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Abstract: Bidirectional asymptotic structure methods have long been used to solve topological
optimization problems, but are prone to being stuck in local optimal solutions. To solve this problem,
this paper proposed a topology optimization method based on the Bi-directional Evolutionary
structure Structural Optimization and Simulated Annealing algorithm (SA-BESO). First, the structural
elements of the structural partition are encoded by a dual encoding, where elements are assigned
with density values and binary strings. Second, binary strings are crossed and mutated, while criteria
for adding and removing structural units are formulated. Then, structures are updated randomly.
Finally, the structural compliance of the current structure is evaluated. If the structural compliance of
the original structure increases, it will be accepted with a certain probability, thus jumping out of the
local optimal solution. Related examples show that the SA-BESO method improves the smoothness
of the optimization process and can obtain optimized structures with lower structural compliance
and computational cost.

Keywords: structural topology optimization; simulated annealing algorithm; Bi-directional evolutionary
structural optimization; structural compliance

1. Introduction

Topology optimization is used during the design process to solve the problems of
weight restriction and material distribution in a specific design space under certain con-
straints. At present, structural topology optimization has become a hot topic in current
academic research due to its wide application in many related technical fields, such as
aerospace [1], automobile manufacturing [2], architectural design, additive manufactur-
ing [3], 3D printing [4], etc. Hence, more and more structural topology optimization meth-
ods have been proposed, such as the variable density method [5], progressive structural
optimization method, topological derivative method [6], proportional-integral-derivative
control algorithm [7], feature-driven method [8], level set method [9], etc. The variable
density method uses variable cell density values as design variables for the algorithm
by relating densities to structural materials. Although it makes the mathematics model
of the topological optimization more concise and easy to understand, density values are
discrete. The Solid Isotropic Material With Penalization method (SIMP) [10,11] applies
the interpolation function to the material density of each element. SIMP transforms the
topology optimization problem of discrete integers into one based on continuous design
variables. However, the larger displacement may make the stiffness matrix of the low
density element too uncertain or even negatively determined in the later iteration period
of the SIMP method. The Evolutionary Structure Optimization method (ESO) [12], which
can delete low density elements, has the potential to solve this problem. The topology
structure obtained by the topology optimization method based on density variation usually
has a sawtooth boundary. In order to obtain a smooth boundary of the topology structure,
some methods using boundary information as design variables are proposed. For example,
the level set topology optimization method [13] uses the implicit function of the level set
to express the geometric boundary of the structure. It also can control the output of the

Appl. Sci. 2023, 13, 4566. https://doi.org/10.3390/app13074566 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074566
https://doi.org/10.3390/app13074566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0010-6879
https://doi.org/10.3390/app13074566
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074566?type=check_update&version=1


Appl. Sci. 2023, 13, 4566 2 of 13

function according to the optimization conditions so as to modify the boundary shape.
Additionally, using the implicit level set function modeling is a feature-driven method [14],
which transforms the structure from a single component of materials into an organic whole
composed of interconnected features, and transforms topological optimization into an
optimization problem based on the number, shape and layout of features. In addition, the
topological derivative method [15], topological optimization method based on principal
component analysis [16], proportional integral-differential control method [17] and other
numerical solution methods have been proposed.

