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Abstract: Because the adjustment of the stay cable tension and girder counterweight is limited at
the operation stage it is a difficult problem to control the negative reaction risk of the auxiliary pier
(NRRAP) caused by multisource construction uncertainties and traffic growth. This paper proposes a
pavement strategy optimization to control the NRRAP by adjusting the pavement thickness. The
pavement strategy optimization is formulated as a reliability-constrained, multiobjective optimization
problem, which is resolved by the nondominated sorting genetic algorithm (NSGA-II). A sensitivity
analysis and a reliability analysis based on the generalized regression neural network (GRNN)
surrogate model were performed to illustrate the significance of the uncertainty level in auxiliary
pier negative reactions. The Pareto front examines the balance of construction cost, driving comfort
and specified reliability threshold. The efficiency and accuracy of the proposed method are validated
in a real cable-stayed bridge, and the results exhibit its advantages in controlling the NRRAP.

Keywords: pavement strategy optimization; cable-stayed bridge; negative reaction risks of auxiliary
piers (NRRAP); generalized regression neural network (GRNN); nondominated sorting genetic
algorithm (NSGA-II)

1. Introduction

An auxiliary pier is an important measure to enhance the overall stiffness of cable-
stayed bridges [1]. The auxiliary pier can not only restrain the displacement and the bending
moment of the side-span girder and reduce the stress amplitude of the stay cable [2] but
can also significantly reduce the horizontal displacement of the pylon and the vertical
displacement of the mid-span girder under the live load by enhancing the anchoring effect
of the anchor cable [3]. Therefore, auxiliary piers are widely used in long-span cable-stayed
bridges [4–6]. To give full play to the auxiliary pier, the positive (upward) reaction on the
auxiliary pier needs to preserve a reliable magnitude to prevent the upward deflection of
the girder during both the construction and operation stages [7]. The auxiliary pier bearing
separation will change the structure’s stress system and cause boundary nonlinearity, which
has an adverse impact on the structure’s stress state [1]. Therefore, not only the traditional
criteria of “the tower being vertical, the girder being horizontal and a uniform distribution
of cable forces” (C1~C3) but also the criterion of “no negative reaction under the live load”
(C4) should be satisfied during the design state of a completed bridge [1]. The criterion
requires that the bearing reactions of the transition piers and auxiliary piers should have
a sufficient positive reaction under the dead load without a negative reaction under the
live load.
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However, it is difficult to totally achieve the objective service stage (OSS) considering
the unpredictable multisource construction uncertainties [8,9], and the NRRAP will be
further increased when considering traffic growth at the operation stage [10,11]. Therefore,
it is crucial to decide an economic and practical strategy against the NRRAP at the operation
stage on the basis of ensuring “the tower being vertical, the girder being horizontal and a
uniform distribution of cable tensions”.

For long-span asymmetric cable-stayed bridges, the NRRAP can be reduced by girder
counterweight or cable tension optimization in the construction stage [12,13]. However,
the parallel strand cable can hardly be adjusted at the operation stage [14]. Because the
strands are stretched one-by-one and anchored with wedge-type anchors, the strands at the
tensioning end have to be cut according to the required tensioning length after cable tension
adjustment. After the cable tension adjustment, the protective cover should be installed
and filled with oil to protect the anchor head, which will further increase the difficulty of
cable tension adjustment at the operation stage [15]. In addition, it is extremely difficult to
construct a girder counterweight inside the main girder at the operation stage because of
the restricted construction space, which is accompanied by cable tension optimization [16].
Due to the high cost of tensioning operations, bridges should be designed so that the stay
cables are prestressed the minimum number of times and no final tuning retensioning
operation is sought after construction, especially for cable-stayed bridges with parallel
strand cables [17]. In summary, it is infeasible to construct the girder counterweight or
optimize the cable tension at the operation stage. Furthermore, an optimal coping strategy
that can successfully control the NRRAP at the operation stage has not been reported in the
literature thus far.

In addition to multiple control criteria, it is also necessary to quantify the various
uncertainties by a probabilistic analysis at the construction and operation stages. Therefore,
reliability-based design optimization (RBDO) is essential to decide an optimal coping
strategy [7]. Massive simulations and analyses are required when coupling the RBDO
and the multiple control criteria. However, finite element model (FEM) analysis is very
time-consuming due to the strong nonlinearity of a cable-stayed bridge. Nested RBDO
based on an FEM analysis would make it computationally expensive and even intractable.
To improve the optimization efficiency, various surrogate models are employed to replace
the FEM analysis to approximate the implicit performance functions and the corresponding
limit states in the reliability analysis and RBDO. The commonly used surrogate models
include the response surface method (RSM) [18], support vector regression (SVR) [19],
artificial neural networks (ANNs) [20,21], kriging models [22,23], and radial basis functions
(RBFs) [24]. This paper applies the GRNN, a deformation form of the RBF, in RBDO because
the GRNN has excellent performance in nonlinear approximation, quick learning, fault
tolerance, and robustness, even in the case of inadequate samples [25].

