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Abstract: The São Francisco River (one of the most important South American rivers) has many
contamination sources, but just a few environmental assessments have been conducted. A weight-of-
evidence approach identified the pollution sources (industrial activities, mineral processing, fisheries,
and tourism) in the river and the city of Três Marias based on two different lines of evidence: the
structure of the benthic community (biological monitoring working party score system, abundance
of taxa, number of individuals, Margalef species richness, Pielou evenness, and Shannon–Wiener
diversity) and the physicochemical determination of sediments (%fines, TOC, nitrate, ammonium,
ammonia, ammoniacal nitrogen, metalloids, and SEM/AVSs). The results show that the wastewater
treatment plant was the most important source of pollution. A factory was also detected as a source
of contamination, with related adverse effects having been measured downstream. Other sources of
contamination and stress were detected in the studied area. The macro-benthic identification study
identified three different sentinel species (Tanytarsus sp., Crytochironomus sp., and Polypedilum sp.) for
future monitoring assessments of the sediment quality in riverine areas. Thus, an improvement in
the management of river effluents and more measures focused on cutting contaminant emissions
from the waste treatment plant are recommended.

Keywords: sediment assessment; weight of evidence; SIMPER analysis; biological monitoring
working party

1. Introduction

The São Francisco River (SFR) is one of the most important Brazilian and South
American rivers; with a 1800 km length, its source is in Serra da Canastra (Mina Gerais),
and it drains 641,000 km2 across different states (Bahía, Pernambuco, Sergipe, and Alagoas)
until it reaches the Atlantic Ocean. It also acts as a geographical barrier. Some other
important rivers are effluents, such as the Paraopeba River, das Velhas River, or Verde
Grande River. This river plays an important economic role due to electricity generation
and transportation of goods; nevertheless, some other activities strongly influence it,
such as zinc metallurgy, sewage discharges, and agriculture, among others [1]. A few
environmental assessments have been performed in this area [1–6].

Sediments are an essential component of aquatic ecosystems and should be considered
a resource of high ecological and socio-economic value that requires appropriate protection
and management [7]. Sediments in a river could act as a sink of pollutants, releasing them
into the waters when the sediment accumulation capacity is saturated [8].

Ecological monitoring using benthic community structure analysis provides infor-
mation on different changes related to species composition, abundance, and diversity; all
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these indicators show alterations in the communities in the studied areas [9–11]. This
kind of study provides realistic information about the environmental health of aquatic
ecosystems. The macro-benthic fauna plays a fundamental role in sediment processes,
providing an important measure of the response of a community to environmental pertur-
bation [12–16] and exhibiting the greatest potential for monitoring conditions at a particular
site [17]. Biotic indices are useful tools in decision-making processes [18], and those indices
synthesize complex scientific data. The structure of the macro-benthic community was
analyzed using univariate measures (biological monitoring working party score system, the
abundance of taxa, the number of individuals, Margalef species richness, Pielou evenness,
and Shannon–Wiener diversity). The biological monitoring working party (BMWP) score
system is very useful for water quality management due to its adaptability. However, the
use of biotic indices has limitations, since natural variability can be difficult to establish.
Therefore, reliable environmental assessment studies must integrate as much information
as possible.

Another line of evidence (LOE) was selected in order to establish the cause of potential
alteration and/or pollution. This LOE is based on the physicochemical determination of
sediments: grain size (fines), organic carbon content (TOC), chemical nitrogen (nitrate,
ammonium, ammonia, and ammoniacal nitrogen), metal concentrations in sediments (Al,
As, Co, Cr, Cu, Fe, Ni, Pb, Zn, and Hg), and simultaneously extracted metals–acid volatile
sulfides (SEM-AVSs). The USEPA [19] establishes some benchmarks for metal(loid)s Cd, Cu,
Pb, Ni, Ag, and Zn in freshwater sediments. Ref. [3] classified the toxicity of the sediments
according to benthic organisms in total organic carbon fraction (f toc), but also additional
elements or factors affecting the area, such as chemical nitrogen or other metals. Therefore,
chemical nitrogen was analyzed mainly due to the sewage discharge and agricultural
pollution in the Barreiro Grande stream. Furthermore, the concentrations of Al, As, and Fe
were measured due to the proximity of the VM-TM refining factory.