The core idea of the numerical solution method is to simplify the topology optimization
problem to obtain the approximate solution, but it is easy to fall into the local solution. On
this basis, more and more scholars have introduced an intelligent optimization algorithm
with a strong global optimization ability. To optimize the wing structure and reduce the
displacement variation range of the wing structure, F. Xi et al. [18] proposed an aircraft
wing structure topology optimization method based on the genetic algorithm. The key to
solving topology optimization problems by the intelligent algorithm lies in the mechanism
of structure random updating. The intelligent optimization algorithm regards the structure
as a population and needs to randomly update the population to form a new structure in
each iteration. This process requires a large amount of calculation and has low solving
efficiency, so it is not suitable for solving complex engineering problems. Therefore, the
idea of an intelligent method is commonly integrated into the numerical solution method
to improve the quality of structural topology optimization. N.P.Garcia-Lopez [19] could
not obtain a satisfactory structure because the medium density region of the topology
obtained by the SIMP method lacked physical meaning. Therefore, the idea of a simulated
annealing algorithm was introduced to gradually delete gray elements and obtain a clear
structure. Xia Liu et al. [20] proposed the GESO method by combining the ESO method
with the genetic algorithm, and demonstrated with examples that the GESO method has
strong global optimization ability and high computational efficiency. The Bi-directional
Evolutionary structure Structural Optimization [21,22] is favored because of its simple
concept and high efficiency. Firstly, the contribution degree of the structure is defined as
element sensitivity, and the structural elements are sorted in descending order according to
element sensitivity. Then, the sensitivity threshold is determined according to the deletion
rate and the stage volume. The solid elements whose sensitivity value is lower than the
threshold are turned into empty elements. The empty elements whose sensitivity value
is higher than the threshold are turned into solid elements. The iteration was stopped
when the final volume target and convergence conditions were satisfied, and the optimal
topology was finally obtained. When the target volume is satisfied in each iteration,
the BESO algorithm will be affected by factors such as the evolution rate, deletion rate,
sensitivity calculation and structure target volume. There is a possibility that the structural
compliance will suddenly increase due to the accidental deletion of elements, thus falling
into a local optimal solution.

In order to improve the optimization quality of the BESO algorithm, many scholars
have combined the BESO algorithm with intelligent algorithms with strong global search
ability, such as the genetic algorithm, discrete particle swarm optimization algorithm, Sim-
ulated Annealing Algorithm (SA) and so on. Zuo et al. [23] combined the BESO algorithm
with the genetic algorithm, entrusting design variables with binary coding, similar to chro-
mosome crossover and mutation, to obtain new coding. Wu Beini et al. [24] also proposed
the BESO algorithm with soft deletion based on the improved genetic algorithm to solve the
problem that the optimal topology configuration cannot be obtained due to the improper
setting of parameters (such as evolution rate) in the traditional BESO algorithm, so as
to improve the quality of optimization. Zhang Yin [25] proposed a bidirectional asymp-
totic structure optimization method (IBPSO-BESO) based on improved discrete particle
swarm optimization, which effectively improved the quality of the solution and increased
the size of the problem. The combination of the above intelligent algorithms and BESO
algorithm improves the optimization efficiency. However, it neglects the change in the
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compliance of the new structure when it is updated randomly, which leads to oscillations
in the compliance of the structure during the iteration. The simulated annealing algorithm
determines the optimization direction according to the change in the objective function
value. Combining it with the BESO algorithm, the change in structural compliance can be
judged in the iterative process. The probability of structural compliance mutations can be
reduced, thus improving the stability of the iterations and the optimality of the algorithm.
Based on this, this paper proposes the SA-BESO joint topology optimization algorithm.

2. The Joint Topology Optimization Method Based on SA-BESO
2.1. The Idea of Combination of SA and BESO

In the process of solving the optimization problem of the SA algorithm [26,27], the
value of the objective function can change within a certain range under certain conditions
in the direction of non-optimization. When certain conditions are met, the SA algorithm can
converge to the global optimal solution with probability “1”. The SA algorithm regulates the
optimization process in stages according to decreasing temperature. When the temperature
is at a particular temperature, the algorithm randomly generates current solutions. If
the current solution is better than the original solution, the improved solution is chosen.
If the current solution is slightly worse than the original solution, the current solution
is still accepted with a certain probability, thus jumping out of the local solution and
searching for the global solution. Among them, the probability varies with the temperature
and determines the possibility of the algorithm to jump out of the local solution. The
BESO algorithm has a wide range of practical applications and is characterized by its
conceptual simplicity, high efficiency, and good convergence in solving structural topology
optimization problems. At each optimization solution stage, the BESO method deletes a
fixed number of units to achieve a specific phase target volume. Since the deleted elements
may not be recovered, if the deleted elements are wrong at each stage, the structural
compliance will increase abruptly and the algorithm will become stuck in the local optimal
solution, which will lead to the failure to obtain the optimal structural material distribution.
The combined approach of SA and BESO is able to judge the change in structural compliance
obtained at each iteration, thus avoiding the excessive increase in intermediate topological
compliance due to the erroneous deletion of elements. At the beginning of the BESO
algorithm, the structural material is continuously reduced, which leads to a certain increase
in the structural compliance value and a larger probability. As the optimization proceeds,
the temperature and the volume of the structure gradually approach the final target, with
decreasing probability, until the final optimized structure is obtained.