In addition, the RBDO aims to obtain a reliable optimum to ensure that the failure
probability does not exceed a target level. Therefore, various corresponding approaches
have been proposed. Wang et al. [7] presented a BPNN-assisted reliability-based design
optimization method for the two-phase tensioning system transformation process (STP) of
a cable-stayed bridge erected by the incremental launching method. Xiang et al. [26] used
the RSM and NSGA-II algorithms to execute the multiobjective optimization of a composite
orthotropic bridge to improve the fatigue performance to achieve an infinite fatigue life
under a relatively low structural weight. Wang et al. [27] proposed a fault-tolerant interval
inversion (F-TII) framework to mine the fault-tolerant capacity from the geometric nonlinear
redundancy of a cable system, in which the inversion is solved as a reliability-constrained,
multiobjective interval optimization problem with the aid of a GRNN-based surrogate
model. These studies indicate that multiobjective optimization methods combined with
the surrogate model are feasible in structure optimization. However, there are no related
reports on the multiobjective optimization of controlling the NRRAP of cable-stayed bridges
in the literature thus far.
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This paper presents a three-step pavement optimization strategy (TPOS) against the
NRRAP. First, the assessment of the NRRAP under the live load was carried out based on the
updated parameters. Second, the design variables were determined according to sensitivity
analysis. The pavement optimization problem was formulated with the objectives of
driving comfort and minimum construction cost. In addition, the reliability constraint
for the bearing reaction of the auxiliary pier was adopted in the optimization model. The
NSGA-II was used to solve the multiobjective optimization problem and obtain the optimal
Pareto set. Third, we randomly selected an optimization scheme from the optimal Pareto
set and evaluated it with C1~C3 [28]. The TPOS was applied to an asymmetric cable-stayed
bridge. The results demonstrate that the TPOS can efficiently achieve the optimal pavement
strategy of the cable-stayed bridge under multisource construction uncertainties and traffic
growth.

2. Assessment Model for Negative Reaction Risks under Uncertainties
2.1. Reliability Assessment Model for the Reactions of an Auxiliary Pier

The reaction force of the auxiliary pier is critical to prevent the permanent bearing
from separating from the girder during the construction and operation stages. The limit
state function of the minimum reaction of the auxiliary pier (RAP) at the operation stage is
as follows:

G(x)= Rm = min
[
KTT + KPP + RG + RQ

]
(1)

where G(x) < 0 means the separation between the permanent bearing and the girder [1]. Rm
is the minimum RAP at the operation stage; KT is the influence matrix of the cable tension
on the RAP, where T is the cable tension vector; KP is the influence matrix of the pavement
load on the RAP, where P is the pavement load vector; RG is the influence vector of the
permanent load other than the cable force and pavement load on the RAP; and RQ is the
influence of the live load on the RAP.

The sensitivity index and reliability index of the parameters relating to the limit
state function in Formula (1) were calculated by the method shown in Section 3. The
related surrogate models were built using the GRNN method shown in Section 4.2. The
optimization model was solved by the NSGA-II method shown in Section 4.3.

2.2. Increased Negative Reaction Risks under Uncertainties
2.2.1. Stretching Process and Adjustable Length of the Parallel Strand Cable

In cable-stayed bridges, stay cables are essential, and parallel strand cables are one
of the principal stay cables utilized in all different forms of cable-stayed bridges. Parallel
strand cables are made up of bundles of strands shielded by galvanization and a semi-
bonded individual sheath, as shown in Figure 1a. Parallel strand cables are fabricated and
transported separately from parallel wire stay cables, and the strands are stretched and
anchored one by one. This allows for all stretch-draw work to be performed with lighter
and smaller equipment [15]. However, as shown in Figure 1b, the tensioning of the parallel
strand Ti will reduce the original parallel strand tension T1~Ti−1. The strong interference
between parallel strand tensions and the tension uncertainty of each strand will make it
extremely difficult to ensure a uniform cable tension and achieve the theoretical optimal
cable tension. During the actual construction stage, the cable tension error of parallel strand
cables often reaches 8% or even 10%, which will greatly increase the NRRAP [1].

In addition, as shown in Figure 2, the parallel strand cable with a wedge-type anchor
will be cut after tensioning, and the length of the cut parallel strand is very short, so it is
difficult to adjust the cable tension by tensioning a single parallel strand at the operation
stage. It is difficult to ensure the uniformity of the cable tension among the parallel strands
when adjusting the parallel strands. Furthermore, the very modest adjustable cable tension
at the operation stage is caused by the very short adjustable length of the socket nut.
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The control difficulty of parallel strand cable tension will greatly increase the deforma-
tion control difficulty of the cantilever construction of a cable-stayed bridge. The stretching
limitation of the parallel strand cable will make it almost infeasible to adjust the cable
tension at the operation stage.