The main objective of this study was to establish the sediment quality in this river,
addressing the main causes of the potential alteration and/or pollution with an integrative
assessment. It was conducted by linking the results of the LOEs of sediment contamination
and the descriptive parameters of macro-benthic community. Furthermore, the pollution
sources in the upper-middle region of the São Francisco River were located and identified
using a weight-of-evidence (WOE) approach based on the integration of both lines of
evidence in order to define a management plan approach to determine the best remedial
actions for improving the ecological status of the river.

2. Materials and Methods
2.1. Study Area

The area of study (Figure 1) was located between the Três Marias reservoir (SF1),
and around 300 m downstream of the effluent discharge point a refining factory (ZM2).
Therefore, the region is affected by anoxic water entering from the reservoir, the zinc-
refining factory, and human alterations, such as sewage effluents from the Barreiro Grande
stream and other diffuse sources. The upper sampling station (SF1) was located on the left
bank of the SFR, and upstream of the factory and the confluence with the Barreiro Grande
stream. This station was selected as control in the study. Downstream, the BG4 station
was located in the Barreiro Grande stream 10 m upstream of the SFR confluence and was
selected to determine the sediment characterization before the confluence with the SFR and
the effects of the Três Marias wastewater treatment plant (WWTP). In the distance, the SF2
station was located on the right bank of the SFR, just opposite the security dam, in order
to determine the sediment quality in the proximity area of the dam. On the right bank of
the SFR, the SF3 station was located 100 m downstream of the effluent discharge site of the
factory, to assess the direct impact of the factory on the SFR sediments. Upstream, the ZM2
station was located in the mixing zone of water from the SFR, just on the right bank of the
SFR, 300 m downstream of the effluent discharge site of the factory and 20 m downstream
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of the ‘Consciência’ stream confluence. This station was selected to study the potential
contamination associated with factory activity.
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Figure 1. Map showing São Francisco River basin extension (Brazil) and study area with sampling
stations (SF1, BG4, SF2, SF3, and ZM2). Some of the sources of contaminants, such as a factory, the
city of Tres Marias, and the security dam (in dark grey), are also included.

2.2. Sampling Survey and Characterization

Sediment samples were collected with a Petersen grab of 5 L in capacity at a 7 cm
depth at the sampling stations (SF1, BG4, SF2, SF3, and ZM2) (Figure 1). The samples were
transported to the laboratory, where they were analyzed for physicochemical characteriza-
tion. Samples for benthic analysis were separately collected; benthic animals were retrieved
with the help of a 0.25 mm sieve and fixed in formalin (4%).

Grain size distribution (% fines) and total organic carbon (TOC) were analyzed using
the ABNT NBR 7181/82 procedure [20]. This standard involves the drying, sieving, and
sedimentation of the fines. Briefly, 500 g of each sample was dried at 50 ◦C for 48 h.
The dried material was disaggregated in a mortar and sequentially sieved with 0.85 mm,
0.5 mm, 0.25 mm, 0.125 mm, and 0.063 mm meshes. The 0.063 mm fraction was introduced
in 1000 mL beakers, and the sedimentation of fines was determined by pipetting/weighing
the sediment over time.

Chemical nitrogen forms (nitrate, ammonium, ammonia, and ammoniacal nitrogen)
were also measured in sediment samples to analyze diffuse contamination, a common
example of which is the leaching of nitrogen compounds from fertilized agricultural lands.
Nitrate, ammonium, ammonia, and ammoniacal nitrogen were determined in sediment
interstitial waters. Sediment samples were centrifuged at 11,000 rpm and 15 ◦C for 15 min
using an Eppendorf centrifuge. Afterward, the supernatant was filtered with a 0.6 µm
pore fiberglass filter (Whatman) and analyzed with ion-exchange chromatography using a
DIONEX DX-80 ion analyzer [21].