2.2. SA-BESO Mathematical Model

The BESO algorithm is usually divided into a soft killing method and hard killing [28]
method [29]. The latter directly removes inefficient elements, while the former introduces
artificial material interpolation models with penalty factors such as the SIMP model,
to replace the deleted element density values with smaller values. In this paper, the
SIMP interpolation model will be used to seek the optimal topological structure that
satisfies a certain target volume with the maximum stiffness or minimum compliance. Its
mathematical model can be stated as follows:

Find : X = {x1, x2, . . . , xn}
min C = 1

2 uTKu SIMP
= 1

2

n
∑

i=1
xp

i uT
i k0ui

s.t. v∗ −
N
∑

i=1
vixi = 0

F = KU
xi = xmin or 1

(1)

xi refers to the first structural element, whose value represents the cell density. xi is equal
to 1, which indicates that the element is a solid element. xi is equal to xmin, which indicates
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that the element is a solid element. In this article, xmin = 0.001.C is the average compliance
value of the structure, K is the structural stiffness matrix, k0 is the solid element stiffness,
u0 is the element displacement vector, and n is the total number of divided elements.

In the SA-BESO algorithm, structure element sensitivity represents the degree of
contribution to which an element contributes to the structure, which has an essential effect
on the addition and deletion of structural elements. The sensitivity αi of the i th element
is defined as the partial derivative of the objective function with respect to the density of
the i th element. The addition and deletion of structural elements is determined by the
magnitude of sensitivity, which is independent of the magnitude of sensitivity. Therefore,
sensitivity can be defined as follows:

αi = −
1
p

∂C
∂xi

=
1
2

uT
i k0ui, (2)

In order to resolve the checkerboard and grid dependence of the algorithm, the sensitivity
values need to be filtered. The stopping of the SA-BESO algorithm should satisfy the volume
constraint, the convergence criterion (3) [30] and the minimum temperature condition.

∑N
j=1

(
Ck−j+1 − Ck−N−j+1

)
∑N

j=1 Ck−j+1
≤ τ, (3)

where k is the current iteration step, which is usually 5, and a and b are the structural
compliance of the k − N − j + 1, k − j + 1 iteration steps in the next five iteration steps,
respectively. N is the total number of iterations, τ is the allowable error of convergence,
and τ = 0.001 in this paper.

2.3. Random Updates of New Structures

The random generation of new structures is a crucial step in the SA-BESO algo-
rithm. Referring to the idea of genetic algorithm, it is implemented by crossover and
mutation operations.

Firstly, the structural element is double-coded, that is, each element has the density value
“xmin” and “1”, and provides a certain number of “0” and “1” numeric strings. The number
of symbols “1” and the original density value of the element jointly determine the addition
and deletion of the elements in this iteration step, that is, the solid elements with more digits
“0” become empty elements, and the empty elements with more digits “1” become solid
elements. Secondly, the sensitivity information of structural elements is used to establish the
relationship between the original structure and the current structure. The structure element
sensitivities are sorted in descending order, and then the structure elements are divided into
two parts. The first part is composed of the first n · v∗ of the sensitivity sequence, which is
called the pre-reserved cell group. The second part is composed of the remaining n× (1− v∗)
structural elements, which is called the pre-removal element group. The pre-removal element
group is then divided into the transition element group and the removal element group. The
number of removals element groups was increased from 0 to n× (1− v∗), while the number
of transitions element groups was reduced from n× (1− v∗) to 0. In addition, a different
structure related to the original one is randomly generated by crossing and mutating among
the three arrays. Furthermore, a crossover operation is performed by randomly generating
an intersection between two binary codes and swapping the sequence of the two codes after
the intersection. In the crossover stage, the probability of pairing the same array is Pc, so the
probability of pairing different arrays is 1− Pc. Pc is a pre-given number 0–100%, which is
generally greater than 50%. The mutation operation is to randomly generate mutation points
in the number string and interchange “1” and “0”. For each digit, the mutation probability is
set to Pm, where Pm is a predetermined value between 0 and 100%. In the SA-BESO algorithm,
the pre-retention element group only has “0” to “1” mutations, while the removal element
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group only has “1” to “0” mutations, and no mutation operation is carried out in the transition
element group.