2.2.2. NRRAP Caused by Forced Closure

According to the Specifications for Design of Highway Cable-stayed Bridge (JTG/T
3365-01-2020) [1], the unbalanced load of a cable-stayed bridge in the construction stage
should be considered as follows: 1© unbalanced load generated by the asymmetric design
of the girder; 2© unbalanced load due to the construction process; 3© unbalanced load
caused by construction errors; and 4© unbalanced wind load at both ends of the cantilever
during cantilever construction. The coupling of the above unbalanced loads will bring
great challenges to the cantilever construction control of asymmetric cable-stayed bridges.

Material nonlinearity and geometric nonlinearity will cause a secondary internal force
and reduce the structural stiffness with increasing cantilever length, which will significantly
increase the structural deformation and internal force under unbalanced loads and even
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cause a large closure deviation [29]. As shown in Figure 3, when a large closure deviation
appears, the forced closure construction will lead to the tendency of upward deflection of
the side span, which will lead to the reduction in the RAP or even the negative reaction of
the auxiliary pier.
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2.2.3. Time-Varying Live Load

According to the Unified Standard for Reliability Design of Highway Engineering
Structures (JTG 2120-2020) [30], the live load on the bridge is time-varying, so its statistical
analysis is described as a probability model of a random process. As shown in Figure 4, road
traffic has experienced substantial growth with the rapid development of the transportation
industry over the past decades. The continued increase in the live load poses a serious
threat to the operational safety of existing bridges, and the growth in traffic could become a
risk factor for them [31]. Therefore, it is crucial to assess how increasing traffic affects the
security of transportation infrastructures, especially in light of the fact that current load
models and safety factors neglect the impact of the traffic increase [10].
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In this paper, a dynamic generalized extreme value (GEV) distribution was used to
establish the live load model instead of the traditional single extreme value distribution [32].
The GEV distribution is a bottom function composed of three extreme value distributions,
including extreme value type I (Gumbel), extreme value type II (Fréchet), and extreme
value type III (Weibull) distributions. Compared with a single extreme value distribution,
using the GEV distribution as the bottom function can adapt to varied section distributions
and has better robustness.

Zτ ∼ GEV(µ, σ, ω) = G(xgev, θ) = exp

{
−
[

1−ω(
xgev − µ

σ
)

] 1
ω

}
(2)

where xgev is a random variable obeying the GEV distribution. µ, σ, and ω are the location
parameter, size parameter, and shape parameter of the GEV distribution, respectively. θ
is the parameter vector. The value of ω will directly determine the distribution type of
the GEV distribution: an extreme value type I distribution occurs when ω is close to 0; an
extreme value type II distribution occurs when ω is much larger than 0, and an extreme
value type III distribution occurs when ω is much smaller than 0.

By introducing the time parameter t, the dynamic GEV distribution model of the
nonstationary vehicle load process can be further expressed as follows:

Zτ ∼ GEV[µ(t), σ(t), ω(t)] = G
[
xgev, θ(t)

]
=

exp

{
−
[
1−ω(t)( xgev−µ(t)

σ(t) )
] 1

ω(t)

}
ω(t) 6= 0

exp
{
− exp

[
xgev−µ(t)

σ(t)

]}
ω(t)→ 0

(3)

2.3. Risk Control Strategy

This paper presents a three-step pavement optimization strategy (TPOS) against
NRRAP. This strategy includes the assessment of the NRRAP under the live load and the
formulation and solution of the pavement optimization problem. As shown in Figure 5, the
key steps of the TPOS are summarized as follows:

(1) The assessment of the NRRAP under the live load is carried out based on the updated
parameters. If the assessment result meets the requirements of the specification,
the construction can be carried out directly; otherwise, the pavement needs to be
optimized for C4;

(2) The design variables are determined according to the sensitivity analysis results and
construction status;

(3) The pavement optimization problem is formulated as a multiobjective optimization
problem under reliability constraints. The GRNN-based surrogate model is created
for the reliability constraint function. The Pareto optimal solution set is obtained by
utilizing NSGA-II to solve the RBDO problem mentioned above;

(4) The optimization scheme from the Pareto optimal solution set is selected and eval-
uated with C1~C3. The optimization scheme is selected according to the decision-
maker’s emphasis on different objectives. If it does not satisfy C1~C3, the optimiza-
tion process in step 4 is repeated until the optimization scheme satisfies C1~C4 at the
same time.
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3. Identification of the Key Parameters Affecting the Negative Reactions

The first-order second-moment (FOSM) method was used in this section to conduct
a reliability sensitivity analysis for each variable on the static reliability to quantify the
impact of each fundamental random variable on the failure probability Pf of the auxiliary
pier [33]. The FOSM technique extends the limit state function G(X) at the most troublesome
failure point, X*, and then calculates the first-order Taylor expansion of G(X) in Formula (4).
Calculating the mean and standard deviation of the G(X) expansion will yield the reliability
index, as indicated in Formula (5):

G(X) = G(X∗) + ∑n
i=1

∂G
∂Xi
|X∗ · (Xi − x∗i ) (4)

β =
µG
σG

=
G(X∗) + ∑n

i=1
∂G
∂Xi
|X∗ ·

(
µi − x∗i

)√
∑n

i=1

(
∂G
∂Xi
|X∗ · σi

)2
(5)

where xi* denotes the ith component of X*, and µi and σi denote the mean and standard
deviation of the ith random variable after equivalent normalization.

