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Abstract: Satellite remote sensing has entered the era of big data due to the increase in the number of
remote sensing satellites and imaging modes. This presents significant challenges for the processing
of remote sensing systems and will result in extremely high real-time data processing requirements.
The effective and reliable geometric positioning of remote sensing images is the foundation of remote
sensing applications. In this paper, we propose an optical remote sensing image matching method
based on a simple stable feature database. This method entails building the stable feature database,
extracting local invariant features that are comparatively stable from remote sensing images using
an iterative matching strategy, and storing useful information about the features. Without reference
images, the feature database-based matching approach potentially saves storage space for reference
data while increasing image processing speed. To evaluate the performance of the feature database
matching method, we train the feature database with various local invariant feature algorithms on
different time phases of Gaofen-2 (GF-2) images. Furthermore, we carried out matching comparison
experiments with various satellite images to confirm the viability and stability of the feature database-
based matching method. In comparison with direct matching using the classical feature algorithm,
the feature database-based matching method in this paper can essentially improve the correct rate
of feature point matching by more than 30% and reduce the matching time by more than 40%. This
method improves the accuracy and timeliness of image matching, potentially solves the problem
of large storage space occupied by the reference data, and has great potential for fast matching of
optical remote sensing images.

Keywords: image matching; feature database; iterative matching; local invariant features

1. Introduction

With an increase in satellites and imaging modes that can swiftly and efficiently
acquire remote sensing images, the amount of satellite remote sensing image data is
exploding. However, the enormous size of the image data has created numerous challenges
for traditional remote sensing processing systems, and the processing efficiency of ground-
based systems lags behind the satellite observation supply [1]. Although remote sensing
processing systems are becoming more intelligent and automated, interactions with satellite
systems still take a long time. Traditional image processing systems for remote sensing
data are hardly capable of processing instantaneous image applications, making it difficult
to fully use the extensive remote sensing image resources [2]. The geometric positioning of
remote sensing images plays an important role in remote sensing image applications such
as image fusion [3–5], change detection [6–8], image mosaicing [9–11], etc. The initial step
and the biggest challenge is image matching. Geometrically precise positioning of remote
sensing images is highly dependent on effective and quick image matching.
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The geometric positioning of remote sensing images requires a large amount of ground
control information which is the Ground Control Point (GCP) to establish the transfor-
mation relationship between images to achieve the consistency of geometric positioning
among images. The traditional method is to analyze the selected GCPs in the image manu-
ally, which is time-consuming and laborious, and frequently collects GCPs multiple times.
The method of establishing a control point database can be used to retrieve control point
image slices in the control point database to achieve quick matching of control points [12].
In addition, when geometric correction is performed on future remote sensing images,
existing control points can be searched directly from the control point database to match the
images, thus enabling the reuse of control points. However, the matching algorithm of the
control points and images is challenging. The control points that are easy to recognize by
human eyes are not always easy to recognize by computers, and the content of the control
points in the control point database needs to be greatly accumulated to ensure matching
to remote sensing images of various time phases. With the development of various local
invariant feature extraction algorithms, features can be extracted from the reference image
as control point information and used to establish the deformation model between images
through feature matching to achieve geometric registration for images [13]. The matching
efficiency between remote sensing images is increased by the ability to automatically extract
control points created by local invariant features without manual acquisition and storage.

The development of local invariant feature-matching methods has diversified in recent
years, which can mainly be divided into the improvement of local invariant features and
the improvement of matching strategies. The main goal of developing feature-matching
methods for local invariant features is to reduce the complexity of feature algorithms
and increase the robustness and discrimination of feature extraction algorithms, such
as the scale-invariant feature transform (SIFT) [14] and its subsequent variants princi-
pal components analysis SIFT (PCA-SIFT) [15], gradient location and orientation his-
togram (GLOH) [16], the speeded up robust feature (SURF) [17], the uniform robust SIFT
(UR-SIFT) [18], KAZE [19], accelerated-KAZE (AKAZE) [20], etc. To further increase the
effectiveness of the feature matching algorithm, techniques combining accelerated detectors
with binary descriptors, such as the oriented FAST and rotated BRIEF (ORB) [21], the binary
robust invariant scalable keypoints (BRISK) [22], and the fast retina keypoint (FREAK) [23]
algorithms, have emerged. These techniques are not only quick at matching but also have
exceptionally low storage space requirements, which helps resolve the issue with real-time
matching methods. For matching strategies, feature matching techniques are improved,
and various techniques are used to increase the accuracy of feature extraction on remote
sensing images. For example, Ma et al. proposed a novel remote sensing image feature
matching error removal method, introducing a guided matching strategy to significantly
improve the number of true matches without sacrificing accuracy [24]. Li et al. proposed
the adaptive regional multiple feature matching method (ARMF), which introduces an
adaptive region search strategy to adaptively select matching feature regions using pyrami-
dal scaling techniques to extract multiple types of features and adaptively select appropriate
feature descriptors [25]. Chen et al. proposed a closed-feedback SIFT system based on
SIFT, containing a correction return loop to improve the position accuracy by replacing the
current sensed image via an iterative approach [26].

The key to the above-mentioned local invariant feature-based matching approaches
lies in pairing highly-repeatable common features between the same scene images under
multiple observation conditions [27]. These features are invariant to different images of
the same scene, should be unique within the same image, and can be distinguished from
other feature points within the image using descriptors [28]. However, many existing
local invariant feature-matching methods have problems in the following aspects. Firstly,
it is difficult for existing algorithms to ensure that the extracted local invariant features
remain invariant in multi-temporal, multi-radiation, and multi-view remote sensing image
data. Because many feature extraction methods are based on grayscale images or gradient
information to detect keypoints that are easily affected by noise and illumination, leading to
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wrong detection and omission, and the descriptors cannot express features correctly, under
different observation settings, there will not be enough feature point correspondences
to guarantee the accuracy of image matching [29]. Secondly, these feature-matching
methods require accurate geographic information from reference images. The acquisition
and selection of reference images restrict remote sensing image matching under multiple
observation conditions, since it is challenging to guarantee effective matching with a single
reference image, which is less flexible. Additionally, with the rapid development of remote
sensing imaging technology, the resolution and size of the collected multi-observation
condition images have been greatly increased, and the storage space occupied has increased.
This makes reading remote sensing images and extracting features from remote sensing
images less efficient.

