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Abstract: Previously conducted studies have established that the soil–rock mixture in the Chongqing
area has the characteristics of loose structure, poor stability, strong permeability, and so on. When
building a tunnel in a soil–rock mixture stratum, it is necessary to reinforce the surface rock mass
and surrounding rock by grouting to improve the safety of tunnel excavation. To study the diffusion
mechanism of cement slurry (Bingham fluid) in soil–rock mixtures, based on the Bingham fluid flow
equation and slurry diffusion model, the Bingham fluid fracture diffusion formula was derived, and
field grouting tests and indoor model tests were carried out with soil–rock mixtures in the Chongqing
area as the research object. The fracture grouting diffusion formula was verified and analyzed using
the test data. The research results show that the theoretical calculation results of various working
conditions are close to the actual test results (the error of indoor model test results is less than 3%,
and the error of field test results is less than 5%). A Bingham fluid fracture diffusion formula has
been developed that applies to various working conditions of fracture grouting of soil–rock mixtures
and has a good prediction effect on the value of the fracture diffusion radius.

Keywords: soil–rock mixtures; stone content; grouting test; fracture diffusion; diffusion radius

1. Introduction

The soil–rock mixture is an inhomogeneous loose geotechnical media system com-
posed of a particular engineering scale, high-strength block, fine-grained soil, and void
space with a certain stone content [1]. This type of soil–rock mixture has a loose structure,
large void ratio, weak cementation ability, poor stability, and strong permeability, which
often causes cavity deformation, uneven settlement, collapse, water seepage, and other
problems when tunneling through deeply buried soil–rock mixture strata, bringing great
difficulties to construction. Therefore, when the tunnel passes through a deeply buried
soil–rock mixture, the tunnel surface geotechnical body and the surrounding rock need
to be reinforced with grout to form a ring-shaped bearing arch around the perimeter of
the tunnel to ensure the stability of the perimeter of the tunnel and the palm face and to
improve the permeability of the surrounding rock tunnel.

In the design of rock and soil mass grouting parameters, the slurry diffusion radius
should be determined first, according to the diffusion radius to determine the grouting
hole row distance, hole spacing, single hole grouting amount, grouting pressure, and other
parameters, so the determination of the diffusion radius is the key to the success of the
grouting project. Grouting diffusion can be divided into fracture diffusion, permeation
diffusion, and compression diffusion, among which fracture grouting is widely used in
tunnels, mines, road foundations, soft ground, and embankment reinforcement. Conven-
tional soil–rock mixtures have a stone content ranging from 20 to 50%, and their grouting
reinforcement is often in the form of fracture grouting [2]. The basic principle of fracture
grouting is that when a continuously increasing grouting pressure is applied in a weakly
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permeable foundation to cause hydraulic fracture of the soil, the pressure exerted by the
slurry on the fracture surface will push the cracks to open rapidly and form grout cracks.
The slurry veins extrude soil, and the skeleton effect of the slurry veins will reinforce the
soil [3]. Due to the complexity of the process, the current research on the theory of fracture
grouting lags far behind engineering practice. Moreover, research results on the diffusion
mechanism of fracture grouting have only emerged in the 21st century.

Based on the statistics of domestic and foreign scholars, reference [4] took a particle size
of 5 mm as the soil and stone boundary particle size of the soil–rock mixtures. Reference [5]
established a flat plate fracture model with a power-law-type slurry and derived a new
power-law fluid fracture grouting diffusion equation while giving a parameter determina-
tion method. Reference [6] used a model test of loess grouting to divide the process into
three stages: primary, expansion and fracturing, and diffusion, and they simulated the
process with PFC2D granular flow software. Reference [7] used a combination of FEM and
VOF to simulate the fracture grouting process and studied the flow and diffusion law of
the slurry. Reference [8] investigated the relationship between low-pressure permeation
grouting and the starting pressure of fracture grouting based on engineering examples
and proposed corresponding engineering empirical criteria. Reference [9] applied silica-sol
material to simulate the grouting process, obtained an expression for the diffusion radius
of the slurry within the fissure, and verified the correctness of the expression based on
field measurement results. Sarris and Reference [10] investigated the main factors affect-
ing the expansion of hydraulic fractures in continuous media soils through numerical
simulations and experiments. Reference [11] proposed an analytical model for fracture
grouting in sandy soils, simplified the fracture channels into pipe and flat plate modes, and
described the fracture grouting process, the diffusion radius of the slurry, and the width
of the slurry veins. Reference [12] studied fracture and fracture-permeation grouting in
weathered granite soils in the Korean Peninsula. Theoretical equations were derived by
studying the fracture pressure, fracture length, and thickness, and the effect of grouting
pressure on the slurry percolation phenomenon was investigated. Reference [13] studied
the diffusion characteristics of grout in soft clay and structured soil through experiments
and numerical models. The numerical simulation of slurry diffusion in a single sand
layer has been studied [14–16]. To improve the stability of the tunnel surrounding the
rock, references [17,18] studied the diffusion radius of slurry in gravel and the compressive
strength of the soil–rock mixtures under the influence of multiple factors through laboratory
experiments. Reference [19] focused on verifying the radial Bingham flow of cementitious
grout using a fracture model constructed from acrylic glass. A grout penetrability method
based on explicit grout forehead pressure (EGFP) algorithm for joints and cracks in a rock
mass was developed in [20]. The diffusion characteristics of slurry in fractured rock have
also been well studied [21,22]. Reference [23] proposed that the flow pattern properties of
cement grouts with different water–cement ratios could remain unchanged with time. The
characteristics of cement grouting were studied [24,25]. Reference [26] presented a study
on the use of chemical additives to optimize the performance of cement slurry, which signif-
icantly improves the quality of grouting. On the properties of cement materials, particular
attention was given to the rheological characteristics, namely, the composite transportabil-
ity while maintaining the specified strength characteristics [27]. To increase the strength
characteristics of the created composite, fullerene-astarlene was used as a nanomodified
additive [28]. Reference [29] investigated the cement-and-gravel mixture’s transportability
(rheological characteristics). Activation treatment of composite components or adding some
activating additive is one way to improve the quality of the cement-and-gravel mixture [30].
References [27,29,30] showed that using finely dispersed fractions in backfill improves the
rheological properties of the cement-and-gravel composite and increases its transportation
range and permeability. Reference [31] used “shallow anchor grouting + deep anchor cable
grouting” in combination with a fracture grouting mechanism to reinforce the roadway.
Reference [32] proposed a simulation method for the grouting process based on the 3D
fracture network model, considering the flow–solid coupling effect. Reference [33] estab-
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lished an analytical model of grouting diffusion for a single rough fracture under constant
pressure control based on Bingham fluid’s intentional equation. Some scholars have stud-
ied soil–rock mixtures’ strength parameters and cracking damage characteristics [34,35].
The shear modulus of the soil–rock mixtures gradually increased with the increase in
rock regardless of temperature, and the increment rate of the shear modulus increased
rapidly [36]. Reference [37] presented a random generation method of periodic mesostruc-
tures of soil–rock mixtures based on the random polygon. An automatic generation method
of PFC, similar to a 2D numerical model of soil–rock mixture microstructure, based on
digital image processing and experimental simulation were carried out with Matlab [38].
In terms of soil mechanical properties, changes in the degree of saturation can significantly
affect the peak strength [39,40], elastic moduli [41], and Poisson ratio of soil.