The sensitivity index can be derived using the traditional FOSM method, which solves
the limit state equation by equivalently normalizing random variables, as illustrated in
Formula (6). The following Formula (7) suggested by Jie et al. [34] was utilized in this



Appl. Sci. 2023, 13, 4877 8 of 22

work to account for the influence of the mean and standard deviation and make up for the
shortcomings of the conventional FOSM technique in determining sensitivity:

Si = −
∂G
∂Xi
|X∗ ·σi√

∑n
k=1

(
∂G
∂Xk
|X∗ ·σk

)2
(6)

Si =

∂Pf
∂σi
|X∗ ·σi

2∑n
k=1

∂Pf
∂σk
|X∗ ·σk

(7)

∂Pf

∂σi
|X∗ =

∂Pf

∂β

∂β

∂µ∗i

∂µ∗i
∂σi

= φ(−β)

∂G
∂xi
|X∗ · σi∣∣∣ ∂G

∂xk
|X∗ · σk

∣∣∣ x∗i − µi

σ2
i

(8)

Si =

∂G
∂xi
|X∗ ·

(
x∗i − µi

)
2∑n

k=1
∂G
∂xk
|X∗ ·

(
x∗k − µk

) (9)

where Pf is the failure probability. The sensitivity calculation formula can be obtained by
combining Formulas (7) and (8), as shown in Formula (9). The calculation formula was
used to identify the key parameters affecting the negative reactions of the auxiliary pier.

4. Surrogate-Assisted Uncertain Optimization for Pavement Strategy
4.1. Surrogate-Assisted RBDO

RBDO is the synthesis of reliability analysis and optimization design [35]. In contrast to
standard deterministic optimization, RBDO considers the uncertainties as a kind of random
variable that makes up probabilistic constraints, which are assessed in the reliability routine.
Therefore, compared to deterministic optimization, RBDO can offer a more accurate and
competitive solution to an optimization problem [36]. The RBDO problem is as follows:

f ind D = [d1, d2, . . . , dk]
T

obj. min fobj(D, U )
s.t. β[Gi(D, U)] ≥ βT

i i = 1, 2, · · · , m
dL

k ≤ dk ≤ dU
k k = 1, 2, · · · , n

(10)

where D is the vector of design variables, U is the vector of random variables, dL and dU

are the lower limit and upper limit of the design vector, respectively, and βT is the required
target reliability index. The limit state function G(X) is defined in Formula (1).

The traditional solution process of RBDO usually focuses on the optimization iteration
of the outer layer on the design variables. When the reliability index is required by the
objective functions or constraint functions, the outer layer optimization is suspended, and
the reliability analysis module is called to calculate the corresponding reliability index.
After the reliability analysis, the outer layer iterative optimization is continued. The process
is repeated until convergence. The disadvantages of this method are low computational
efficiency and poor convergence. Therefore, the key problem restricting the calculation
efficiency of RBDO is how to obtain the structural reliability index quickly and accurately.

Therefore, as shown in Figure 6, this paper proposes a surrogate-assisted RBDO,
which used a GRNN-based surrogate model to replace the complex nonlinear calculation
of traditional finite element analysis and reliability analysis. On this basis, NSGA-II [37]
was adopted to further improve the optimization speed and obtain the Pareto optimal sets.
The detailed steps are as follows:
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Figure 6. Flowchart of the surrogate-assisted RBDO.

Step 1: The objective functions, constraint functions, and design variables are deter-
mined according to the construction status and sensitivity analysis results;

Step 2: The optimization interval of design variables [X0 − λ|X0|, X0 + λ|X0|]
(0 ≤ λ ≤ 0.5) is initialized based on considering the updated structural parameters, and the
design values X0 are chosen as the center;

Step 3: The optimization interval of the design variables is sampled uniformly using
the Latin hypercube sampling technique (LHST) [38], and the corresponding sample data
for the objective functions and constraint functions are produced using the FEM and
reliability analysis.

Step 4: The explicit functional relation between input side samples and output side
samples is generated by the GRNN. The reliability optimization model is established when
the GRNN models meet the accuracy requirements.

Step 5: The multiobjective optimization problem is solved by NSGA-II with respect to
the design variables defined in step (2).