In response to the above problems, this paper proposes a fast-matching method for
optical remote sensing images based on simple and stable feature database matching. First,
considering that the feature-based matching method is constrained by the selection of the
reference image, the feature database is applied to the remote sensing image matching
method. The feature database refers to the control point database production method and
stores the local invariant features in a simple and effective form. These features can be
directly applied in the subsequent geometric positioning, saving the time of extracting
features in the reference image and improving the image matching efficiency. Secondly, this
paper combines the training-feedback mechanism to iteratively match the feature database,
construct stable feature sets, and cluster the descriptors of stable feature points under
multi-observation conditions. After the feature database is trained, multiple relatively
stable feature point sets are stored in the database. Finally, the test images are matched
with the feature database to achieve fast and accurate image geometry correction. In this
study, we create stable feature databases using a variety of local invariant features and
perform feature database matching experiments using a data set in the western Beijing
region. Figure 1 shows the main flow of the proposed method.

Figure 1. Main flow of the construction of the feature database.

The main contributions of this paper are as follows:

1. Imitating the control point database to create the feature database. Compared with a
reference image or control point database, the feature database uses less storage space
and takes a shorter time to match with remote sensing images.
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2. A training feedback feature database iterative matching strategy is proposed. Unlike
analyzing the robustness of features by methods such as information entropy or
feature metric, this method analyzes the stability of features in different temporal
training images longitudinally, constructs stable feature point sets, and improves the
correct matching rate of optical image feature points and image matching success rate
under multi-observation conditions.

The remainder of this paper is organized as follows. Section 2 first briefly reviews
the classical feature algorithms required to build feature databases and then describes the
proposed feature database iterative matching strategy. In Section 3, the experimental results
of the feature database matching approach are shown and the superiority of the feature
database approach is demonstrated compared to direct matching using classical algorithms.
In Section 4, our proposed feature database matching approach and suggestions for future
work are discussed. Conclusions are drawn in Section 5.

2. Materials and Methods

In this section, we first discuss the local invariant feature extraction algorithms—SIFT,
SURF, KAZE, AKAZE, ORB, and FREAK—that were used to build the feature database
and investigate the methods for extracting and describing these features. Table 1 provides a
quick comparison of the feature algorithms. The creation of a simple stable feature database
and iterative training is then detailed.

2.1. Common Local Invariant Features

SIFT, SURF, KAZE, AKAZE, ORB, and FREAK are selected in the paper for the
construction of feature databases separately. These six local invariant features are selected
because they are typical scale invariant feature detection methods widely used in image
matching and remote image registration. Basically, they detect significant keypoints in the
image and obtain descriptors that correspond to the keypoints individually. The four main
steps of these algorithms are building scale space, detecting key points, assigning feature
orientation, and constructing descriptors. These six methods are briefly described in
Table 1.

The feature database contains information primarily as feature point longitude, lat-
itude, response, dominant orientation, descriptors, etc. Table 2 shows the features in-
formation stored in the feature database of six feature algorithms. The traditional GCP
storage mode requires not only coordinates of the control point but also a local image
centered on the control point. The size of the control point local image is generally between
100× 100 pixels and 200× 200 pixels in order to contain obvious features. In the case
where the resolution of the remote sensing image is high, a larger-scale local image of the
control point will be required. Table 2 compares the information on the features in the
feature database with the information on conventional control points, and it is clear that the
feature database is superior to the control point database in terms of storage space, greatly
compressing the reference data storage space, especially for the binary descriptors of the
ORB which are compressed by a factor of up to 500 or more.

2.2. The Building Method of Simple Stable Feature Database

This section builds simple stable feature databases using the various local invariant
features that were introduced in the previous section. A simple stable feature database
is created in two steps: first, relevant features are extracted from a reference image that
is geographically accurate, and their useful information is stored in the initial feature
database. Next, training images are continuously matched with the feature database, and
the content of the feature database is updated based on the matching results, such as by
adding and removing feature points. This feature database construction process can be
seen in Algorithm 1.

In the process of continuous matching iterations, relatively stable invariant feature
points are obtained. The results of the test image registration depend heavily on the pre-
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training of the feature database. Because of this, we pre-align the input remote sensing
training images to make sure that the pixel offset between the reference image and the
training images is not too large. We also geometrically correct the training image during
the training matching process to make sure that the feature points in the feature database
and the reference image are geometrically consistent.

Table 1. Brief introduction of multiple local invariant feature algorithms.

Algorithm Detector
Type Description

SIFT Blobs

SIFT first constructs the Difference-of-Gaussian scale space based on the Gaussian scale space; next,
the keypoints are detected and precisely located in the Difference-of-Gaussian images; after that,
one or more orientations are determined by the peak of the gradient histogram of each key point
neighborhood. Finally, 128-dimensional feature descriptors are constructed based on the gradient
information of the neighborhood centered on the keypoints.

SURF Blobs

SURF uses box filters to convolve with the original image to construct the scale space while using
the integral image technique to increase the computational efficiency of the algorithm. It detects the
candidate feature points using the Hessian Matrix, followed by non-maximal suppression. To
determine the keypoint orientation, SURF adds up the Haar-wavelet responses in the horizontal
and vertical orientation of the π

3 angular sector sliding window in the circular neighborhood of the
keypoint. The orientation of the longest such vector sum is used as the keypoint orientation.
Furthermore, SURF statistics the Haar-wavelet responses in the area around the keypoint to create a
64-dimensional feature descriptor.