The methodology used for the analysis of secondary sulfides from sediments followed
the procedures of the AVS-SEM technique [22]. In short, a sample of whole sediments
(moist) was weighed and introduced into the reaction flask along with 100 mL of Milli-Q
water. The flask was sealed, and the suspension was stirred for ultrapure nitrogen flow.
Then, 20 mL of previously aeriated HCl (6M) was introduced with nitrogen. The AVSs
were purged by the carrier gas (N2) through the glass tubes that were immersed within the
receiving flasks for the time of 30 min. The remaining suspension of the balloon (SEM) was
filtered for the determination of metals (Cu, Cd, Pb, Ni, and Zn).
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Metal and metalloid concentrations (Al, As, Co, Cr, Cu, Fe, Ni, Pb, Zn, and Hg) were
determined using inductively coupled plasma–atomic emission spectroscopy (ICP-AES;
Jobin-Ybon Ultima2) using a modification of the USEPA 3050B methodology [23]. The
modification was performed to prevent the evaporation loss of the volatile trace elements
(Hg, As, and Se). Standards were prepared with SCP SCIENCE standards. Reference
certificated material SEM-1640 NIST for freshwater samples and inter-laboratory standard
IRMM-N3 were also analyzed. The detection levels were calculated considering half of the
signal and the standard deviation of a blank calculated 10 times.

2.3. Benthic Community Analysis

A total of 25 sediment samples were collected with a 0.0928 m2 Petersen grab. Five
replicate samples were taken at each station for benthic faunal analysis. After collection,
samples were sieved in situ with a 0.025 mm mesh, and the retained organisms were
transported to the laboratory in buffered formalin (4%). There, these samples were washed
and transferred to 70% isopropyl alcohol. Then, they were sorted and identified to the
lowest taxonomic level.

We used the biological monitoring working party (BMWP) score to study the tolerance
of the benthic community. It is based on the principle that different aquatic invertebrates
have different tolerance to pollutants, especially organic (i.e., nutrient enrichment that can
affect the availability of dissolved oxygen). The presence of mayflies or stoneflies indicated
the best water quality, with a score of 10, while worms indicated the worse water quality,
with a score of 1 [24].

Moreover, the Shannon–Wiener diversity (H′), species richness (d′ [25,26]), Pielou
evenness (J′ [27]), total abundance (A), and abundance of taxa (S) classic indices were
calculated using the PRIMER-E (Plymouth Routines in Multivariate Ecological Research,
v6) [28,29] suite of computer programs developed at Plymouth Marine Laboratory, UK.

2.4. Statistical Approach

Univariate analyses were based on the community descriptive parameters of the
benthic fauna and the physicochemical measurements, which were calculated for each
replicate sample and summarized for each site. The results were expressed as arithmetic
averages ± standard deviations. In order to determine whether there were significant
differences among stations, one-way analysis of variance (ANOVA) of each benthic uni-
variate measure and physicochemical analysis result was used, followed by the multiple
comparisons of Dunnett’s test. The significance was set at α < 0.05. Univariate statistical
analyses were performed using SPSS 17.0.

Data were previously checked and/or transformed to ensure normality and het-
eroscedasticity and conduct the ANOVA test. For multivariate analyses, species abundance
was transformed with the fourth root prior to performing non-metric multidimensional
scaling (MDS) and similarity percentage analysis (SIMPER). Relative similarities in the abun-
dance or biomass of benthic fauna among treatments (plus the reference samples or D0)
were graphically analyzed using MDS with the Bray–Curtis similarity index [29]. The
reliability of the MDS representations of the assemblage similarities was assessed with their
stress values; stress < 0.01 was considered acceptable [28]. Clustering was performed using
a hierarchical, agglomerative method using group average sorting, the results of which
are displayed in a dendrogram. SIMPER analysis of abundance (cut-off percentage: 90%)
was used to identify the taxa with the greatest contribution to differences among sam-
ples [28]. The significance of differences among stations was tested using the randomiza-
tion/permutation test ANOSIM [30]. All analyses in MDS, SIMPER, and BIOENV were
performed using PRIMER 6.1.6.
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3. Results
3.1. Physicochemical Analyses