Step 6: The optimization results are output when they fall into the optimization
interval and satisfy the discrimination condition; otherwise, steps (2–6) are iterated using
the results as a new optimization interval center.

4.2. GRNN-Based Surrogate Model Generation

GRNN is a deformation form of the radial basis function (RBF) neural network de-
signed for regression and function approximation [39]. GRNN takes the sample data as
the posterior probability to perform Parzen nonparametric estimation and computes the
network output according to the maximum probability. It approximates any mapping
function between input and output vectors, extracting the function estimate directly from
the training samples. In contrast to the RBF neural network, the GRNN performs better in
terms of nonlinear approximation, quick learning, fault tolerance, and robustness, even in
the case of insufficient samples [40]. Additionally, the GRNN does not require an initial
artificial assignment of the network parameters, which minimizes the impact of human
subjective assumptions on the prediction results. Similar to the RBF neural network, the
GRNN has four layers: an input layer, a pattern layer, a summation layer, and an output
layer. The specific process of building the GRNN model is shown in Figure 7, which is
described in detail as follows:
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(1) In the input layer, the training input and output samples are obtained through the
finite element model in Section 5.1. The input layer receives information and stores an
input vector Xi, and the number of input units equals the dimension of the input vector in
the training samples. Then, the neurons of the input layer directly transfer the input data
to the pattern layer.

(2) In the pattern layer, the number of neurons consists of an exactly equal number of
input training datasets. The pattern Gaussian function of φi is expressed in Formula (11).

φi = exp
(
− D2

i
2σ2

)
(i = 1, 2, . . . , n)

D2
i = (X− Xi)

T(X− Xi)
(11)

where the output of neuron i is the exponential square of Di, Di is the Euclidean distance
between X and Xi, X is the input variable of the network, Xi is the specific training sample
of neuron i in the pattern layer, and σ is the smoothing parameter.

(3) The neurons in the summation layer consist of arithmetic summation (SA) neurons
and weighted summation (SW) neurons. SA is one of the neurons in the summation layer,
which makes an arithmetic summation of the output of all the pattern layer neurons. SWj
is the other k neuron in the summation layer, which makes a weighted summation of the
output of all the pattern layer neurons. The output vector can be calculated by Formula
(12), where yij is the connection weight between the ith neuron in the pattern layer and the
jth neuron in the summation layer.

SA =
n
∑

i=1
φi

SWj =
n
∑

i=1
yij · φi

(j = 1, 2, . . . , k) (12)

(4) After the summations of the summation layer neurons are transferred into the
output layer, the output results yj of the output neuron can be calculated by Formula (13).

yj =
SWj

SA
(j = 1, 2, . . . , k) (13)

Particularly, the value of the smoothing factor σ has a great influence on the prediction
accuracy and the generalization ability of the GRNN model. In this paper, the optimal
smoothing factor with a minimum cross-validation error was determined using a one-
dimensional optimization method.
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4.3. NSGA-II-Based Optimization

NSGA-II is one of the most effective multiobjective optimization methods [37]. Com-
pared with NSGA, NSGA-II has three advantages: 1© a new fast nondominated sorting
algorithm is proposed based on classification, which reduces the computational complexity
from O(mN3) to O(mN2); 2© the concept of crowding degree is proposed, which replaces
the fitness sharing strategy that needs to specify the sharing radius by the crowding dis-
tance comparison operator; and 3© features of the elitist strategy are also incorporated to
effectively prevent the loss of the best individual. In summary, the Pareto front obtained by
NSGA-II is uniformly distributed in the target space, which further improves the arithmetic
speed and robustness. As shown in Figure 8, the NSGA-II procedure is as follows:
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Step 1: Generate an initial population Pt of size N randomly.
Step 2: Rank the initial population Pt by nondominated sorting and generate the first

child population Qt by the generic operators (selection, crossover, and mutation).
Step 3: Combine the parent and child populations to create a population Rt of size 2N

after the first generation.
Step 4: Rank Rt by nondominated sorting and layer the sorted Rt. At the same time,

calculate the crowding distance of individuals in each critical layer.
Step 5: Select the suitable individuals from the critical layer by nondominated rela-

tions and crowding distance until the number of individuals in the new generation Pt+1
population is N.

Step 6: Generate the new child population Qt+1 by the generic operators (selection,
crossover, and mutation).