KAZE Blobs

KAZE uses efficient Additive Operator Splitting (AOS) techniques for nonlinear diffusion filtering
to build nonlinear scale space, which reduces noise while maintaining edges. It searches for Hessian
local maxima on the nonlinear scale space after normalization at different scales as the keypoint and
finds the dominant orientations of feature points in a similar way to SURF. KAZE builds the
descriptor using a variant of the SURF descriptor, Modified-SURF (M-SURF) [30], which can handle
the boundaries better than the original SURF descriptor and finally forms a 64-dimensional
feature vector.

AKAZE Blobs

AKAZE is an accelerated variant of KAZE. It constructs nonlinear scale spaces more quickly by
using the Fast Explicit Diffusion (FED) mathematical framework. Similar to KAZE, It locates
candidate points and filters them at each octave to perform keypoint extraction. It calculates the
dominant orientations of keypoints in a similar way to KAZE. It uses an updated Modified-Local
Difference Binary (M-LDB) binary descriptor for descriptor construction that not only compares
region means instead of individual pixels in the binary set but also incorporates rotation invariance.

ORB Corners

ORB consists of a modified FAST (Features from Accelerated Segment Test) [31] and a rotated
BRIEF (Binary Robust Independent Elementary Features) [32]. It first uses FAST to quickly select
keypoints; afterward, it uses the intensity centroid method to calculate keypoint orientations; and
finally, it uses the modified BRIEF to create binary descriptors, compared with the original BRIEF
descriptors with increased rotational invariance compared with the original BRIEF.

FREAK Corners

Only the descriptor extraction approach is improved by FREAK. The keypoint detection algorithm
in BRISK is used in the original paper to perform FAST feature point detection on the constructed
multi-scale space. However, unlike the uniform sampling pattern of BRISK for extracting feature
descriptors, FREAK is inspired by the human visual system and uses a retinal sampling pattern
where the smaller the distance from the keypoint, the denser the sampling, and the larger the
distance from the keypoint, the more discrete the sampling points.

Table 2. Comparison of single control point storage and single feature points extracted by different
feature extraction algorithms.

Control Point
Mode Storage Content Storage Type Storage

Size/Byte
Total Storage

Size/Byte
Compression

Ratio

Control Point
Longitude and Latitude float 8

40,008
Local Image (200 × 200) unsigned char 40,000
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Table 2. Cont.

Control Point
Mode Storage Content Storage Type Storage

Size/Byte
Total Storage

Size/Byte
Compression

Ratio

SIFT
128-dimensional Descriptor float 512

556 1/72
Point properties 1, Update parameters 2 float 44

SURF
64-dimensional Descriptor float 256

300 1/133
Point properties 1, Update parameters 2 float 44

KAZE
64-dimensional Descriptor float 256

300 1/133
Point properties 1, Update parameters 2 float 44

AKAZE
64-dimensional Descriptor unsigned char 64

108 1/370
Point properties 1, Update parameters 2 float 44

ORB
32-dimensional Descriptor unsigned char 32

76 1/526
Point properties 1, Update parameters 2 float 44

FREAK
64-dimensional Descriptor unsigned char 64

108 1/370
Point properties 1, Update parameters 2 float 44

1 Feature point latitude, longitude, response, angle, size, octave. 2 Number of matches, number of unmatched
matches, number of consecutive matches, number of consecutive unmatched matches, feature class label.

2.2.1. Initial Feature Database Building

Adaptive histogram equalization is first used to pre-process the reference image R,
and then the chosen feature algorithm is used to extract the feature points. The Longitude,
Latitude, Octave, Response, Angle, Size, number of matches (M), number of unmatched
matches (UM), number of consecutive matches (CM), and number of consecutive un-
matched matches (CUM) are recorded for each feature, along with the feature descriptor
Descriptor. Each feature in the initial feature database has an Index, which is used to group
similar features to form feature classes. Then, all the collected features are assembled as
F0 = { f 0

1 , f 0
2 , . . . , f 0

n0
} written in the initial feature database where f k

i represents the feature
class whose Index is i in the feature database, k is the number of images input and n0 is
the total number of feature classes in the feature set. At first, n0 = N0, the matching pa-
rameters of each feature in the initial feature database are Mi = CMi = UMi = CUMi = 0,
i = 0, 1, 2, . . . , n0, and N0 is the total number of all feature points in the feature set F0.

2.2.2. Iterative Matching Strategy for Feature Database Methods

The feature database iterative matching strategy can not only train the stable fea-
ture points, but also cluster feature descriptors in multiple observation conditions at the
same location.

During feature matching, the clustered feature sets (feature classes) filtered by the fea-
ture database change the one-to-one case of descriptors at the same location to one-to-many,
providing more matching possibilities for the test images. Furthermore, as an iterative
process of the feature database, the number of matches of feature classes is recorded. After
matching the training image with the feature database, the successfully matched pairs of
points are aggregated into feature classes, and parameters such as the number of matches
are recorded, while unsuccessful matches are also added to the feature database and the
given relevant parameters. Each feature class is assigned a label and the features in the
feature class will be continuously added or removed with the matching of results of the
subsequent training images. After matching the initial feature database with the first
training image, all subsequent training images are matched with the feature class, and
features are considered to be successfully matched with the features at that location if they
are successfully matched with the feature class.
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Algorithm 1: Feature Database Construction
Input: reference image R, training images {S1, S2, . . . , SN}, the threshold of not

matched, thre1, the threshold of consecutive unmatched, thre2
Output: feature database

1 Initialize: extract feature points from R. F0 = { f 0
1 , f 0

2 , . . . , f 0
n0
} is written to the

initial feature database. Mi = CMi = UMi = CUMi = 0, i = 0, 1, 2, . . . , n0;
2 for k = 1, 2, . . . , N do
3 get Fk = { f k

1 , f k
2 , . . . , f k

n f
} from the feature database;