The summarized results of the physicochemical parameters analyzed are shown in
Table 1. The BG4 station registered the greatest concentrations of compounds (nitrate,
ammonium, ammonia, and ammoniacal nitrogen). However, the greatest element concen-
trations of Fe and Cr were found at SF1; those of Cu, Pb, and Zn, at SF3; and those of Co
and Ni, at SF2. The ZM2 station displayed the highest concentrations of Al and As. The
concentrations of metals Pb, Zn, Hg, and Cu showed a smooth gradient that increased
from station SF1 as follows: SF1 < SF2 < SF3 < ZM2. Station ZM2 was located in the area of
mixing between the SFR and the heavily factory-influenced stream, which could justify the
high values of Al and As.

Table 1. Summarized results of physicochemical parameters analyzed in sediments from the San
Francisco River (SFR): percentage of fines, total organic content (TOC), nitrogen species (nitrate,
ammonium, ammonia, and ammoniacal nitrogen), SEM-AVSs, and metal(loid) concentrations (Al,
As, Co, Cr, Cu, Fe, Ni, Pb, Zn, and Hg).

SF1 BG4 SF2 SF3 ZM2

Fines (%) 7.37 50.16 26.28 37.82 27.81
TOC (µg/g) 20,970 10,590 11,960 12,430 17,590

Nitrate (µg/L) 83.46 617.32 50.87 24.52 35.28
Ammonium (µg/L) 1511 8760 1210 1432 1424
Ammonia (µg/L) 33.99 35.18 4.86 8.65 8.59

Ammoniacal nitrogen (µg/L) 1545 8795 1215 1441 1432
SEM-AVS (µmol/g) 58.7 3687 2720 2947 96.1

Al (µg/g) 2197 3993 2596 4558 32,767
As (µg/g) 5.51 1.36 1.48 2.56 8.83
Co (µg/g) 6.83 3.48 8.36 8.27 5.91
Cr (µg/g) 15.78 10.55 14.63 11.99 12.50
Cu (µg/g) 4.76 14.50 21.19 43.64 16.41
Fe (µg/g) 22,017 13,059 8030 14154 12,307
Ni (µg/g) 5.15 3.56 5.64 4.56 4.71
Pb (µg/g) 4.28 14.5 36.7 132 15.3
Zn (µg/g) 25.1 958 1239 3676 639
Hg (µg/g) 0.02 0.02 0.09 0.17 0.12

Due to the placement of BG4, situated on the Barreiro Grande stream, where the Três
Marias water treatment plant discharges, the nitrogen species concentrations (nitrate, am-
monium, ammonia, and ammoniacal nitrogen), well known as domestic waste indicators,
were higher than the values obtained at the other stations. On the other hand, the sediments
from the SF1 sampling point, although not directly influenced by the factory, received many
contaminants from all over the drainage basin, since this sampling point was located under
the Três Marías reservoir. According to the results, we could establish a decreasing pattern
related to domestic waste contamination as follows: BG4 > SF1 > SF3 ≈ ZM2 > SF2.

3.2. Benthic Community Structure

Concerning benthic community structure analysis, a total of 3915 individuals were
identified in the benthic fauna in sediments from the five sampling stations and along
the river. They were classified into 60 species (1 hirudinean, 12 oligochaetes, 1 crus-
tacean, 43 insects, 3 mollusks, and 1 nematode), and 4 species were not fully identified
(17 hirudinean annelids, 14 conchostracan crustaceans, 2 dryiopidae beetles, and 63 individ-
uals classified as nematode). Figure 2 shows a relative abundance of different taxonomic
groups (hirudinea, oligochaeta, mollusca, and nematoda) observed at each sampling station.
Therefore, the benthic community at BG4 clearly differed from the rest of the stations; it
was dominated by nematodes (around 68%), unlike the communities from the rest of the
stations, where insects were the dominant group (60–77%). Relative nematode abundance
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varied from 5% (at the SF1 station) to 0% (at the SF3 and ZM2 stations), and relative insect
abundance was 2% at the BG4 station.
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Figure 2. Relative abundance of different taxonomic groups (Hirudinea, Crustacea, Insecta,
Oligochaeta, Mollusca, and Nematoda) identified in sediments from each sampling station at the São
Francisco River (SF1, SF2, SF3, BG4, and ZM2).