In summary, most of the injected media involved in the existing research on the
mechanism of fracture grouting are crushed stone, gravel, clay, or rock with a single and
isotropic material composition. However, in practice, the injected media conditions may be
a mixture of various materials, and research on the diffusion mechanism of fracture grouting
based on composite geological conditions is limited. Research on the diffusion mechanism
of fracture grouting is late in development, and there is still no unified identified formula for
the diffusion radius of fracture grouting as a theoretical basis. Most of the existing research
on the diffusion of fracture grouting is based on Newtonian slurries and power-law slurries,
and there are fewer research results on the fracture diffusion mechanism of Bingham fluid.
However, cement slurry, cement clay slurry, and composite cement slurry commonly used
in grouting engineering with a water–cement ratio of 0.6~1.0 are all Bingham fluids [42]. It
can be seen that the mechanism of fracture grouting diffusion of soil–rock mixture under
the Bingham fluid is an urgent problem to be solved.

Analyzing the above, it can be noted that the diffusion radius of fracture grouting
is a very topical issue. Therefore, the purpose of this study is to establish the diffusion
formula of soil–rock mixture fracture grouting under a Bingham fluid; to achieve this, it is
necessary to solve the following:

(1) Derivation of the Bingham fluid flow equation.
(2) Establishing the diffusion formula of soil–rock mixture fracture grouting under

Bingham fluid.
(3) Conducting field grouting tests and indoor model tests under different working conditions.
(4) Adaptation verification of the fracture grouting diffusion equation using grout diffu-

sion radius data from field grouting tests and indoor model tests.

2. Calculation Theory for Fracture Diffusion of Bingham Fluid

The mechanism of grouting diffusion in single materials such as gravel and clay has
been studied by predecessors. In gravel, the slurry is often diffused in the form of perme-
ation, while in clay, the slurry is often diffused in the form of fracture. Unlike these single
media, the mechanical properties and permeability of the soil–rock mixtures are affected by
factors such as stone content, and the physical and mechanical properties of the soil–rock
mixtures are between those of soil and stone. Therefore, the slurry diffusion form may be
changed, affecting the diffusion radius, an essential parameter in grouting engineering. In
this section, the fracture diffusion formula of a Bingham fluid is derived theoretically.

2.1. Bingham Fluid Flow Equation

The shear rate of the Bingham fluid is not proportional to the shear stress, and the
slurry starts to flow only when the shear stress exceeds the yield value (τo). The rheological
equation of the slurry is shown in Equation (1).

τ = τo + ηp
dv
dr

(1)

The crack flow equation will be derived from the Bingham fluid rheology equation.
Figure 1 shows the flow of the Bingham fluid in a crack.
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Figure 1. Bingham fluid flow in a crack.

Take a quadrangular prism with width b = 1 in the crack, and crack width δ. Take
a fluid column with the central axis of the tube as the axis of symmetry in the quadrangular
prism; the length of the fluid column is dl, the height is 2r, the width is b = 1, and the side
of the fluid column is subject to uniformly distributed shear stress (τ). According to the
force balance relationship of the fluid column (without considering gravity), we can obtain
the following:

τ = − rdp
dl

(2)

That is, the shear stress (τ) on the fluid column surface is proportional to the product
of the fluid column height (r) and the pressure gradient ( dp

dl ), but the sign is the opposite.
Substituting Equation (2) into Equation (1), we obtain the following:

dv
dr

=
−rdp
ηpdl

− τ0

ηp
=

1
ηp

(τ − τo) (3)

According to Equation (3), it is found that the magnitude of the shear stress varies
linearly with height; the further away from the center, the greater the shear stress, while
at the centerline, the shear stress is minimal. When the shear stress is τ = − rdp

dl ≤ τo, the
velocity gradient is 0; that is, the velocity does not change with (r), indicating that the shear
stress is 0 within this range. There is a height (rm) in the quadrangular prism such that the
fluid in the range (0 ≤ r ≤ rm) is relatively stationary, and its velocity is denoted as the
velocity (vm) at the height (rm). When the fluid is in the range (rm ≤ r ≤ r′), the fluid is
moving with respect to the adjacent fluid. Therefore, the fluid as a whole exhibits piston
motion, which is divided into the shear zone (rm ≤ r ≤ r′) and piston zone (0 ≤ r ≤ rm).