4 extract Tk = {tk
1, tk

2, . . . , tk
nt} from Sk;

5 match Fk with Tk;
6 for j in Fk do
7 if j is matched then
8 Mj = Mj + 1; CMj = CMj + 1; UMj = UMj; CUMj = 0;
9 else

10 if the feature class f containing j is matched then
11 Mj = Mj + 1; CMj = CMj + 1;
12 UMj = UMj + 1; CUMj = CUMj + 1;
13 else
14 Mj = Mj; CMj = 0; UMj = UMj + 1; CUMj = CUMj + 1;
15 end
16 end
17 end
18 for j in Tk do
19 if j is matched then
20 Mj = Mj + 1; CMj = CMj + 1; UMj = 0; CUMj = 0;
21 added j to Fk and assign j the same Index as the matched feature class;

// Mj and CMj are consistent with the matched feature.This
will not be repeatedly added here;

22 else
23 Mj = 0; CMj = 0; UMj = 1; CUMj = 1;
24 added j to Fk and assign j a new Index;
25 end
26 end
27 for j in Fk do
28 if

UMj
Mj+UMj

> thre1 or CUMj > thre2 then

29 remove j from Fk;
30 end
31 end
32 rewrite the updated Fk to the feature database;
33 end

The feature class that has more matches during the training process indicates that
the local features of the scene do not change much in that period. Then, for the images
in this period, the probability of the successful matching of feature classes with a higher
matching time is greater than that of the successful matching of feature classes with a lower
matching time. Figure 2 shows the flow chart of the proposed iterative matching method.
The specific iterative matching process is as follows:

A. Training image feature set extraction: The training image set {S1, S2, . . . , SN} is input
in temporal order to match the feature database, where N is the number of training
images in the training set. When the kth training image Sk is input, the training
image is first pre-processed with adaptive histogram equalization, then the feature
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set Fk = { f k
1 , f k

2 , . . . , f k
n f
} is read from the feature database according to the latitude

and longitude of the training image, and then the feature set Tk = {tk
1, tk

2, . . . , tk
nt} is

extracted from the training image Sk using the same feature extraction method as the
extraction of the reference image features, where n f is the number of feature classes in
Fk and nt is the number of feature classes in Tk.

B. Feature database feature set update: Feature matching is performed in the feature
database set Fk = { f k

1 , f k
2 , . . . , f k

n f
} and the training image set Tk = {tk

1, tk
2, . . . , tk

nt}.
We use the nearest-neighbor distance ratio (NNDR) [14] method based on descriptor
distance to select the correspondence, and then the fast sample consensus (FSC) [33]
technique is used to filter error matching [34]. Different distance matching methods
are used for different feature algorithms, such as KAZE, SIFT, and SURF, which use
Euclidean distance matching, and ORB, FREAK, and AKAZE, which use Hamming
distance matching. In this paper, image blocks are matched with the feature database
and then the number of matched feature points or feature classes exceeds 10 after
FSC filtering is considered stable matching, and the matching results are regarded
valid. The following step is a modification of Fk = { f k

1 , f k
2 , . . . , f k

n f
} based on the

matching results of Fk = { f k
1 , f k

2 , . . . , f k
n f
} and Tk = {tk

1, tk
2, . . . , tk

nt} on the basis of
valid matching.

• The feature points successfully matched in Fk:
The matching parameters of the feature j in Fk are updated directly, the number
of matches is increased by one, Mj = Mj + 1, the number of consecutive matches
is increased by one, CMj = CMj + 1, the number of unmatched matches remains
unchanged, UMj = UMj, and the number of consecutive unmatched matches is
reduced to zero, CUMj = 0.

• Feature points in Fk that failed to match:
The matching parameters are updated according to the label of the unmatched
feature j in Fk. If there is a successful matching point with the same label Index
as the feature j, it means that the feature class of the feature j is successfully
matched, but the feature j is not successfully matched; at this time, the number of
matches is increased by one, Mj = Mj + 1, the number of consecutive matches is
increased by one, CMj = CMj + 1, the number of unmatched points is increased
by one, UMj = UMj + 1, and the number of consecutive unmatched points is
increased by one, CUMj = CUMj + 1. If there is no successful matching point
with the same label, the number of matches remains unchanged, Mj = Mj, the
number of consecutive matches is cleared, CMj = 0, the number of unmatched
matches increases by one, UMj = UMj + 1, and the number of consecutive
unmatched matches is increased by one, CUMj = CUMj + 1.

• The feature points successfully matched in Tk:
In Tk, the matched feature j belongs to a feature class of Fk. After correcting the
position according to the matching result, the feature j is added to Fk with the
same Index, Mj and CMj changed to the same as the matched features in Fk, with
zero unmatched, UMj = 0 and zero consecutive unmatched, CUMj = 0.

• Feature points in Tk that failed to match:
The unmatched feature j in Tk, after correcting the position according to the
matching result, will also be added to the feature database set with a new Index
for the newly added feature, the number of matches and consecutive matches is
0, Mj = CMj = 0, and the number of unmatched and consecutive unmatched is
1, UMj = CUMj = 1, which corresponds to the newly added feature points.

• For other features that are not in the extracted feature set Fk but exist in the
feature database, they remain unchanged in the feature database.

C. Delete feature points within the feature set based on the threshold: After the above
steps, the features are filtered for Fk, and when the proportion of unmatched times
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between them to the total number of all training at that point exceeds a threshold,
UMj

Mj+UMj
> thre1, or when the number of consecutive unmatched times exceeds a

threshold, CUMj > thre2, the features are removed from the feature set Fk. In this
paper, we empirically set the parameters thre1 = 0.5 and thre2 = 4 to rewrite the
filtered feature set Fk into the feature database.

D. Repeat the above process to iteratively train the feature images: The feature database
is continuously updated and iterated using training images, in which feature points
that can be matched multiple times are automatically clustered to obtain stable feature
classes with the same label, which is equivalent to aggregating multiple feature
descriptors at the same location under multiple observation conditions, thus realizing
the training process of the feature database.

