied parameters

the vegetable image - - carrot MobileNet 0.998 2022 [116]

predict the
moisture

concentration
changes during

drying

air temperature, airflow
velocity and drying time 45–60 0.75–1.25 apple slices RBF 0.98 2022 [65]

prediction
(moisture ratio)

the fruit image and
the environment variables,
including temperature and

air velocity

25, 35 and 60 0.5, 1.0,
and 1.5 date fruits Random

Forest (RF) 0.976 2021 [108]

prediction
(moisture ratio)

the fruit image and
the environment variables,
including temperature and

air velocity

25, 35 and 60 0.5, 1.0,
and 1.5 date fruits k-NN 0.959 2021 [108]

prediction
(moisture ratio)

temperature, thickness and
drying time 50, 60, 70 1.10 persimmon

fruit SVM 1.000 2020 [54]

prediction
(moisture ratio)

temperature, thickness and
drying time 50, 60, 70 1.10 persimmon

fruit k-NN 0.9327 2020 [54]



Appl. Sci. 2023, 13, 2965 17 of 22

In summary, the above research confirms the high efficiency of matching various
AI methods, which translates into obtaining excellent forecasting or classification results
obtained as a result of drying vegetables and fruits.

The value of the fit coefficient below 0.7 would mean that the discrepancies between
the results of the designed AI methods and the model results for the network are not fully
satisfactory in research work. A fit quality factor below 0.6 would mean that the fit of
the model is not sufficient for ANN methods to be able to independently decide on the
qualification of dried vegetables and fruits with sufficient accuracy.

4. Perspectives of AI Conclusions

Machine learning and artificial neural networks are definitely the future of the modern
world because it is a continuously developing technology. AI is more and more widely
applied in many sectors of the economy. The development of artificial intelligence was
obtained, among others, from the availability of computers. Their adequate computing
power and unlimited disk capacity resources allowed for setting new standards in many
decision-making processes. The above creates greater possibilities for conducting this
kind of research in a wider social circle, which ensures further AI development. Different
research is directed at ensuring that artificial intelligence itself will be more and more
often replacing processes at different stages of the technological food process. Artificial
intelligence applied in food drying will be used to automate and optimize the conditions
of drying. Food drying can become more productive and efficient and can ensure a better
quality of dried food.

One challenge is the limited availability of supercomputers in many research centers
and academic institutes. Artificial intelligence requires appropriate programming and
supervision using supercomputers in order to ensure its effectiveness, verification and
validation. Another issue is the appropriate selection of input and output parameters when
designing AI algorithms. It is possible that unlimited data collection will allow the use of
artificial intelligence even in real time during the process of convective and spray drying.

Generally speaking, the application of AI in food drying ensures substantial benefits,
including an improvement in productivity, accuracy and food safety. It could expect more
and more innovative applications and further revolution in how food is preserved and
stored. It is highly likely that neural networks combined with the farm and food industry
will soon have a huge impact on the automation of processes and productivity in the
process of producing raw materials and food processing.

In the future, it will be possible to imagine automated farm and food machines,
drones monitoring the condition of production lines processing raw materials or even
intelligent quality control of vegetables and fruits, among others, via the quick activity of
visual devices.
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103. Chmiel, M.; Słowiński, M.; Dasiewicz, K. Lightness of the color measured by computer image analysis as a factor for assessing
the quality of pork meat. Meat Sci. 2011, 88, 566–570. [CrossRef]

104. Muhammad, G.; Al-Hammadi, M.H.; Hussain, M.; Bebis, G. Image forgery detection using steerable pyramid transform and local
binary pattern. Mach. Vis. Appl. 2014, 25, 985–995. [CrossRef]

105. Golpour, I.; Parian, J.A.; Chayjan, R.A. Identification and classification of bulk paddy, brown, and white rice cultivars with colour
features extraction using image analysis and neural network. Czech J. Food Sci. 2014, 32, 280–287. [CrossRef]

106. Yang, Z.; Xu, M.; Li, Q.; Wang, T.; Zhang, B.; Zhao, H.; Fu, J. The beneficial effects of polysaccharide obtained from persimmon
(Diospyros kaki L.) on the proliferation of Lactobacillus and gut microbiota. Int. J. Biol. Macromol. 2021, 182, 1874–1882. [CrossRef]
[PubMed]

107. Ye, L.; Mai, Y.; Wang, Y.; Yuan, J.; Suo, Y.; Li, H.; Han, W.; Sun, P.; Diao, S.; Fu, J. Metabolome and Transcriptome Analysis Reveal
the Accumulation Mechanism of Carotenoids and the Causes of Color Differences in Persimmon (Diospyros kaki Thunb.) Fruits.
Agronomy 2022, 12, 2688. [CrossRef]