When r = rm, τ = τ0, according to Equation (3):

rm = −τ0dl
dp

(4)

When boundary condition r = δ
2 is taken into account, velocity v δ

2
= 0. By separating

the variables in Equation (3) and integrating both sides’ yields, we can obtain the following:

v =
dp

8ηpdl

(
δ2 − 4r2

)
+

τ0(δ− 2r)
2ηp

, rm ≤ r ≤ r′ (5)

When (0 ≤ r ≤ rm), it follows that:

v = vm =
dp

8ηpdl

(
δ2 − 4r2

m

)
+

τ0(δ− 2rm)

2ηp
(6)
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The flow rate (q) of the slurry in the fluid column can be found by integrating
the following:

q = 2
∫ δ

2

0
vrbdr + 2bvmrm (7)

Substituting Equations (5) and (6) into Equation (7) gives:

q =
2b
ηp

(
dp
8dl

(
8r3

m − δ3

3

)
− τ0

(
δ2 + 4r2

m
8

))
(8)

The average flow velocity in the longitudinal section is v

v =
q
δb

=
2

ηpδ

(
dp
8dl

(
8r3

m − δ3

3

)
− τ0

(
δ2 + 4r2

m
8

))
(9)

Equations (8) and (9) are the crack flow equations of a Bingham fluid.
When the shear stress is insufficient to produce a fluid flow rate, the quadrangular

prism’s flow rate is 0. The dp
8dl

(
8r3

m−δ3

3

)
− τ0

(
δ2+4r2

m
8

)
part of Equation (8) is 0, which gives:

dp
dl

=
3τ0
(
δ2 + 4r2

m
)

8r3
m − δ3

(10)

That is,
3τ0(δ2+4r2

m)
8r3

m−δ3 is the initiation pressure gradient value of the Bingham fluid in
the quadrangular prism, and the flow rate is generated only when the pressure gradient
exceeds this value.

2.2. Bingham Fluid Fracture Diffusion Equation

The theoretical derivation in this paper is mainly based on the engineering geological
and hydrogeological conditions of the relying project (Wangjiacheng Station to Shengjiabao
Station of Chongqing Railway Line 4 Phase II Project), without considering the influ-
ence of groundwater. Since the relying project is located in Chongqing, China, which is
a mountainous city with large topographic relief and low groundwater level, the water
table line is generally located below the bottom of the tunnel of the relying project, and the
groundwater pressure is low during the grouting process, the coupling of mechanical and
hydraulic effects is not considered.

It is assumed that the slurry diffuses radially in the crack surface of the soil–rock
mixtures with the exit of the grouting pipe as the center. The soil–rock mixtures are
considered to be mixed evenly. The slurry is injected into the soil–rock mixtures from the
bottom of the grouting pipe. The theoretical model of slurry diffusion is shown in Figure 2.

The slurry diffusion form is planar radiative diffusion, which can be described as
a “point source planar radiative diffusion model”. The fluid cross-section is not affected by
the void ratio, so the amount of fracture grouting is:

Q = πR2δ = vAt, A = 2πrδ (11)

h0 is the groundwater hydraulic head above the grouting pipe, h1 is the grouting pressure,
and H is the sum of the groundwater hydraulic head and grouting pressure, namely,
H = h0 + h1; H is equal to h1 when h1 is much larger than h0. The crack width is δ, the
grouting time is t, and the grouting pipe radius is r0.

For a Bingham fluid, substituting Equation (9) into Equation (11) gives:

v =
Q
At

=
2

ηpδ

(
dp
8dl

(
8r3

m − δ3

3

)
− τ0

(
δ2 + 4r2

m
8

))
(12)
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For Equation (12), we separate the variables and consider the boundary conditions:
let pk be the initiation fracture pressure of soil when the grouting pressure pr reaches the
initiation fracture pressure pk, at which point the diffusion radius r = r0; after t time, when
the diffusion radius reaches the maximum value (R), the grouting pressure is p0, then
we have:

p0 − pk =
12ηpδR2(
8r3

m − δ3
)
t

ln
R
r0

+
3τ0
(
δ2 + 4r2

m
)

8r3
m − δ3 (R− r0) (13)

Since r0 is much smaller than R, Equation (13) can be simplified, which in turn,
gives the relationship between the grouting pressure (p0) and the diffusion radius (R) and
grouting time (t) as:

p0 = pk +
12ηpδR2(
8r3

m − δ3
)
t

ln
R
r0

+
3τ0
(
δ2 + 4r2

m
)

8r3
m − δ3

R (14)

There are many unknown quantities in Equation (14), among which the radius of the
grouting pipe (r0) is known, the grouting time (t) can be controlled according to the actual
engineering situation and field experience, while the indoor grouting test in this paper
records the grouting time through a timer. In addition, the static shear force (τ0) and plastic
viscosity (ηp). of the slurry are measured using a rotating viscometer, and the rotational
speed of the viscometer is changed to measure the shear stress readings at different shear
rates, which are brought into the Bingham fluid model for calculation. The value of the
parameter (rm). can be calculated by Equation (4).
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The value of (pk). was obtained by referring to the literature [43]. The mechanical
mechanism of fracture grouting inevitably requires a thorough analysis of the aggregation
and compaction process in the first stage. The initiation fracture pressure value when
the soil reaches fracture failure in the first stage is determined by considering the soil
parameters. Reference [43] analyzed the mechanical mechanism of the soil in the first
stage of fracture grouting based on plastic mechanics and large deformation theory. They
regarded the first stage of fracture grouting as a circular hole expansion problem of an
infinite soil body, where the soil damage obeys the Mohr–Coulomb yield criterion and
derived a formula (Equation (15)) for calculating the initiation fracture pressure value and
the plastic zone radius (considered as the slurry diffusion radius) according to the stress