The feature class is a cluster of descriptors of the same feature point location under
different observation conditions. For the same feature class, the number of matches is
identical. In this case, the matching number of a feature class represents to some extent the
stability of the feature class. A high feature matching number indicates that the feature class
appears more times in the training iteration process, while a low feature matching number
indicates that the feature class successfully matches fewer times in the training process.

In this paper, the match number of feature classes is used as the standard for filtering
stable features. The value of FMN (filter match number) is used to filter stable features in
the feature database. The value of FMN is a key parameter that determines the number
and stability of feature classes obtained from the feature database. For example, FMN = 6
indicates that the feature classes with the number of matches greater than or equal to 6
are extracted from the feature database. The FMN of the simple stable feature database
needs to be determined by a filtering experiment of matching times. The value of FMN is
determined by the observation of the correct matching rate curve in the experiment. FMN
needs to ensure that the feature database has a certain number of feature classes obtained
by filtering and yet can be matched with images to obtain a high correct matching rate.

Figure 2. Flow chart of feature database training.
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3. Experiments and Results

In this section, we build several feature databases based on different feature extraction
algorithms and train the feature databases according to the method proposed in Section 2.2.
We first set up different FMN filtering feature classes from the feature database and evaluate
the performance of the proposed feature database matching method by the matching effect
of the filtering results with the test images. Then, the feature database matching methods
based on different feature algorithms are compared with the reference image matching
methods to verify the efficiency and accuracy of the feature database matching methods.

3.1. Evaluation Indicators

Three quantitative metrics are employed in this experiment section to evaluate how
the proposed feature database matching method performs.

1. The stability of the feature matching method is measured by the correct matching
ratio (CMR). It is the proportion of the number of correct matches (NCM) to the
total number of feature matches (Nt). Because a feature class in the feature database
matching method contains multiple similar features and a successful match of one of
the features means a successful match of this feature class, the calculation of the CMR
matching method of the feature database is based on the feature classes described in
this paper.

CMR =
NCM

Nt
(1)

2. Root mean square error (RMSE), which is used to reflect the geometric localization
accuracy of the feature matching method, where (xr

i , yr
i ) denotes the coordinates of

the matched feature points in the reference image or feature database and (xt′
i , yt′

i )
denotes the corresponding coordinates of the matched points in the test image after ge-
ometric correction. A smaller RMSE denotes a higher degree of geometric localization
accuracy using the feature-matching approach.

RMSE =

√√√√ 1
NCM

NCM

∑
i=1

((xr
i − xt′

i )
2 + (yr

i − yt′
i )

2
) (2)

3. The total time (Time) spent to extract features and perform feature matching from the
reference image or feature database and the test image, which is used to reflect the
matching efficiency of the feature matching method.

3.2. Experimental Data

To test the feature database matching method, a data set is used in the experiments.
The data set takes the western area of Beijing as the experimental area and contains

one reference image, fifty training images, and nine test images. The reference image is
a large-scale Google image with an accurate geographic location, and the image range is
the latitude and longitude range of the feature database. The training set contains 50 high-
resolution remote sensing images of Gaofen-2 (GF-2), these remote sensing images are
basically within the set feature database area, overlapping each other, and are used for
feature database iterative training. The test set is selected from three images of Jilin-1 (JL-1),
Gaofen-1 (GF-1), and GF-2 remote sensing images, respectively, which are used to match
with the trained feature database. The latitude and longitude of the test images are also
basically within the matching range of the feature database.

To ensure the training of the feature database and subsequent geometric localization,
we pre-aligned the training images in the two input remote sensing datasets. The inter-
polation algorithm first unifies the multiple-resolution images in this paper into a single
resolution before matching and comparing them. Because remote sensing images can
be based on a uniform scale of geographic information, matching on the same scale can
improve the correct rate of matching and avoid incorrect matching due to different scales.
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The experiments require training feature databases and matching test images for multiple
feature algorithms. For the consideration of computer performance and experiment time,
the data set D has been unified to the resolution of 4m, which can accelerate the experiment
process while maintaining a relatively high resolution. The details of the data set, including
the image source, number of images, size, acquisition time, and spatial resolution, are
listed in Table 3 and shown in Figure 3. The red box in Figure 3 represents the range of the
reference image.

Table 3. Information for the data set.

Image Source Number Date Size (Pixel × Pixel) Resolution (m)

Reference (A) Google Earth 1 2016 53,120 × 49,152 1.19

Training (B) GF2 50 2016–2022 27,620 × 29,200 0.81

Test (C)

JL1 (C-1 C-2 C-3) 3 2019–2020 28,651 × 28,720 0.75

GF1 (C-4 C-5 C-6) 3 2019–2021 18,236 × 18,190 2

GF2 (C-7 C-8 C-9) 3 2019–2021 27,620 × 29,200 0.81

Figure 3. Diagram of the data set.
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3.3. Large Area Remote Sensing Image Feature Database Matching Experiment
3.3.1. Matching Times Filtering Experiment

First, the feature database update parameters thre1 = 0.5, thre2 = 4 are set empirically,
and several feature databases based on different feature operators are trained according to
the method described in Section 2.2 in combination with the reference image and training
set. To ensure the uniformity of matched feature points in large regions, a block processing
strategy is adopted in the feature database feature extraction, training process, and the
subsequent matching process with the test set. The training process ensures that different
feature algorithms extract the same number of features for the same training image for
subsequent experimental comparison.

After obtaining several feature databases based on the training set B and different
feature extraction algorithms, the test set C is matched with the stable feature classes
extracted from these feature databases using the FMN. There are a total of 50 training
images available, and the ideal situation is that there are enough feature classes with
a matching count of 50, that is, multiple feature classes are correctly matched in each
training image.