The univariate metrics of the community structure for all the sampling stations are
shown in Table 2. According to the BMWP results, all stations showed a bad ecological
status. The BMWP score showed significant (p < 0.05) differences among sampling sites
(BG4 and SF2), close to the affluent, and the control site (SF1). As expected, the SF1 site
presented the best BMWP results, which were still considered ‘bad’ but just at the limit
between degraded and regular. Conversely, BG4 showed the lowest BMWP score, defined
by the abundance, number of individuals, richness, and diversity values, and the SF2
station showed the lowest Pielou evenness values. The benthic community structure at the
SF2 station showed the highest Pielou evenness, while BG4 showed the lowest values.

Table 2. Mean and standard deviation (mean ± SD) values of different biotic indices (abundance of
taxa—S′; number of individuals—N′; Margalef species richness—d′; Pielou evenness—J′; Shannon–
Wiener diversity—H′; and BMWP score) per square meter at each sampling station.

Index SF1 BG4 SF2 SF3 ZM2

S′ 3.60 ±3.65 0.60 ±0.89 6.20 ±1.30 6.40 ±1.14 4.60 ±2.70
N′ 185 ±245 94.3 ±206 896 ±667 366 ±144 1459 ±2588
d′ 0.51 ±0.62 0.08 ±0.12 0.79 ±0.20 0.93 ±0.21 0.57 ±0.28
J′ 0.82 ±0.33 0.88 ±0.00 0.65 ±0.14 0.72 ±0.12 0.69 ±0.25
H′ 0.79 ±0.84 0.12 ±0.27 1.16 ±0.24 1.33 ±0.32 0.87 ±0.28

BMWP 45.7 ±2.5 23.3 * ±1.75 25.6 * ±2.14 28.13 ±5.02 27.87 ±3.29
Asterisks (*) indicate significant differences (p < 0.05) compared with the control site (SF1).

Figure 3 shows the results of clustering the different stations using the Bray–Curtis
index for abundance similarities. Cluster analysis distinguished three main groups of
sites (BG4, SF1, and the rest of the sites), which were considered to represent different
communities on the basis of their geometric means. As mentioned above, BG4 was clearly
different from the other stations, and the control site (SF1) was different from the other
stations but closer than BG4. The SF2, SF3, and ZM2 stations showed similar communities
among them.
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Figure 3. Bray–Curtis similarity dendrogram based on abundance, showing the classification of each
station replicates.

The SIMPER analysis showed how the structure of the benthic community contributed
to the differences among stations, indicating the main taxa and their contribution to the
dissimilarity. The abundance of the macrofauna showed the highest dissimilarity (100%)
between the SF3 and BG4 stations, while the least dissimilar (69.38%) stations were SF2
and SF3. Moreover, BG4 showed large differences (or dissimilarities) from the rest of the
stations: BG4-ZM2 (99.52%), BG4-SF1 (99.33%), and BG4-SF2 (98.77%). The abundance of
species of Tanytarsus spp., Cryptochironomus spp., and Polypedilum spp. was responsible for
the dissimilarities between the most different stations (SF3-BG4 and ZM2-BG4), showing
dissimilarities of around 8.37–13.33 (Tanytarsus spp.), 6.44–11.8 (Cryptochironomus spp.),
and 5.25–11.63 (Polypedilum spp.). Pairwise comparisons derived from the ANOSIM test
on species abundance data showed that the stations were significantly different from each
other (p < 0.01).