Appl. Sci. 2023, 13, 4730 7 of 22

balance and strain continuity boundary conditions. However, the diffusion radius value
derived from the purely mechanical point of view deviates from the actual value because
the influence of the grouting pressure and slurry properties on the effect of the slurry
injection is not considered. However, a good exploration of the initiation pressure is still
made. In this paper, the fracture pressure of soil used in the grouting test is calculated
by referring to the calculation formula of the initiation fracture pressure value, as shown
in Equation (15):

Pk =
B
m

(
σry +

σc

M− 1

)
am(1− 1

M )

− σc

M− 1
(15)

In Equation (15), m is 2; M = (1 + sin ϕ)/(1− sin ϕ); ϕ is the internal friction angle of
the soil–rock mixtures; σry = ((m + 1)Mpt + mσc)/(M + m); pt is rest soil pressure; σc is
the peak strength of soil–rock mixtures; B = (1 + µ)

(
σry − p0

)
/Es; µ is Poisson’s ratio of

soil–rock mixtures; Es is compression modulus of soil–rock mixtures; ϕ, σc, and Es can be
obtained by shear test. pt was calculated according to the test conditions. The value of µ
was selected according to “Building Foundation Engineering” [44]: the value of crushed
stone soil is 0.2, the value of clay is 0.35, the value of Poisson’s ratio of pure soil material of
group #10 is 0.35, and the value of other groups is 0.2.

At this point, the third quantity can be solved by giving any two of the grouting
pressure (p0), diffusion radius (R), and grouting time (t) according to Equation (14).

3. Validation Tests of the Calculation Theory of Grout Diffusion in
Soil–Rock Mixtures
3.1. Indoor Grouting Tests
3.1.1. Test Conditions

Laboratory grouting tests were carried out to verify the applicability of the fracture
grouting diffusion radius calculation theory. This experiment adopts four factors and three
levels of an orthogonal test scheme: stone content, void ratio, water–cement ratio, and
grouting pressure. The soil–rock mixture’s stone content range is generally 20–80%, so
the three levels of stone content were selected as 30%, 50%, and 70% of the balanced span
between 20% and 80%.

The void ratio of the soil–rock mixtures retrieved from the site was approximately
0.35 by laboratory test. As the void ratio of the soil and stone mixtures varies less, when
the void ratio is 0.3, the soil has reached a relatively compact state, while when the void
ratio is 0.4, the soil has reached a relatively loose state, so the three levels of void ratio are
selected as 0.30, 0.35, and 0.4.

In grouting engineering, the commonly used grouting pressure is approximately
0.5 MPa, and the larger pressure will reach more than 1 MPa. Therefore, this study selects
the three levels of grouting pressure as 0.4, 0.7, and 1.0. To contrast with the soil–rock
mixtures, the test of pure soil in group #10 was also arranged. The test scheme is shown
in Table 1.

Table 1. Orthogonal test table of the grouting test.

Groups Stone Content (%) Void Ratio Water-Cement Ratio Grouting Pressure
(MPa)

1 30 0.3 0.6 0.4
2 30 0.35 0.8 0.7
3 30 0.4 1 1
4 50 0.3 0.6 1
5 50 0.35 0.8 0.4
6 50 0.4 1 0.7
7 70 0.3 1 0.7
8 70 0.35 0.6 1
9 70 0.4 0.8 0.4
10 0 0.3 0.6 0.4
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3.1.2. Test Device and Process

(1) Test Device

The core device of the grouting test is a self-designed grouting system, which can
satisfactorily meet the test requirements of adjustable and monitorable grouting pressure,
monitorable grouting volume, determinable grouting time, and removable grouted stone
body. The grouting system includes four parts: pressurized equipment, slurry storage
bucket, grouting bucket, and connecting device (air pipe and grouting pipe), as shown in
Figure 3. The grouting bucket is a stainless steel bucket with a diameter of 55 cm, height
of 63 cm, and thickness of 2.8 mm. The test cement materials in this paper were 42.5R
ordinary silicate cement (a hydraulic cementitious material made of silicate cement clinker,
5–20% of mixed materials, and appropriate amount of gypsum finely ground) produced
by Chongqing Xiaonanhai Cement Plant. The grouting slurry in this paper was pure
cement slurry, which is a mixture of cement and water and does not contain gravel. The
composition of the soil–rock mixture was clay and sandstone.
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(2) Test process
The indoor test process is as follows:

(a) Control particle grading: soil–rock mixture sampling was carried out from the
construction site to determine the particle gradation (shown in Figure 4), and
the soil–rock mixture samples were configured in the room.
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(b) Control water content: The dried soil–rock mixture sample was mixed evenly
one day in advance and laid flat in the aluminum box, sprinkled evenly with
water, and mixed thoroughly to ensure that the water content was equal to the
natural water content of the original soil–rock mixture, covered with plastic
film for 24 h, and then taken, as shown in Figure 5.
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Figure 5. Control water content.

(c) Soil–rock mixture specimen: In the grouting bucket against the wall set of
plastic bags, the soil–rock mixture was added to the mold in 4 layers. Each
layer was 150 mm thick, and the height was controlled in layers. The soil–rock
mixture layer was compacted with a wooden compaction hammer according
to the principle of light hammering and multi-striking to ensure that the dry
density of the configured specimen was equal to the dry density of the original
soil–stone mixture, as shown in Figure 6. To prevent the appearance of a preset
weak surface between layers, surface chiseling treatment was carried out after
each layer was compacted before adding soil samples.
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(d) Buried pipe: After the soil–rock mixture sample was added to 3 layers, the
grouting pipe was buried, and the position of the grouting pipe mouth was
fixed. To prevent the soil–rock mixture in the mouth of the pipe from blocking
the pipe, a layer of gravel was placed under the pipe mouth so that it was
wrapped by gravel, and then the position of the grouting pipe was fixed, as
shown in Figure 7. Then, the fourth layer of the soil–rock mixture was buried,
compacted, and sealed with a cover.
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(e) Safety check: After connecting the device, we opened the inlet valve, closed
the outlet valve, opened the main valve of the nitrogen tank, and adjusted
the output pressure to 0.2 MPa. Then, we closed the main valve after the air
pressure in the slurry storage barrel was stable. If the pressure value of the
pressure gauge on the slurry storage barrel remained unchanged for 5 min, we
considered the sealing gaskets, valves, and pipes as gas-tight at these critical
connection locations and the device as safe.