However, it is impossible to achieve the ideal situation in the actual experimental
process. First of all, the latitude and longitude ranges of the 50 training images are not
exactly the same, they overlap with each other, and there are even cases of complete non-
overlap, so it is impossible to match the features extracted from the reference image with
all the 50 training images. Moreover, the number of filtered feature classes decreased
with increasing FMN. Since not all extracted feature points can be matched accurately,
the matching process will miss the correct match, and it is not guaranteed that all similar
feature points in the training image can be stored in a single feature class with the same
feature label. In addition, the training image’s features are impacted by the passage of
time because it was taken at a different time than the one to which it belongs. There will
undoubtedly be new features during the training image iteration, and feature points that
cannot be successfully matched will be eliminated. Therefore, the number of feature classes
with more matches is smaller, which also suggests that the feature class is more stable in
this region range.

Because different feature extraction algorithms exhibit different stability during it-
erative training of the feature database, the maximum FMN value is determined by the
number of feature classes that can be filtered from the feature database within the test
image region. The experiments in this section set a minimum threshold of 50 to ensure that
a sufficient number of feature classes are extracted from the test image. As a result, the set
FMN is only added to the statistics when the number of feature classes extracted from the
feature database in accordance with FMN is greater than or equal to 50. As can be seen in
Figure 4, the difference in the stability of the feature algorithm demonstrated in the feature
database matching process is what causes the difference in the horizontal coordinates of
experiments. Some feature algorithms, such as KAZE and AKAZE, are stable in extraction
and always match, and the number of feature classes with a high number of matches is
higher. However, when ORB and FREAK use binary descriptor matching, which is less
stable than the gradient descriptor, the number of feature classes with a high number of
matches is lower, and its maximum FMN value is smaller.

Figure 4 shows the correct feature matching rate of each image in the test set C and
the feature databases based on different feature algorithms. From the figure, it can be
seen that as FMN gradually increases, the feature correct matching rate of the test image
basically shows an increasing trend, and the increasing trend gradually becomes slower.
This indicates that features with more matches in the feature database are more stable in the
image of that region, and filter features, which always appear in that experimental region,
can always match with the features extracted from the test images.
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(a) (b) (c)

(d) (e) (f)

Figure 4. CMR of different FMN based on different feature database. (a) SIFT. (b) SURF. (c) KAZE.
(d) AKAZE. (e) ORB. (f) FREAK.

Although the larger the FMN, the more stable the feature classes extracted from the
feature database, it is not true that the higher the value of FMN the better the test image
matches the feature database. It can also be observed from Figure 4 that the growth rate of
CMR for matching the feature database to the test images is not obvious after FMN = 6.
Especially for the AKAZE feature database, there is a significant decrease in CMR in the
matching of test images C-1, C-6, because the larger the FMN, the smaller the number
of extracted feature classes. The limited number of feature classes can also not reach
a particularly high CMR. Therefore, in the comparison experiment with the reference
image, we generally set FMN = 6, which has both a high CMR and a certain number of
feature classes.

Figure 5 shows RMSE values after matching the test images with the feature databases
based on different feature algorithms according to different FMN values. As can be seen
from the figure, as FMN gradually increases, the RMSE obtained by the feature database
matching methods based on different feature algorithms stays basically the same. As
shown in Table 4, the RMSE fluctuations of the feature database matching results based on
various feature operators are fewer than 0.5 pixels under various test images. This shows
that FMN has little influence on the matching results and also little effect on the precision
of geometric registration following a match.

Combined with the above description, it can be concluded that with the gradual
increase of FMN, the overall CMR based on the stable feature database matching method
shows an increasing trend, while RMSE is not affected by the change in the number of
filtering matches. This indicates the feasibility and effectiveness of filtering stable feature
matching strategies based on the stable feature database matching method. Moreover,
when using the feature database matching method to correct remote sensing images, we
can typically set FMN = 6 to filter feature classes for matching to ensure that the number
of features extracted from the feature database after filtering according to FMN is sufficient
and the number of correct matches is certain.
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(a) (b) (c)

(d) (e) (f)

Figure 5. RMSE of different FMN based on different feature databases. (a) SIFT. (b) SURF. (c) KAZE.
(d) AKAZE. (e) ORB. (f) FREAK.

Table 4. RMSE (pixel) fluctuations for different feature database matching.

Algo-
rithm C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9

SIFT 0.3835 0.2424 0.4150 0.2715 0.2144 0.1203 0.1174 0.2299 0.2544

SURF 0.2573 0.1032 0.1405 0.2023 0.2872 0.1100 0.1811 0.2214 0.2519

KAZE 0.2178 0.1520 0.2553 0.1853 0.2635 0.2448 0.1415 0.3060 0.2463

AKAZE 0.3909 0.1901 0.1335 0.2526 0.3090 0.1574 0.1673 0.3305 0.2536

ORB 0.2203 0.3554 0.1493 0.4519 0.2214 0.1793 0.3277 0.2868 0.3591

FREAK 0.2366 0.1192 0.1809 0.2683 0.2764 0.1639 0.2306 0.3709 0.3540

3.3.2. Comparison Experiment between Direct Matching and Feature Database Matching

This section contrasts the feature database matching method with the direct application
of the reference image matching method to evaluate the proposed method. The comparison
evaluation parameters are CMR, RMSE, and Time. FMN = 6 is set by the explanation in
the previous section.

The trained feature database in Section 3.3.1 contains all feature classes with matching
numbers. In order to further reduce the storage space and improve the matching efficiency,
all feature classes with matching numbers fewer than 6 in the feature database can be
deleted. The experiments in this section are conducted on the basis of the deleted feature
database. Furthermore, in the block experiment, the block is not directly involved in
matching when the number of feature classes obtained from the feature database in the
test image block latitude and longitude range is less than 10, which allows for reducing the
time required for matching.