3.3. Linking Physicochemical and Benthic Community Results

The relation between benthic fauna abundance and physicochemical variables was
studied using the BIOENV procedure (Table 3). This statistical analysis selects environmen-
tal variables ‘best explaining’ community patterns by maximizing the correlations among
their respective similarity matrices. This approach is advantageous, since it identifies not
only the best correlation but also the best combination of them.

Table 3. BIOENV correlations (Spearman rank correlation coefficients, rs) between benthic community
structure and environmental variables (n).

n Variables rs

5 Nitrate + ammonium + ammonia + Al + Zn 0.915
5 Nitrate + ammonia + ammoniacal nitrogen + Al + Zn 0.915
5 Ammonium + ammonia + ammoniacal nitrogen + Al + Zn 0.915
1 Nitrate 0.879
2 Nitrate + SEM-AVSs 0.879
3 Nitrate + ammonium + SEM-AVSs 0.879
2 Nitrate + ammonium 0.879
2 Nitrate + ammoniacal nitrogen 0.867
5 Nitrate + ammonium + ammonia + ammoniacal nitrogen + SEM-AVSs 0.867

The results of the BIOENV analysis showed that 91.5% of the variance in the different
stations was due to the nitrate, ammonium, ammonia, Al, and Zn contents; the nitrate,
ammonia, ammoniacal nitrogen, Al, and Zn contents; or the ammonium, ammonia, am-
moniacal nitrogen, Al, and Zn contents. This analysis always showed Al and Zn as the
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contaminant metals of concern in the analyzed macro-benthic community. This variance
was lower (87.9%) when one (nitrate), two (nitrate and SEM-AVSs), or three variables
were considered (nitrate, ammonium, and SEM-AVS; or nitrate, ammoniacal nitrogen, and
SEM-AVS). These results associate the nitrogen species with those measured changes in the
macro-benthic community structure.

4. Discussion

This study identified the degradation in the surrounding area of the SFR course using
the chemical measurement of sediments and macro-benthic community structure. This area,
located between the Três Marias reservoir and around 300 m downstream of the effluent
discharge point of the refining factory, showed several sources of contamination. In this kind
of situation with multiple stressors, it is necessary to assess the overall sediment quality, and
the use of multiple lines of evidence with an integrative approach is recommended [31–36].
The use of these multiple lines of evidence integrated with a weight-of-evidence approach
(WOE) links the results obtained in each LOE, in this case, physicochemical parameters and
benthic community structure indexes. Metal contamination has been extensively studied,
but metal bioavailability and its effects are not commonly studied in this region [1–3,37,38].
The environmental state of the SFR was evaluated in this study using different lines-of-
evidence (LOEs), which were integrated using the BIOENV procedure.

Benthic infaunal communities, as living components of sediments, represent the
integrated response of the biological effects of pollutant contents on sediment samples.
The results obtained using the classical descriptive parameters show the lowest values
of Margalef richness (0.08) and Shannon–Wiener diversity (0.12), as well as the BMWP
score system (23.34), at the BG4 station. Moreover, this station also showed the highest
values of Pielou evenness (0.88). Furthermore, this station showed a significant (p < 0.05)
difference in the macro-benthic community structure results compared with those obtained
for the other stations. Thus, the highest descriptive parameters were observed at different
stations, showing, at SF3, the highest values of the abundance of taxa (6.40), Margalef
richness (0.93), and Shannon–Wiener diversity (1.33). Significant differences (p < 0.05) were
only found in the BMWP score results obtained at the BG4 and SF2 stations, which can
be observed in the MDS analysis (Figure 3). Furthermore, the SIMPER analysis showed
two of three species (Polypedilum sp. and Tanytarsus sp.) that were classified as sensitive
by [39], and the Tanitarsus formosanus species, which was classified as sensitive [40–42].
Additionally, the other marked species (Cryptochironomus sp.), according to [43,44], typically
prefers well-oxygenated sandy substrates and is generally intolerant to polluted conditions.
[Polypedilum trigonous species showed a positive relationship with most of the organic
pollutants, such as TOM, ammonium, and nitrateas well as trace metals Zn, Cu, and
Mn [45]. Ref. [41] reported that Polypedilum sp. was very tolerant to metal contamination.