Step 7: Repeat steps 3 to 6 until the conditions are satisfied.
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5. Engineering Application
5.1. Engineering Description

The Yongjiang Bridge (as shown in Figure 9a) is a three-span concrete cable-stayed
bridge with pylons of unequal height. The span layout is 193 m + 332 m + 113 m, and the
deck width is 31 m. The structural characteristics are as follows: 1© the concrete girder is
constructed by the cantilever casting method; 2© the bridge has 80 pairs of stay cables with
a longitudinal standard spacing of 8 m; and 3© the H-shaped frame structure is adopted for
the pylons. The refined finite element model was established by ANSYS, in which nonlinear
effects, such as the large displacement and sag effect of the structure, were considered.
Among them, 1032 spatial beam elements were used to simulate the pylon-girder system,
and 160 spatial elastic catenary cable elements were used to simulate the stay cable system.
The main modeling information is depicted in Figure 9b, and the origin of the coordinate
system is arranged on the road centerline.
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5.2. Negative Reaction Risk Assessment under the Live Load

Due to errors in the manufacturing and construction processes, the material properties,
tension properties, and structural geometric parameters may be affected by uncertainties.
Hence, these parameters are supposed to be treated as random variables rather than deter-
ministic variables. The random variables for the Yongjiang Bridge are listed in Table A1,
including the tension errors of stay cables A1~A24, B1~B24, C1~C16, and D1~D16 and the
weight errors of pavements P1~P32 and concrete girder G. In this study, all the random
variables were assumed to be independent of each other to simplify the reliability and
sensitivity analyses. The sensitivity analysis results are presented in Figure 10.
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Figure 10. Sensitivity analysis results of the negative reactions.

As shown in Figure 10, the weight error of concrete girder G is the most significant
factor affecting the RAP. Among the weight errors of the pavements, those of P2~P7 and
P15~P20 have the greatest impact on the RAP, followed by those of P1, P13, P14, and P21,
and the others have little impact on the RAP. Stay cables A10~A20 have significant impacts
on the RAP, and the other stay cables have minimal influence on the RAP. Therefore, the
weight error of the concrete girder G, the tension errors of stay cables A10~A20, and the
weight errors of pavements P1~P7 and P13~P21 were treated as random variables to assess
the NRRAP under the live load.

According to the procedure proposed in Figure 6, 500 groups of input side samples
were obtained by LHST [41], and the corresponding output side samples were obtained
through finite element analysis and reliability analysis. The input and output side samples
were trained by the GRNN to obtain the objective function and reliability constraint function.
The goodness-of-fit R2 was used to evaluate the prediction accuracy of the GRNN surrogate
model (R2 approaching 1.0 indicates a higher fitting accuracy). The GRNN surrogate model
of RAP R0 was validated by FEM. As shown in Figure 11, the R2 value of R0 is 0.9897. The
Monte Carlo method based on FEM was employed to validate the GRNN surrogate model
of the reliability index β, with a sample size of 5000. As shown in Figure 12, the R2 value
of β is 0.958. The above results show that the prediction accuracy of the GRNN model is
sufficient for engineering applications.
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Figure 11. Structural response values from FEM and GRNN.
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Figure 12. Reliability index from Monte Carlo and GRNN.

It is necessary to assess the NRRAP under the live load because of the increased nega-
tive reaction risk described in Section 2.2. The assessment results are shown in Figure 13.
The RAP under the dead load at the design stage is 1059 kN. Considering the live load and
parameter uncertainty, the reliability of the auxiliary pier is 2.605, and the failure probability
is 0.67%. At the operation stage, the RAP under the dead load is 256 kN. Considering the
live load and parameter uncertainty, the reliability of the auxiliary pier is 0.785, and the
failure probability is 18.33%.

The above results show that: 1© the auxiliary pier bearing has a large reserve of
reaction force and a low probability of failure at the design stage. 2©However, due to the
increased negative reaction risk, the auxiliary pier bearing has a higher failure probability
under the live load at the operation stage, although the RAP under the dead load is
still positive.
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5.3. RBDO for C4

As shown in Figure 10, the NRRAP can be effectively reduced by adjusting the
cable tension and the dead weight of the concrete girder and pavement. However, the
NRRAP is caused by the forced closure of the concrete girder in actual engineering, and
the concrete girder is closed while the pavement has not been constructed. As described
in Section 2.2, it is infeasible to adjust the self-weight of the concrete girder, construct the
girder counterweight, or optimize the cable tension in this case. Therefore, as shown in
Figure 14, pavement segments P2~P7 and P15~P20 were selected as design variables Xopt,
while the others were treated as random variables U.
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Figure 14. Design variables and random variables.

The pavement optimization problem was formulated with the objectives of driving
comfort and minimum construction cost. In addition, the reliability constraint for the RAP



Appl. Sci. 2023, 13, 4877 16 of 22

was implemented in the optimization model. The optimization model was established
as follows:

f ind Xopt = [P2, P3 · · · P7, P15, P16 · · · P20]T

obj. f 1
obj
(
Xopt

)
= min(max|Pi − P0|)

f 2
obj
(
Xopt

)
= min

(
∑ Pi

)
i = 2, 3 · · · 7, 15, 16 · · · 20

s.t. fcon
(
Xopt, U

)
= β

[
G
(
Xopt, U

)]
≥ 2.5

Pi = 510pi + 76.5; [0.075m < pi < 0.125m]