(f) Slurry making: First, we poured a specific mass of cement and water into
the mixing barrel according to the water–cement ratio. Second, we used
a handheld electric drill equipped with a cross-stirring bar to stir at a speed
of (500 rpm) in the mixing barrel at a constant speed for 5 min, and finally,
poured the cement slurry quickly through the funnel into the slurry storage
barrel, installed a pressure gauge, and set the scale to zero (the slurry storage
barrel was located on the scale).

(g) Pressurized grouting: We set the grouting pressure to the test pressure, opened
the slurry outlet valve, and started grouting.

(h) End of grouting: The end of grouting was marked by no change in the amount
of grouting for 5 min. We closed the valve, stopped timing, pulled out the
grouting pipe, inserted it into the waste bucket, opened the valve, and waited
until all the slurry flowed out and all the gas was discharged.

3.1.3. Basic Physical and Mechanical Parameters of the Soil

Groups #1 to #9 were indoor grouting test groups at different stone contents, with
three levels of stone contents, void ratios, grouting pressures, and water–cement ratios, and
group #10 was a pure soil test group. The parameters of the injected soil media in each
group are shown in Table 2 for groups #1–10.
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Table 2. Injected media parameters.

Groups Void Ratio
e

Nonuniformity
Coefficient

Cu

Coefficient
of Curvature

Cc
d20 (mm)

Internal
Friction Angle

ϕϕϕ (◦◦◦)

Shearing
Strength
σσσc (kPa)

Cohesive
Force c (kPa)

Compression
Modulus
Es (MPa)

1 0.3 37.00 1.32 0.23 16.7 110 23 7.17
2 0.35 37.00 1.32 0.23 16.7 110 23 7.17
3 0.4 37.00 1.32 0.23 16.7 110 23 7.17
4 0.3 56.43 2.93 0.61 24 148 15.3 7.35
5 0.35 56.43 2.93 0.61 24 148 15.3 7.35
6 0.4 56.43 2.93 0.61 24 148 15.3 7.35
7 0.3 29.17 3.72 2.5 29.1 175 12.1 8.3
8 0.35 29.17 3.72 2.5 29.1 175 12.1 8.3
9 0.4 29.17 3.72 2.5 29.1 175 12.1 8.3

10 0.3 22.50 0.43 0.15 13 107 37.4 7.12
11–13 0.35 56.09 3.79 1 16.7 110 23 7.17

3.2. Field Grouting Tests
3.2.1. Test Conditions

A field grouting test was carried out to verify the applicability of the calculation
theory of the diffusion radius of fracture grouting. Based on the tunnel project between
Wangjiacheng Station and Shengjibao Station of Chongqing Rail Transit Line 4, the grouting
test was carried out on the ground surface at the beginning of TBM on the right line of
YK47 + 780.110~YK48 + 011.110. A total of 3 point positions were arranged in this test in
a single line with an interval of 2 m to prevent cross-grouting during the test. The test hole
depth was set at 3 m, convenient for grouting effect verification through excavation. The
grouting of the test hole was a single grouting under the same depth (3 m). The layout of
the grouting test holes is shown in Figure 8.
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Figure 8. Grouting hole layout plan.

The grouting test was conducted under a grouting pressure of 0.5 Mpa and a void
ratio of 0.35. Slurry: ordinary Portland cement slurry; water–cement ratio: 0.6:1, 0.8:1, and
1:1. The stone content of the soil–rock mixtures measured on site was approximately 30%.
The conditions of each grouting test hole are shown in Table 3.

Table 3. Grouting test condition.

Groups Stone Content (%) Void Ratio Water-Cement Ratio Grouting Pressure
(Mpa)

11 30 0.35 0.6 0.5
12 30 0.35 0.8 0.5
13 30 0.35 1.0 0.5
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3.2.2. Test Device

The configured slurry with different water–cement ratios entered the grouting pump
via the suction pipe and was pumped through the discharge pipe to the grouting hole with
a slurry flow meter connected in the middle. The grouting pump and the grouting line
were selected to create the grouting system, as shown in Figure 9.
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3.2.3. Basic Physical and Mechanical Parameters of the Soil

Groups #11–13 are the field grouting experimental groups under different water–
cement ratios. The parameters of the injected soil medium in each group are shown
in Table 2.

4. Results and Discussion
4.1. Mechanism of Slurry Diffusion of Indoor Grouting Tests

The #10 group of test concretions had irregularly oblate slice shapes and could not be
obtained by toppling them as a whole to prevent them from breaking up during the toppling
process, so they were measured using the “stratification method,” and a diffusion radius
value of 21 cm was obtained. Images of each stratum were taken, as shown in Figure 10.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 22 
 

 

   
(a) surface (b) 5 cm depth (c) 10 cm depth 

   
(d) 20 cm depth (e) 25 cm depth (f) 30 cm depth 

Figure 10. The concretion sections of Group #10. 

The layer-by-layer dissection of the concretion revealed that the concretion in the 
pure soil was oblate slice shape, and the diffusion path of the slurry in the pure soil was 
in one direction in the radial direction, thus forming an oblate slice shape concretion. A 
closer look at the cementation relationship between the slurry and the soil reveals that the 
slurry and the soil grains were not embedded in each other but had a demarcation line, as 
shown in Figure 11. 

 
Figure 11. Part of the concretion of Group #10. 