Despite the use of biotic indices having some limitations, Ref. [3] used the BMWP score
system in this area with good results. Moreover, according to this index, the analyzed area
of the SFR showed a ‘low’ environmental quality classification, except for the station located
upstream of the factory, which showed a ‘regular’ environmental quality classification.
Based on these results, it can be considered that the factory exerts negative effects that
are reflected in downstream stations. However, the BG4 station, which showed the worst
quality classification, was located near the Três Marias WWTP and far away from the
influence of the mining factory. The community at this station seemed to be significantly
affected (p < 0.05) by this plant because of the discharge of urban waste, presenting a very
different specific composition (abounding nematode and oligochaete species). Indeed, these
species are well-known pollution bioindicators, and WWTPs can deposit large amounts of
organic matter and nutrients into receiving waterways, leading to eutrophication [46] and
temporary oxygen deficits [47].

The BMWP score system itself, or a modified version of this index, has been previ-
ously applied in other countries in order to study the water quality of rivers. The results
in [48] show significant differences between quite unpolluted areas and anthropogenically
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impacted sites along the Nysa Klodzka River (Poland), as well as high correlations with
some chemical variables. The modified version of the IBMWP (Iberian biomonitoring
working party) score was successfully applied by [49] to 50 Iberian rivers, showing strong
correlations between this index and different physicochemical parameters. Both studies
show results and relationships similar to those reported in the present work.

Sediment quality assessment has demonstrated the importance of sediment charac-
terization in terms of organic matter, grain size, metals [50–53], and SEM-AVS-SEM [54]
in determining the environmental quality conditions, mainly in heavily populated and
industrialized regions. The results here obtained related to sediment characterization show
three main different groups of findings: (i) station SF1 presented the lowest values of
fines, SEM-AVSs, Al, Cu, Pb, Zn, and Hg, but the highest values of TOC, Cr, and Fe; (ii)
station BG4 showed the lowest values of TOC, As, Co, Cr, and Ni, but the highest values
of fines, nitrate, ammonium, ammonia, ammoniacal nitrogen, SEM-AVSs, and Al; (iii) the
other two stations, SF3 and SF2, showed the highest Cu, Pb, Zn, and Hg concentrations,
and the highest Co and Ni concentrations, respectively. As reported by [55], the nitrate
values found in the Hindon River, which is also polluted by wastewater, were in the range
of 96–245 µg/L, i.e., lower values than those found in sediments from the BG4 station.
Many rivers around the world are suffering contamination by industrial, agricultural, and
domestic activities. The case study on the Axios/Vardar River in Southeastern Europe
exposed the results of the water quality in an area surrounding a metal factory that receives
domestic wastewater and agricultural runoff. In this case, the maximum values of nitrates
and ammonium were 0.22 mg/L and 1.13 mg/L, respectively, which are again lower than
those found in this study. The metal concentrations in that river were Pb (13.126 µg/L),
Zn (49 µg/L), Cd (0.72 mg/L), and Cr (64 µg/L), indicating that it was fairly less polluted
than the river studied here (SFR).

Taking into account the SEM-AVS results, all the sampling stations showed potential
alterations in benthic organisms [19], showing SEM-AVS values higher than 0. Station BG4,
had the highest value (3687.98), also had the highest alteration values of the calculated
quality indices based on the benthic community structure (BMWP, S′, N′, d′, H′, and J′),
as mentioned above. Moreover, according to the benchmarks of [3], the toxicity of our
sediment samples was classified as unlikely (SF1 and ZM2 stations), uncertain (SF2 and
SF3 stations), or likely (BG4 station).

The highest concentrations of nitrogen species were analyzed in sediments from
station BG4, which was located downstream of the Três Marias WWTP. These results are
in concordance with those reported by [56]. These authors concluded that wastewater
contains significant amounts of ammonium, as only a small proportion is oxidized by
conventional treatment plants [57]. Furthermore, as exposed by [58], sediments that are
rich in organic matter and microbial biomass host the greatest number of denitrification
processes, since they require sub-oxic conditions and a source of nitrate (from external
inputs or the nitrification of ammonium).