(14)

where Xopt refers to the design variables, and U refers to the random variables. P0 and
Pi refer to the pavement load before and after optimization, respectively. pi refers to the
thickness of the concrete pavement of each section after optimization, and the specification
requires that the maximum deviation between pi and the design value should not exceed
0.025 m [42,43]. β is the reliability index of the RAP under the live load. NSGA-II was
used to solve the multiobjective optimization problem, and the Pareto-optimal sets are as
follows:

During the evolution of NSGA-II, the Pareto front will continue to approach the
optimal Pareto front. As shown in Figure 15, the Pareto frontier trend of the 10th, 20th, 50th,
and 100th generations of adjacent algebraic populations fluctuates greatly but has a close
trend. The trend of the Pareto front of the 100th generation is completely consistent with
that of the 200th generation, and the difference is small. Therefore, it can be approximately
considered that the Pareto front of the 200th generation is the optimal Pareto front.
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5.4. Feasibility Verification for the Optimization Scheme

As shown in Figure 16a, the optimal Pareto set clearly describes the negative correla-
tion between the total weight of the bridge deck pavement and driving comfort. A randomly
selected optimization scheme A was evaluated using C1~C3 to verify
its feasibility.
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Figure 16. The optimal Pareto set and the optimization scheme.

As shown in Figure 16b, the total weight of the pavement load in scheme A is 1.48307
× 103 kN, and the maximum difference between the optimized design variables is 11.225
kN. According to Formula (14), the maximum difference of the deck pavement thickness
is 0.022 m, which meets the maximum limit (0.025 m) of the specification. The smoothing
treatment of the pavement is completed within 4 m to improve the driving comfort.

The mechanical performance of the concrete girder is shown in Figure 17. As shown in
Figure 17a, the maximum vertical deviations of the midspan before and after optimization
are 12.30 cm and 9.81 cm, respectively. As shown in Figure 17b, the maximum positive
bending moments of the concrete girder before and after optimization are 2.183 × 104

kN·m and 1.702 × 104 kN·m, respectively. The maximum negative bending moments of
the concrete girder before and after optimization are −4.375 × 104 kN·m and −4.251 × 104

kN·m, respectively. Hence, scheme A can slightly improve the mechanical performance of
the concrete girder.
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As shown in Figure 18, the bending moment and longitudinal displacement of the
pylon are almost unchanged after optimization, which means that scheme A hardly changes
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the mechanical performance of the pylon. As shown in Figure 19, the maximum deviation
of the cable tension before and after optimization does not exceed 1%, which further
indicates that the mechanical performance of the structure is not changed. Hence, scheme
A is feasible to control the NRRAP under the live load.
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Figure 18. Mechanical performance of the high pylon. (a) Bending moment. (b) Longitudinal
displacement.
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6. Conclusions

This paper presents a three-step pavement optimization strategy (TPOS) to control
the NRRAP of cable-stayed bridges by adjusting the pavement thickness. In addition, the
pavement optimization strategy is formulated as a reliability-constrained, multiobjective
optimization problem.

To address the computing challenges of the multiobjective optimization problem with
reliability constraints, the TPOS utilizes the GRNN as a surrogate solution and the NSGA-II
as an optimized engine. The integration of GRNN-assisted sensitivity and reliability anal-
ysis can considerably shorten the calculation times without compromising accuracy. In
addition, the optimal Pareto set obtained from the NSGA-II can provide multiple solutions
for decision-makers based on their focus. The case study of the Yongjiang Bridge demon-
strates that the TPOS can effectively control the NRRAP under the increased negative
reaction risk and multiple control criteria.
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Nomenclature

RBDO reliability-based design optimization
FORM first-order reliability method
GRNN generalized regression neural network
NSGA-II nondominated sorting genetic algorithm
LHST Latin hypercube sampling technique
TPOS three-step pavement optimization strategy
FEM finite element model
OSS objective service stage
NRRAP negative reaction risk of the auxiliary pier
RAP reaction of auxiliary pier

Appendix A. Characteristics of the Random Variables

Table A1. Characters of the random variables of Yongjiang Bridge.

Variable
Design Stage Construction Stage

DBMean SD Mean SD

A24/kN 5926.700 98.778 5926.160 197.539 N
A23/kN 5939.700 98.995 5956.560 198.552 N
A22/kN 5928.900 98.815 5959.500 198.650 N
A21/kN 5866.000 97.767 5905.560 196.852 N
A20/kN 5681.900 94.698 5729.040 190.968 N
A19/kN 5500.800 91.680 5549.580 184.986 N
A18/kN 5334.100 88.902 5375.020 179.167 N
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Table A1. Cont.