This means that the diffusion path of the slurry was not the soil pores, the slurry 
fractured the soil under pressure to create a new fracture, and the slurry diffused into the 

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 22 

(a) surface (b) 5 cm depth (c) 10 cm depth

(d) 20 cm depth (e) 25 cm depth (f) 30 cm depth

Figure 10. The concretion sections of Group #10. 

The layer-by-layer dissection of the concretion revealed that the concretion in the 
pure soil was oblate slice shape, and the diffusion path of the slurry in the pure soil was 
in one direction in the radial direction, thus forming an oblate slice shape concretion. A 
closer look at the cementation relationship between the slurry and the soil reveals that the 
slurry and the soil grains were not embedded in each other but had a demarcation line, as 
shown in Figure 11. 

Figure 11. Part of the concretion of Group #10. 

This means that the diffusion path of the slurry was not the soil pores, the slurry 
fractured the soil under pressure to create a new fracture, and the slurry diffused into the 
fracture. Therefore, the form of slurry diffusion in pure soil is fracture diffusion. The strat-
ified measurement method measured the shape parameters of the test concretions in 
groups #1–3. The dumping method removed the test concretions in groups #4–9, and the 
shape parameters were measured by the “multiangle measurement method”. The concre-
tions in groups #7–9 were taken out entirely, and their morphology was well preserved, 
as shown in Figure 12g–i. Among them, the concretions of groups #4–6 were not com-
pletely removed, and the concretions were damaged in the removal process. Only repre-
sentative parts were preserved, and other broken parts were small in size and difficult to 
recover, as shown in Figure 12d–f. Groups #1–3 were measured by the stratified measure-
ment method through active destruction, so the concretions were not retained, but the 
photos of each section were retained, among which the profile of the slurry outlet is shown 
in Figure 12a–c. 

Figure 10. The concretion sections of Group #10.



Appl. Sci. 2023, 13, 4730 13 of 22

The layer-by-layer dissection of the concretion revealed that the concretion in the pure
soil was oblate slice shape, and the diffusion path of the slurry in the pure soil was in one
direction in the radial direction, thus forming an oblate slice shape concretion. A closer
look at the cementation relationship between the slurry and the soil reveals that the slurry
and the soil grains were not embedded in each other but had a demarcation line, as shown
in Figure 11.
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This means that the diffusion path of the slurry was not the soil pores, the slurry
fractured the soil under pressure to create a new fracture, and the slurry diffused into the
fracture. Therefore, the form of slurry diffusion in pure soil is fracture diffusion. The strati-
fied measurement method measured the shape parameters of the test concretions in groups
#1–3. The dumping method removed the test concretions in groups #4–9, and the shape
parameters were measured by the “multiangle measurement method”. The concretions in
groups #7–9 were taken out entirely, and their morphology was well preserved, as shown
in Figure 12g–i. Among them, the concretions of groups #4–6 were not completely removed,
and the concretions were damaged in the removal process. Only representative parts were
preserved, and other broken parts were small in size and difficult to recover, as shown in
Figure 12d–f. Groups #1–3 were measured by the stratified measurement method through
active destruction, so the concretions were not retained, but the photos of each section were
retained, among which the profile of the slurry outlet is shown in Figure 12a–c.

According to the diffusion form of the slurry in the indoor test of groups #1–9, analyzed
by the morphology of the concretions, the morphology of the concretions in groups #1–3
was branching and scattering, and there were clear fracture paths in the images. The slurry
and soil boundaries were clearly defined, showing the typical characteristics of fracture
grouting. However, during the process of chiseling the concretions for filming, it was found
that there were areas in the concretions where the slurry and soil were embedded and
uniformly mixed, as shown in Figure 13. In Figure 13, from left to right, there are some
blocks of concretions in groups #1, #2, and #3. The light-colored strip in the middle of the
block shows the fracture surface of the slurry, and on both sides of the fracture surface
are stone bodies mixed with soil, stone, and slurry, indicating that in groups #1–3 tests,
permeation grouting was accompanied by fracture grouting, and the slurry took fracture
cracks as the main circulation channel for fracture grouting. At the same time, the slurry
penetrated the two walls of the crack under the action of grouting pressure. According
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to the average permeation depth of the samples, the relationship between the size of the
permeation grouting radius of the three groups of tests can be determined as #3 > #2 > #1.
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In addition, permeation diffusion processes also exist around the grouting pipe, as
shown in Figure 14, which shows the enlarged profile of the concretion at the grouting
outlet of group #3. There was a small scope of permeable grouting concretion near the
outlet of the grouting pipe, and the permeation area surrounded the grouting outlet, which
was close to a pair of concentric circles.
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In group #1–3 tests, the slurry diffusion form was mainly in the form of fracture, and
the diffusion radius of fracture grouting was between 20 and 40 cm. Although there was
a small range of permeation grouting, the permeation grouting mainly occurred on both
sides of the fracture surface, and the permeation grouting was attached to the fracture
grouting with a permeation width of approximately 3–6 cm, which had little influence
on the overall diffusion radius. Therefore, we considered the form of slurry diffusion in
groups #1–3 as fracture diffusion.

The test concretions in groups #7–9 were irregularly spheroidal, as shown in Figure 12g–i,
where the slurry was evenly distributed with the soil and stones and glued to each other to
form a whole, showing prominent permeation grouting characteristics, and their perme-
ation grouting radius was between 25 and 40 cm. However, through careful observation,
there were still features of fracture grouting on the concretions, as shown in Figure 15,
which shows a partial view of the surface of the concretion of group #7. There were fracture
grouting veins raised on the surface of the concretion, with clear lines, and there was no
soil and stone inside, which is caused by fracture grouting.