Finally, a new binary code is obtained for each structure element by crossing and mutation.
The empty elements with a certain number of “1” symbols in the code are increased to solid
elements, and the solid elements with codes of “0” are changed to empty elements.

Assuming that elen is the length of the encoding and N1 is the number of “1” characters,
the structural element update criteria are as follows:

xk
i =


1 xk−1

i = 0 and N1 ≥ elen
2

0 xk−1
i = 1 and N1 = 0

xk−1
i others

, (4)

where xk−1
i and xk

i , respectively, represent the density values in the k− 1 and k iterations
of the i th element. The density matrix is updated according to Equation (4) to generate a
new structure.

The idea of the cross-mutation method comes from genetic algorithm with strong
randomness, which is easy to cause problems of jump solution, structure disconnection
and even non-convergence. Referring to the reference [31], a penalty factor is introduced to
make Pm and Pc gradually reach 1 with the optimization iteration:

Pm = Pm_min + (Pm_max − Pm_min)Pr gpen

Pc = Pc_min + (Pc_max − Pc_min)Pr gpen , (5)

where pen is the penalty parameter set in advance, and Pr g is the progress indicator:

Pr g =

∣∣∣∣ V −Vi
V −V∗

∣∣∣∣, (6)

where V is the total volume of the structure, and Vi and V∗ are the volume and target
volume of the i th iteration structure, respectively.

2.4. SA-BESO Algorithm Flow

The SA-BESO algorithm finds the optimization direction based on the shift of the struc-
tural compliance value and uses the temperature parameter T to control the optimization
process in stages.

Based on the initial structure and a given initial temperature T0, the algorithm performs
a double encoding of the structure elements, fresh binary codes are randomly generated
from the crossover mutation, and the addition and deletion of elements are judged by the
binary code and the original density values of the elements to form the new structure.

Whether the current structure is superior to the original structure is judged according
to the positive and negative of the structure compliance difference ∆C; the new structure is
accepted with probability P, where P is shown in Equation (7). That is, ∆C < 0 indicates
that the current structure is superior to the original structure, and the improved structure is
selected; otherwise, the current structure is still accepted with some probability.

P =

{
1 ∆C < 0
exp
(
−∆C

T

)
∆C > 0

, (7)

After a sufficient search at this temperature, the temperature T is lowered, and the
search for the improved structure is continued. A reasonable and efficient cooling criterion
is the key to the success of the SA-BESO algorithm. In this paper, a heuristic temperature
update function is used.

Tk =
T0

km , k = 1, 2, . . . , (8)
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where k is the number of iterations, Tk is the control temperature after the k th iteration
cooling, and m can be generally 3~5, which can consider the calculation accuracy and time.

The SA-BESO algorithm will continue to carry out the cyclic iterative process of
“reducing temperature—randomly generating new structure—calculating the difference of
structure compliance—judging whether to accept the new structure—accepting or rejecting
the new structure in the stage”. When the control parameter T is reduced to the desired
minimum, the structure reaches the final target volume and satisfies the convergence
condition, the loop exits, and the final optimized structure is output. The process of the
SA-BESO joint algorithm is shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 
Figure 1. Flowchart of the SA-BESO method. 

Figure 1. Flowchart of the SA-BESO method.



Appl. Sci. 2023, 13, 4566 7 of 13

3. Results and Discussion
3.1. Example of the Two-Dimensional Simply Supported Beam

The simply supported beam is shown in Figure 2—its topology optimization design
area is the rectangular area. The elastic modulus of the material is E = 206 GPa, and
Poisson’s ratio is v = 0.3. The lower left corner of the structure constrains the degrees of
freedom in the X and Y directions, and the upper middle corner of the structure is subject to
the force of the concentration force F = 1 N. According to symmetry, only the design area
of the right half can be considered, as shown in Figure 2b. The design area was divided
into 60× 20 grids, with a filter radius r = 3, penalty factor p = 3, evolution rate ER = 2%
and temperature set as T = 100 ◦C.
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(b) the design area of the right half of the beam.