108. Keramat-Jahromi, M.; Mohtasebi, S.S.; Mousazadeh, H.; Ghasemi-Varnamkhasti, M.; Rahimi-Movassagh, M. Real-time moisture
ratio study of drying date fruit chips based on on-line image attributes using kNN and random forest regression methods.
Measurement 2021, 172, 108899. [CrossRef]

109. Abdul, E.; Assirey, R. Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J.
Taibah Univ. Sci. 2018, 9, 75–79. [CrossRef]

http://doi.org/10.1016/j.compag.2018.10.033
http://doi.org/10.3390/s19204413
http://www.ncbi.nlm.nih.gov/pubmed/31614766
http://doi.org/10.1007/s13197-020-04537-9
http://doi.org/10.1016/j.measurement.2021.110014
http://doi.org/10.3390/s21175823
http://doi.org/10.15193/zntj/2010/73/005-017
http://doi.org/10.1016/j.cep.2006.06.020
http://doi.org/10.3168/jds.2021-21341
http://doi.org/10.1177/1082013214557843
http://doi.org/10.1007/978-3-319-24040-4_18
http://doi.org/10.1177/1082013220987914
http://doi.org/10.3390/polym13132200
http://doi.org/10.3390/polym14010184
http://doi.org/10.1081/DRT-200065075
http://doi.org/10.1080/07373930902988247
http://doi.org/10.1016/j.jfoodeng.2007.06.007
http://doi.org/10.1016/j.meatsci.2011.02.014
http://doi.org/10.1007/s00138-013-0547-4
http://doi.org/10.17221/238/2013-CJFS
http://doi.org/10.1016/j.ijbiomac.2021.05.178
http://www.ncbi.nlm.nih.gov/pubmed/34058211
http://doi.org/10.3390/agronomy12112688
http://doi.org/10.1016/j.measurement.2020.108899
http://doi.org/10.1016/J.JTUSCI.2014.07.002


Appl. Sci. 2023, 13, 2965 22 of 22

110. Taha, K.K.; Al Ghtani, F.M. Determination of the elemental contents of date palm (Phoenix dactylifera L.) from Kharj Saudi Arabia.
WSN 2015, 12, 66–76.

111. Kuras, M.J.; Zielin’ska, M.; Zielin´ska-Pisklak, Z.; Duszyn´ska, J.; Duszyn´ska, D.; Jabłon´ska, J.; Jabłon´ska, J. Determination of
the elemental composition and antioxidant properties of dates (Phoenix dactyliferia) originated from different regions. J. Food Sci.
Technol 2020, 57, 2828–2839. [CrossRef]

112. Koca Bozalan, N.; Karadeniz, F. Carotenoid profile, total phenolic content, and antioxidant activity of carrots. Int. J. Food Prop.
2011, 14, 1060–1068. [CrossRef]

113. Imsic, M.; Winkler, S.; Tomkins, B.; Jones, R. Effect of Storage and Cooking on β-Carotene Isomers in Carrots (Daucus carota L. cv.
‘Stefano’). J. Agric. Food Chem. 2010, 58, 5109–5113. [CrossRef]

114. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv Preprint 2017. [CrossRef]

115. Huang, X.; Li, Y.; Zhou, X.; Wang, J.; Zhang, Q.; Yang, X.; Zhu, L.; Huang, X.; Li, Y.; Zhou, X.; et al. Prediction of Apple Slices
Drying Kinetic during Infrared-Assisted-Hot Air Drying by Deep Neural Networks. Foods 2022, 11, 3486. [CrossRef]

116. Koszela, K.; Adamski, F.; Szychta, M.; Przybył, K.; Gierz, Ł. Quality evaluation of dried carrot obtained in different drying
conditions using deep convolutional neural networks. In Proceedings of the Fourteenth International Conference on Digital
Image Processing (ICDIP 2022), Wuhan, China, 20–23 May 2022; Volume 12342, pp. 879–885. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s13197-020-04314-8
http://doi.org/10.1080/10942910903580918
http://doi.org/10.1021/jf904279j
https://doi.org/10.48550/arXiv.1704.04861
http://doi.org/10.3390/foods11213486
http://doi.org/10.1117/12.2645890

	Introduction 
	Methodology 
	Multi-Layer Perceptron Technique 
	Radial Basic Function Technique 
	Deep Neural Networks Technique 
	Convolutional Neural Networks Technique 
	Random Forest, k-NN, SVM, SVR Technique 

	Results and Discussion 
	Multi-Layer Perceptron vs. Convective Drying 
	Multi-Layer Perceptron vs. Spray Drying 
	Other Algorithms in Artificial Intelligence vs. Drying 

	Perspectives of AI Conclusions 
	References