The link between cause (sediment contamination) and effect (macro-benthic commu-
nity structure) was determined using BIOENV analysis. The obtained results indicate that
a large proportion of the among-site variance in the abundance of benthic fauna along the
studied river course was strongly associated with the measured environmental variables,
particularly, nitrogen chemical species and metals Al and Zn. Changes in benthic fauna
abundance and diversity were related to biogeochemical transformations, such as nitrifi-
cation and denitrification, and thus to the impacts of stress and disturbance on microbial
communities. Much research on bioindicators in aquatic systems has been limited to het-
erotrophic bacteria in relation to the decomposition of dissolved organic matter and as a
measure of sewage pollution [59,60]. In the same way, BIOENV analysis indicated changes
related to Al and Zn contamination. These metals were at their highest concentrations at
the BG4 and SF3 stations. In this sense, these adverse effects may be provoked by other
sources of contaminants not measured in this study (e.g., by the influx of oxygen-depleted
water or sewer discharge), as exposed by [61].
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The biology/ecology status clearly reflects the environmental health of a river. How-
ever, apart from contamination [18], there are other problems associated with the basin.
Water scarcity in the SFR basin has been detected as a significant base-flow reduction [62].
Further, a recent study on the SFR basin [63] assessed the influence of dams on eco-
hydrological conditions, and the socio-economic impact due to the transfer of water from
the SFR [64]. The study also highlighted that the intensification of natural resources pro-
vokes impacts on land and water resources, as also shown by the current study. Therefore,
hydrological management plans should include environmental monitoring programs for
river quantity and quality, especially because the Brazilian government is promoting the
expansion of irrigated agriculture [63] and due to the increasing population and other
associated overexploitation problems. Therefore, the SFR basin presents several problems
that are tackled by the United Nations Sustainable Development Goals, such as clean water,
poverty, health and wellness, and the distribution of equality [65].

Based on the obtained results, different approaches to remediation and/or mitigation
should be addressed in this area. The integration of the two LOEs used in this study
suggests that the environmental risk present in the area is associated with different sources
of contamination (WWTP, metal factory, and reservoir). The monitoring of the risk identified
in the area studied (between the reservoir and the metal factory) is highly recommended.

5. Conclusions

This study characterized the contamination in the middle area of the San Francisco
River (SFR) by linking contamination and macro-benthic community structure results
of the sediments studied. The main stressor identified and characterized in the area
was associated with the activities of the WWTP and, to a lower extent, with the mining
factory. ZM2, which was located in the mixed zone between the SFR and the stream
produced by the metal factory, showed the highest metal concentrations. BG4, situated
on the Barreiro Grande stream where the Três Marias water treatment plant discharges,
showed the highest nitrogen species concentrations, but also presented a particular specific
community composition (abounding nematode and oligochaete species) related to the
discharge of urban waste.

The study identified the macro-benthic community structure as a valuable tool for
monitoring the environmental quality of riverine sediments. Thus, we determined three
different species (Tanytarsus sp., Crytochironomus sp., and Polypedilum sp.) as useful bio-
indicator species for monitoring plans.

The links between cause (sediment contamination) and effect (community structure)
showed that a large proportion of the variance in the abundance of benthic fauna along the
studied river course was strongly associated with the measured contaminants, especially
the nitrogen chemical species, and Al and Zn, related to the WWTP and the mining
factory, respectively. The monitoring plan for the area needs to be designed using variables
similar to those used in this study. Potential new LOEs such as sediment toxicity could be
considered in the WOE approach.

This kind of study (integrative assessment) could allow the identification of the sources
of contamination, the localization of the areas affected by pollution, and the characterization
of sediment quality to be conducted. Furthermore, integration helps in the identification
of the risk associated with different human activities and consequent pollution. Finally, it
could be an input to the potential decision to perform remedial and/or mitigating actions
to improve the environmental quality of the river.
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