The fracture plane was formed by the extension of the surface of the concretion formed
by permeation diffusion. As a rule, when the permeability coefficient of the soil body is
large, and the slurry has good groutability, it is not easy to produce fracture. This shows
that when the radius of permeation grouting diffusion is large enough, the slurry fills
the pores of the soil–rock mixtures, which makes the groutability poor, and the slurry
will compress the soil body deformation under the action of grouting pressure and even
make the soil body yield to crack. Then, the slurry is pressed into the cracks to cause
fracture grouting.
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According to the morphology of the concretions, groups #4–6 had a permeation
grouting concretion centered on the grouting pipe opening, which was irregular and
spherical in shape, with a radius of 10–25 cm. Additionally, there were several fracture
faces in the concretions, and the permeation grouting concretions were weakly connected to
the extended fracture faces, which were broken by the concentrated stress during dumping.
The smaller fracture face fragments were challenging to recover, so the largest fracture face
was taken as a representative, and its fracture grouting radius was measured, with a value
of 10–20 cm. The difference between the radius of permeation grouting and the radius of
fracture grouting was insignificant, so for groups #4–6, the slurry diffusion was in the form
of both permeation and fracture diffusion. Therefore, the concretion consisted of two parts:
one is the permeation grouting concretion centered at the mouth of the grouting pipe, and
the other is a maximum fracture plane, as shown in Figure 12d–f.

For soil–rock mixtures with 50% stone content, permeation grouting, fracture grouting,
or even both may occur under uniform soil–rock mixtures. This situation shows that
the slurry is generally groutable for soil and rock mixtures with 50% stone content, and
the slurry’s permeability depends on the slurry’s viscosity, the void ratio of the soil–rock
mixtures, and the grouting pressure value. At the same time, the fracture pressure of
the soil was less than the minimum grouting pressure in the test, which was 0.4 Mpa.
Therefore, for soil–rock mixtures with stone contents near 50%, the design of grouting
technical parameters should be carried out more strictly to ensure that the grouting effect is
within the expected range.

4.2. Mechanism of Slurry Diffusion of Field Grouting Tests

Figure 16 shows the morphological image of the test concretion of groups #11–13.
Figure 16 shows clear fracture paths in the morphological image of the concretion of
groups #11–13, and the slurry veins are clearly visible, showing the typical characteristics
of fracture grouting. However, during the process of removing the concretion, it was found
that there was a small amount of grout and soil, and stone was interbedded and mixed
evenly on the surface of the concretion.
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Figure 16. Concretion shape of groups #11–13.

Figure 17 shows the concretion fragment of groups #11–13, as shown in Figure 17. The
concretions taken out only contain the cementation body composed of slurry and rock,
without soil. This is because the slurry filled the void between the rock and wrapped
the rock. The loose soil in the void and the soil in contact with the rock were squeezed
out by the slurry, and the slurry in contact with the rock formed strong cementation of
the slurry–rock cementation interface. According to measurement, the diffusion radius
of the fracture grouting of the concretions in groups #11–13 was 30–40 cm. Although
there was a small range of permeation grouting, permeation grouting mainly occurred on
both sides of the fracture surface. The permeation grouting was attached to the fracture
grouting, and the permeation width was approximately 4–6 cm, which had little influence
on the overall diffusion radius. Therefore, the slurry diffusion form of groups #11–13 was
fracture diffusion.
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4.3. Diffusion Radius Results

According to the shape of the concretion, it can be judged that the grouting diffusion
forms of the soil–rock mixtures include both permeation diffusion and fracture diffusion.
The test results are shown in Table 4.

Table 4. Indoor grouting diffusion test results.

Groups Stone Content
(%) Permeation Diffusion Radius (cm) Fracture Diffusion

Radius (cm)

1 30 3.42 29.05
2 30 4.85 38.16
3 30 6.42 37.09
4 50 13.15 12.36
5 50 18.36 10.05
6 50 25.36 10.25
7 70 28.96 5.64
8 70 28.64 4.42
9 70 38.79 4.21
10 0 0 23.05
11 30 3.92 28.61
12 30 4.60 33.12
13 30 5.53 39.87
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4.4. The Fracture Diffusion Formula of Bingham Fluid in Clay

Due to the thick slurry, low grouting pressure, and small particle size of the soil, its
pores were relatively smaller, and the slurry had less groutability. The grouting process
proceeded more slowly, and the grouting time was up to 12 min. The slurry flow rate was
low, and the final grouting volume was 1.8 L.

The slurry was a Bingham fluid, and the Group #10 grouting test conformed to the
Bingham fluid fracture grouting model, so its grouting pressure, diffusion radius, and
grouting time relationship should conform to Equation (14).

Therefore, the theoretical diffusion radius R can be deduced from the parameter values
and the relationship equation and compared with the slurry diffusion radius measured
in the test to verify the correctness and applicability of the diffusion equation. After the
measurement and calculation of the shear test, the calculation parameters of the #10 group
of test soils are given, as shown in Table 5.

Table 5. Soil parameters of Group #10.

µ ηp (MPa·s) β pt (kPa) Es (MPa) ϕ σc (kPa) M m

0.35 118 116.8 2.492 8.3 13◦ 107 1.58 2

The calculated parameters in Table 5 were obtained from the experimental mechanical
properties of the soil–rock mixture in the state of natural water content (10%), and the
natural water content data were obtained from the survey report of the relying project
(Wangjiacheng Station to Shengjiabao Station of Chongqing Railway Line 4 Phase II Project).

When the initial water content of the soil changes, the corresponding calculated
parameter values (peak strength [39,40], elastic modulus [41], Poisson’s ratio, etc.) will
change, and the corresponding calculated parameter values can be obtained from the
mechanical property tests of soil–rock mixture at different water contents. They can be
calculated by substituting into Equations (14) and (15).

The initiation fracture pressure was calculated and brought into the Bingham fluid
fracture grouting diffusion formula (Equation (14)). The Squeeze Theorem was used to
approach the unique real value, and the calculated result of the diffusion radius was
22.744 cm, while the test result of the grouting test concretion was 23.05 cm, with an error of
1.33%. The calculation result of the Bingham fluid fracture grouting diffusion formula was
considered accurate. It is suitable for analyzing Bingham fluid fracture grouting in clay.