Only the reference image A and the feature database were used for comparison in the
experiments, and the training image was not used for reference image experiments. This is
because the longitude and latitude ranges of the test image and the single training image
may overlap, but not necessarily the with exact same scene. However, the feature database
contains the range within the whole reference region, and the features within the test image
region can be filtered according to the latitude and longitude. If the search ranges of the
two methods are not the same for training image matching and feature database matching,
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they cannot effectively illustrate the effectiveness of the feature database method. Finally,
a reference image A is intercepted based on the latitude and longitude of the test image
to create different reference image slices. These reference image slices are used for feature
matching with the test images and compared with the feature database.

Figure 6 shows that the test image C-5 matches with the ORB feature database and
the reference image, respectively. The left side images of Figure 6a–d are matched with the
feature database, and the features from the feature database are displayed on the reference
image for a more visual comparison with the right side images. The image on the right side
matches the reference image with ORB. Based on the same number of extracted features,
it can be seen that the feature database matching method obtains more pairs of matching
points and the correspondence of the feature points is more accurate. With direct matching
with the reference image using ORB features, the correspondence of the features may be
inaccurate, as shown in Figure 6a,b. Although the right side image of Figure 6c,d shows
accurate point correspondence, its number of matched point pairs is small, while the feature
database matching method obtains a larger number of matched point pairs and is more
stable than the right side.

(a)

(b)

(c)

(d)

Figure 6. Comparison of the reference image matching method and the feature database matching
method based on C-5. (a–d) C-5 image block matching. The left image is the result of matching with
the feature database, and the right image is the result of matching with the reference image. The left
end of each image connecting line is the reference image, and the right end is the test image.
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The comparison of the CMR between the direct matching method with the reference
image and the feature database matching methods based on different feature algorithms
is shown in Figure 7. In the experiment, if the test image blocks and the reference image
slice blocks or feature database matching point pairs exceed 10, the matching is considered
stable, and anything less than this threshold is considered unstable. It is observed that
there are cases where CMR is 0 in the figure, such as C-7 in Figure 7b, C-5 in Figure 7e, etc.,
because in the reference image slices and the test image in the block matching process,
the number of matches obtained by none of the blocks exceeds the set threshold, and we
consider the matching to fail at this time.

It is obvious that directly matching with the reference image using classical operators
does not match all test images successfully, but by using the simple stable feature database
to match, every test image in the test set C can be correctly matched. This is because our
proposed feature database matching method, which filters out stable feature classes and
assembles descriptors of stable features under multiple observation conditions, has a higher
possibility of successful matching with different optical satellite images. Therefore, in the
comparison experiments, the feature database can achieve stable matching with all test
images in the test set. Furthermore, in the case of both methods, the feature database
matching method based on different feature operators has essentially an over 30% greater
correct feature point matching rate than direct matching using this feature operator, as
shown in Table 5.

(a) (b) (c)

(d) (e) (f)

Figure 7. CMR comparison of the direct matching method and the feature database matching method.
(a) SIFT. (b) SURF. (c) KAZE. (d) AKAZE. (e) ORB. (f) FREAK.

Figure 8 shows the RMSE comparison between the direct matching methods and
feature database matching methods based on different feature algorithms. The RMSE of
the feature database matching approach based on different feature operators is approxi-
mately equivalent to that of the direct matching with the reference image, with an absolute
difference average value of fewer than 0.3 pixels. The RMSE of the matching instability
case will not be shown in the graph. As can be seen, geometric registration on large-scale
remote sensing images can be performed with a certain degree of accuracy using the feature
database matching method. For more details, see Table 5.
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Figure 9 compares the matching time for direct matching and feature database match-
ing methods based on different feature algorithms. The figure clearly shows that the feature
database matching method always takes less time than the direct matching method using
the reference image slice, because the feature database matching method eliminates the
step of extracting features from the reference image. Table 5 shows that, compared to
direct matching, the feature database matching method based on various feature operators
typically reduces the time taken by more than 40%.

(a) (b) (c)

(d) (e) (f)

Figure 8. RMSE comparison of direct matching method and feature database matching method.
(a) SIFT. (b) SURF. (c) KAZE. (d) AKAZE. (e) ORB. (f) FREAK.

(a) (b) (c)

(d) (e) (f)

Figure 9. Match time comparison of direct matching method and feature database matching method.
(a) SIFT. (b) SURF. (c) KAZE. (d) AKAZE. (e) ORB. (f) FREAK.
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Table 5. Comparison of parameters between direct matching method and feature database match-
ing method.

Algorithm Stable Direct
Match/Image

Stable Feature
Database

Matching/Image

Average CMR
Increase/%

RMSE Absolute
Difference Mean/pixel

Average Time
Reduction/%

SIFT 9 9 42.23 0.1251 51.31

SURF 8 9 40.38 0.101 36.83

KAZE 9 9 32.78 0.064 45.66

AKAZE 9 9 34.54 0.0803 43.08

ORB 5 9 28.76 0.1508 40.33

FREAK 8 9 33.61 0.1685 48.69

3.3.3. Difference between Feature Database

Six classical feature algorithms—SIFT, SURF, KAZE, AKAZE, ORB, and FREAK—are
selected to construct simple and stable feature databases in the above experiments. The
feature databases constructed by each operator perform well in matching comparison
experiments, and it can be seen that the feature database matching algorithm is universal
for a variety of feature algorithms. This subsection performs matching experiments based
on test image C-9 to compare the performance of feature databases based on different
feature algorithms.

Figure 10 compares the results of the test image C-9 matching with the feature database
based on different feature methods. From Figure 10a, it is clear that the matching rate
increases gradually as the value of FMN increases and that the upward trend progressively
slows down. The upward trend of the correct matching rate of each feature database in this
figure is roughly the same. At an FMN > 9, the CMR of the test image that matches the
ORB feature database features decreases, probably due to the insufficient number of stable
filtered feature classes.