We explored the effect of the values of the minimum crossing rate and the variation
rate on the performance of the SA-BESO algorithm. Due to the random nature of the
algorithm, each value was run five times and the average value of the results was taken.
The relevant result is shown in Table 1. When the minimum crossover rate is Pc.min, the
value range of the minimum variation rate Pm.min is 40–80%. When Pm.min is 40% or 50%,
the algorithm is prone to non-convergence, that is, the minimum variation rate cannot be
too low, otherwise the probability of the algorithm generating a new structure is low. As
can be seen from Table 1, the minimum rate of variation has a large effect on the efficiency
of the algorithm, while the minimum rate of crossing does not have a significant effect on
the efficiency. When the minimum variation rate increases, the number of iterations of the
algorithm decreases, but if it is overly large, the final structural compliance increases. The
efficiency of the algorithm can be tuned by tuning the minimum rate of variation, and the
minimum crossing rate can be tuned appropriately to obtain a topological structure with
lower compliance. For this example, the preferred value is Pm.minc.min.

Table 1. The SA-BESO algorithm for the Michell-type structure—the optimization result data.

The Values Mean Iterative Step Average Compliance of Structure

Pm.minc.min 202.6 98.0068
Pm.minc.min 63.6 95.2420
Pm.minc.min 56.6 96.5007
Pm.minc.min 65.0 96.1153
Pm.minc.min 61.6 95.3461
Pm.minc.min 68.2 95.5784
Pm.minc.min 61.6 97.0381

The optimized structure, structural compliance and number of iterations obtained by
the SA-BESO algorithm for three consecutive times are shown in Figure 3a–c. Figure 3d is
the optimized structure obtained by the standard soft BESO algorithm, and the changes in
structural compliance and volume are shown in Figure 4. It can be seen that the optimal
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configurations obtained by the two algorithms are similar, with the SA-BESO algorithm ob-
taining a smaller amount of structural compliance than the BESO algorithm. For structural
compliance changes in the iterative process, the BESO algorithm has two large mutations,
while the SA-BESO algorithm has no such phenomenon. The structure volume of the
SA-BESO algorithm decreases slowly with iteration, while the structure volume of BESO
decreases linearly. The variation in the two metrics reflects that the SA-BESO algorithm
improves the stability of the iterative process by judging the degree of compliance, and
eventually obtains a topological structure with lower compliance.
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3.2. An Example of the L-Shaped Bracket

The example solves an optimization problem with an L-shaped support. Its shape and
parameters are shown in Figure 5. The upper end of the support is fixed and the right top
of the support is subject to a vertical downward concentrated force F = 4 N. The elastic
modulus of the material is E = 206 Pa, Poisson’s ratio is v = 0.3, and its target volume
fraction is V∗ = 0.4. By comparing the results of the SA-BESO algorithm and the soft kill
BESO algorithm, the design area is uniformly divided into 40× 40 structural elements.
The filtering radius of the algorithm is r = 1.5, the penalty factor is P = 3, the deletion
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rate er ranges from 2 to 4%, the minimum and maximum cross probability are Pc.maxc.min,
respectively, and the maximum mutation probability is Pm.max.
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Figure 5. A loaded knee structure.

When the deletion rate takes different values, the variation curve of the L-shaped
structure compliance value calculated by the BESO algorithm is shown in Figure 6a. As
can be seen from the figure, the efficiency of the algorithm keeps improving as the deletion
rate er increases, but its structural compliance value may oscillate during the iterations,
and the structural compliance value of the topology optimization will eventually increase.
When er = 2.5%, the final structure compliance value is the lowest, which is 37.7607, and
the number of iterations is 41. When er = 3.5%, its efficiency is the highest, the number of
iterations is 27, and the final structure compliance value is 37.983. As shown in Figure 6b,
when the minimum variation rate P gradually increases from 50% to 70%, the structural
compliance value increases steadily during the iteration and does not increase suddenly.
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structural compliance using different deletion rate; (b) the changes in the structural compliance using
different minimum variation rate.