4.5. The Fracture Diffusion Formula of Bingham Fluid in the Soil–Rock Mixtures

It is generally accepted that the slurry flow pattern transforms with the change in
the water–cement ratio. When the water–cement ratio is relatively large, the viscosity
is small, and the slurry fluidity is strong. At this time, the slurry is a Newtonian fluid.
With the decrease in the water–cement ratio, the slurry viscosity increases and is gradually
transformed into a Bingham fluid. When the water–cement ratio of the slurry continues
to decrease, and the viscosity increases to a certain extent, the slurry transforms into
a power-law fluid. That is, when the water–cement ratio of the slurry is less than 0.6, it
belongs to a power-law fluid; when the water–cement ratio is greater than 1.0, the slurry is
transformed into a Newtonian fluid, and the Bingham fluid is between them.

The grouting diffusion models for each group of tests were classified, and the results
are shown in Table 6.

Groups #6 and #7 belong to the Newtonian body permeation grouting case; #3, #6,
and #13 belong to the Newtonian body fracture grouting case; #4, #5, #8, and #9 belong to
the Bingham fluid permeation grouting case; and #1, #2, #4, #5, #11, and #12 belong to the
Bingham fluid fracture grouting case. Since groups #7, #8, and #9 are mainly permeation
diffusion, the fracture diffusion depth is small; #3, #6, and #13 belong to the Newtonian
body fracture grouting case, so they are not discussed.
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Table 6. Classification of diffusion forms.

Slurry Flow Pattern Forms of Diffusion Groups

Newtonian fluid Permeation diffusion #6, 7
Newtonian fluid Fracture diffusion #3, 6, 13
Bingham fluid Permeation diffusion #4, 5, 8, 9
Bingham fluid Fracture diffusion #1, 2, 4, 5, 11, 12

Therefore, the theoretical diffusion radius of each experimental group can be deduced
according to the parameter values and the Bingham fluid fracture grouting diffusion
formula (Equation (14)). For those that cannot be solved directly, the squeeze theorem is
used to approximate the unique real numerical solution continuously. The calculated value
is compared with the measured value, and the comparison results are shown in Figure 18.
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As the test effects of groups #1, #2, #11, and #12 are dominated by fracture diffusion,
permeation diffusion has less influence on their diffusion processes, so their permeation
diffusion is not considered in the calculated values. The tests of groups #4 and #5 carry out
both permeation diffusion and fracture diffusion processes, and both affect the diffusion
effect of the slurry together, so both should be considered. Groups #1 and #2 were carried
out in a single fracture grouting process, and the calculated results were very close to the
measured values, with an error range of 3%. Although groups #11 and #12 were also carried
out in a single fracture grouting process, the field test was easily disturbed by external
conditions, so the error between the calculated results and the measured values was larger
than that of groups #1 and #2 (the error value increased by approximately 2%), and the
error range of groups #11 and #12 were within 5%. Compared with groups #1 and #2,
the error values of the diffusion radius of groups #4 and #5 were also larger due to both
permeation grouting and fracture grouting.

The above results also show that when a single fracture grouting is carried out in
a grouting test, the results calculated by the diffusion radius formula are more accurate,
while when permeation grouting and fracture grouting are carried out simultaneously in
soil–rock mixtures, the results will be more inaccurate. This is because when permeation
grouting and fracture grouting are carried out simultaneously, the two processes share
grouting pressure, grouting time, and grouting volume, and it is not easy to segment the
two processes quantitatively.

Despite individual cases of large errors, the test values for each group are still relatively
close to the calculated values, indicating that the solution formula for the fracture diffusion
radius of the Bingham fluid is applied to the fracture grouting diffusion of the soil–rock
mixtures in general.
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Since the object of the theoretical derivation and test in this paper is the soil–rock
mixture in the low water level area, the influence of groundwater is not considered, and
the calculation of grouting diffusion radius for the soil–rock mixture in the saturated state
is not applicable.

5. Conclusions

The following conclusions can be drawn from the present study:

(1) Based on the rheological characteristics of Bingham fluid and the assumption of
a spherical diffusion model of grouting, the flow equation of the Bingham fluid was
obtained, and the formula for calculating the fracture diffusion radius of Bingham
fluid was derived. The formula considers the influence of the main parameters, such
as stone content, void ratio, water–cement ratio, and grouting pressure.

(2) The slurry’s diffusion mode in the soil–rock mixtures (stone content 30%) can be
summarized as the main-fracture-sub-permeation mode. In the middle period before
diffusion, the structure of the backfill of the soil–stone mixtures is loose before rein-
forcement, the initial kinetic energy of slurry diffusion is the largest, and the resistance
to overcome is small. At this time, the midpoint of the slurry outlet of the cuff pipe is
the midpoint, the main slurry veins and secondary slurry veins are formed rapidly
along the soft surface, and fracture diffusion is dominant at this stage. At the later
stage of diffusion, the void ratio in the reinforced area decreases, and the resistance
of the slurry to continue expanding along the main slurry vein or secondary slurry
vein channels increases so that the pores can only be filled along the vicinity of the
main slurry vein or the boundary area, mainly by permeation diffusion. Finally, the
slurry–rock cement skeleton is formed, and the skeleton is wrapped and packed with
the soil in the grouting to strengthen the concretion.

(3) The formula for fracture diffusion of a Bingham fluid is derived. The formula is
brought into the test conditions under the corresponding working conditions for
calculation. After comparing the calculated values with the test values for verification
(the error of indoor model test results is less than 3%, and the error of field test results
is less than 5%), it is confirmed that the formula applies to various working conditions
of fracture grouting of the soil–rock mixtures and has a good prediction effect on the
value of the fracture diffusion radius.
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