From Figure 10b,c, it can be seen that the number of feature classes extracted from
the feature databases and the number of successful matches with the test image gradually
decrease with the gradual increase of FMN, and the trend is gradually slowing. At different
FMN values, the number of stable feature classes filtered from the KAZE, AKAZE, SIFT,
and SURF feature databases is relatively high and the number of feature classes obtained
from the ORB and FREAK feature databases is low. The totality of the “blob” detector is
generally better than the “corner” point detector [35], so the “blob” detector can retain more
stable invariant feature classes in the iterative matching process of the feature database.

From Figure 10d, we can see that the KAZE operator takes the longest time among the
feature database matching methods. Due to the complexity of the KAZE operator, it takes a
long time even if the matching time is approximately half as long using the feature database
method matching. It is observed that all curves in the figure show a slight downward
trend because the number of filtered feature classes gradually decreases with increasing
FMN values and the time to read the features from the feature database also decreases.
Furthermore, in the blocking experiment, when the number of feature classes obtained
from the feature database in the test image blocking latitude and longitude range is less
than 10, the block is not directly involved in matching, which also causes a decrease in time.

In combination with the above analysis, the performance comparison between feature
databases is mainly determined by the use of feature algorithms within the feature database.
In the proposed feature database matching method, KAZE is relatively stable, but it takes a
long time. When compared to KAZE, AKAZE requires much less time and has fewer stable
features, but the construction of the nonlinear scale space still takes a certain amount of
time. SIFT and SURF are not as stable as KAZE and AKAZE and are not as fast as ORB and
FREAK. ORB and FREAK are the most efficient, but the combination of corner detectors
and binary descriptors is not as stable as blob detectors and floating-point descriptors.
We can construct simple and stable feature databases according to different application
requirements. If the tendency is for fast matching and high matching efficiency, automatic
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implementation algorithms such as ORB or FREAK may be selected for the construction of
feature databases. If the tendency is to have good matching stability and a large number of
stable feature classes, the feature database can be constructed by choosing algorithms such
as KAZE or AKAZE.

(a) (b)

(c) (d)

Figure 10. Different feature database comparison (a) CMR. (b) the number of feature classes. (c) the
number of matches. (d) match time.

4. Discussion

The experiments in Section 3 demonstrate the usefulness and stability of the feature
database matching approach using data set D and different feature extraction methods.

The feature database matching method based on different feature algorithms can
achieve 100% stable matching of the test image on the test set C, but the direct matching of
the test image with the reference image may not match successfully. When both matching
methods are successful, the feature database matching approach has a higher rate (mostly
above 30%) of correctly matching feature points than direct matching. This is because the
simple and stable feature database matching method takes into account the differences in
feature descriptors under multiple observation conditions. The proposed method uses an
iterative matching method to train stable feature points and aggregate multiple descriptors
at the same feature point location, which greatly increases the probability of successful
matching with the test image. Moreover, the results from the feature database matching
approach are not significant deviations from the direct matching results in terms of RMSE.
Additionally, compared with direct matching, the feature database matching method saves
a large amount of time because it skips the extraction of features from the reference image.
For most feature algorithms, the matching of the feature database has been shown to take
less time than direct matching by more than 40%.

However, there are still some parts to be improved in this paper. First, according
to the iterative matching strategy of the feature database in this paper, it is theoretically
possible to automatically update the feature database while continuously inputting the test
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image. However, training and testing are separated in the paper, and there is no mention
that the test image can also update the feature database. This is because the lack of coding
ability makes feature clustering take some time, and the matching process plus the feature
database update process will become less efficient. Second, the time to extract the features
from the feature database is almost negligible compared with the time to extract the features
from the reference image. However, the experimental results show that inherently efficient
operators such as SURF do not save as much time as other operators using the feature
database method; because the descriptors of SURF are floating points, it takes more time to
read them by the program written by itself. This can be solved by improving the database
reading procedure. Third, the current experimental method has been verified only for
optical remote sensing images, while this framework is theoretically applicable to a wide
range of sensors.

In the future, we hope to optimize the program so that we can also train based on the
test image when the test image is matched and perform fast updates to the feature database.
Furthermore, we will build the feature database using more stable feature algorithms
such as histogram of orientated phase congruency (HOPC) [36] and radiation-variation
insensitive feature transform (RIFT) [37], among others, that are suitable for multi-modal
image matching to experiment on multi-modal images. Based on the iterative approach
of the feature database, the invariant features within the scene are found by the input
multi-modal images, and the descriptors of multiple styles under the same location are
clustered to make the feature database approach more universal.

5. Conclusions

This paper proposes a fast-matching method for optical remote sensing images based
on stable and simple feature databases. The advantages of the simple and stable feature
database matching method can be summarized as follows.

1. Simplicity: This feature database matching method stores the features extracted from
the reference image in the feature database simply and effectively for subsequent
matching. Since features do not need to be extracted from the reference data each time
matching is performed, this reduces the amount of storage space required for the ref-
erence data and speeds up geometric correction and remote sensing image matching.

2. Stability: The feature database extracts features from images of the same region with
different time phases and trains stable invariant features (constructs invariant feature
point sets) by iterative matching. It increases the correct matching rate by extracting
stable feature classes with numerous matches, being adaptable to remote sensing
image matching under multiple observation conditions.

3. Scalability: The method in this paper has good reconfigurability because, in addition
to the feature algorithms mentioned in the paper, other feature algorithms can be
modified by the image resolution of remote sensing images, various geomorpholog-
ical features of the target area, and various sensor types for acquiring images. The
feature database matching technique can be made even more effective in the future by
including faster feature algorithms.

Instead of repeatedly extracting feature points from the reference image, the fast
matching method based on a simple stable feature database can select existing feature
points in the corresponding area of the image in the feature database, potentially reducing
the storage space of the reference data and improving the efficiency of image processing.
Additionally, stable invariant features can be extracted to take part in matching by filter-
ing the stable invariant feature matching parameters to increase the matching accuracy.
This matching technique is highly flexible and can be used with many different feature
extraction algorithms.
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