When er = 2.5%, the minimum mutation probability of the SA-BESO algorithm is
set as Pm.min, and the algorithm performs five random operations. As shown in Figure 7,
the optimized topology configurations (a) and (b) obtained by the SA-BESO algorithm are
similar to the topology configurations (c) obtained by the BESO algorithm. The structural
compliance and iteration times obtained by the SA-BESO algorithm are shown in Table 2.
The first four times of compliance values are all lower than those obtained by the BESO
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algorithm, and the iteration times are all lower than that of the BESO algorithm, indicating
that the SA-BESO algorithm has higher robustness and can obtain a topology structure
with lower compliance while having higher computational efficiency.
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Figure 7. Topological configurations obtained by the two algorithms. (a) C = 37.6460, t = 31.
(b) C = 37.6116, t = 33. (c) C = 37.7607, t = 41.

Table 2. The SA-BESO algorithm for the loaded knee structure—the optimization result data when
deletion rate being 2.5%.

SA-BESO Algorithm Mean Iterative Step Average Compliance of Structure

1 31 37.7102
2 30 37.7552
3 31 37.6460
4 33 37.6116
5 32 37.7828

When er = 3.5%, the minimum mutation probability of the SA-BESO algorithm is
set as P = 0.7, and the algorithm performs five random operations. As shown in Figure 8,
the optimized topology configurations (a) and (b) obtained by the SA-BESO algorithm are
similar to the topology configurations (c) obtained by the BESO algorithm. The structural
compliance and iteration times obtained by the SA-BESO algorithm are shown in Table 3.
The five times of structural compliance values are all lower than those obtained by the
BESO algorithm, and the average number of iterations of the five operations is 26.6, which
is slightly lower than that of the BESO algorithm. This shows that the SA-BESO algorithm
has high robustness and can obtain a topology structure with lower structural compliance,
and there is little difference in computational efficiency between the two algorithms.
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Table 3. The SA-BESO algorithm for the loaded knee structure—the optimization result data when
deletion rate being 3.5%.

SA-BESO Algorithm Mean Iterative Step Average Compliance of Structure

1 25 37.8189
2 27 37.7605
3 26 37.8063
4 30 37.5806
5 25 37.5854

In this example, two BESO algorithms with different deletion rates were selected for
the topology optimization of L-shaped scaffolds, namely, the lowest structure of compli-
ance and minimum number of iteration steps were obtained, which were, respectively,
compared with the SA-BESO algorithm. Examples show that the SA-BESO algorithm can
obtain topological configurations with lower structural compliance, and its computational
efficiency is no less than that of the BESO method.

4. Conclusions

This paper introduces the idea of the SA algorithm topological optimization and
provides a fresh perspective on the application of the BESO algorithm to topological
optimization. Numerical experiments on two-dimensional simple support beams and
L-shaped supports verify the feasibility and effectiveness of the proposed method. The
contributions of our approach can be summarized as follows:

(1) The combined SA-BESO algorithm takes into account the change in structural com-
pliance in the iterative process, and improves the structural compliance mutation
process caused by large deletion rate in BESO method.

(2) Compared with the BESO algorithm, the SA-BESO algorithm can obtain a topology con-
figuration with lower structural compliance without sacrificing too much computational
efficiency. The number of iterations of the latter is generally lower than the former.

(3) The semi-random solution of the SA-BESO algorithm is semi-directional and con-
verges to highly similar results with a high probability, that is, the results obtained by
this method are stable and robust, and have the potential and value to be applied to
the optimization design of actual engineering structures.

(4) The value of the minimum variation rate has an important influence on the number
of iteration steps of the SA-BESO joint optimization method, and a structure with a
lower structural compliance value can be obtained if it is properly set.

In this paper, the SA-BESO method is mainly used in a single stress model. In the
future, models with a variety of stress and boundary conditions can also be studied to
make the application of the joint algorithm more extensive.
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