Variable
Design Stage Construction Stage

DBMean SD Mean SD

A17/kN 4863.900 81.065 4893.520 163.117 N
A16/kN 4817.700 80.295 4810.160 160.339 N
A15/kN 4810.800 80.180 4783.680 159.456 N
A14/kN 4795.800 79.930 4749.360 158.312 N
A13/kN 4741.300 79.022 4677.770 155.926 N
A12/kN 4692.100 78.202 4615.010 153.834 N
A11/kN 4602.700 76.712 4513.020 150.434 N
A10/kN 4527.600 75.460 4431.630 147.721 N
A9/kN 4336.600 72.277 4242.360 141.412 N
A8/kN 4194.600 69.910 4105.060 136.835 N
A7/kN 4003.200 66.720 3918.740 130.625 N
A6/kN 3776.900 62.948 3703.970 123.466 N
A5/kN 3508.300 58.472 3457.820 115.261 N
A4/kN 3122.300 52.038 3098.900 103.297 N
A3/kN 2775.100 46.252 2797.840 93.261 N
A2/kN 2415.900 40.265 2501.680 83.389 N
A1/kN 2893.800 48.230 3037.120 101.237 N
B1/kN 2953.900 49.232 3045.950 101.532 N
B2/kN 2450.600 40.843 2490.890 83.030 N
B3/kN 2777.300 46.288 2766.460 92.215 N
B4/kN 3094.300 51.572 3050.850 101.695 N
B5/kN 3445.700 57.428 3384.270 112.809 N
B6/kN 3705.100 61.752 3631.400 121.047 N
B7/kN 3943.400 65.723 3861.860 128.729 N
B8/kN 4251.000 70.850 4159.000 138.633 N
B9/kN 4442.200 74.037 4346.310 144.877 N

B10/kN 4629.300 77.155 4525.770 150.859 N
B11/kN 4811.700 80.195 4697.390 156.580 N
B12/kN 5207.200 86.787 5066.120 168.871 N
B13/kN 5361.700 89.362 5205.370 173.512 N
B14/kN 5513.100 91.885 5348.550 178.285 N
B15/kN 5598.400 93.307 5433.860 181.129 N
B16/kN 5647.100 94.118 5492.700 183.090 N
B17/kN 5688.700 94.812 5550.560 185.019 N
B18/kN 5678.600 94.643 5567.240 185.575 N
B19/kN 5618.200 93.637 5542.720 184.757 N
B20/kN 5564.100 92.735 5532.910 184.430 N
B21/kN 5463.800 91.063 5484.860 182.829 N
B22/kN 5341.400 89.023 5424.060 180.802 N
B23/kN 5206.300 86.772 5355.410 178.514 N
B24/kN 5085.100 84.752 5301.470 176.716 N
C16/kN 5447.600 90.793 5351.490 178.383 N
C15/kN 5565.600 92.760 5433.860 181.129 N
C14/kN 5629.000 93.817 5471.130 182.371 N
C13/kN 5633.300 93.888 5461.320 182.044 N
C12/kN 5638.900 93.982 5459.360 181.979 N
C11/kN 5575.900 92.932 5394.640 179.821 N
C10/kN 5531.400 92.190 5353.450 178.448 N
C9/kN 5397.500 89.958 5225.960 174.199 N
C8/kN 5001.700 83.362 4855.270 161.842 N
C7/kN 4780.000 79.667 4649.330 154.978 N
C6/kN 4528.100 75.468 4413.970 147.132 N
C5/kN 4078.500 67.975 3995.230 133.174 N
C4/kN 3743.900 62.398 3685.340 122.845 N
C3/kN 3169.800 52.830 3144.990 104.833 N
C2/kN 2723.700 45.395 2747.820 91.594 N
C1/kN 3109.700 51.828 3183.240 106.108 N
D1/kN 3088.200 51.470 3190.100 106.337 N
D2/kN 2705.600 45.093 2745.860 91.529 N
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Table A1. Cont.

Variable
Design Stage Construction Stage

DBMean SD Mean SD

D3/kN 3136.900 52.282 3118.510 103.950 N
D4/kN 3653.900 60.898 3601.000 120.033 N
D5/kN 3919.000 65.317 3841.260 128.042 N
D6/kN 4157.700 69.295 4077.610 135.920 N
D7/kN 4290.400 71.507 4212.940 140.431 N
D8/kN 4485.500 74.758 4419.860 147.329 N
D9/kN 4592.000 76.533 4538.520 151.284 N
D10/kN 4711.900 78.532 4663.060 155.435 N
D11/kN 4777.600 79.627 4725.820 157.527 N
D12/kN 5968.200 99.470 5926.160 197.539 N
D13/kN 6076.500 101.275 5956.560 198.552 N
D14/kN 6109.500 101.825 5959.500 198.650 N
D15/kN 6104.000 101.733 5905.560 196.852 N
D16/kN 6096.200 101.603 5729.040 190.968 N

P1~P32/kN/m 127.500 4.25 127.500 4.25 N
G 1.000 0.017 1.000 0.017 N

Note. DB = distribution type; N = normal; SD = standard deviation. The stay cable tension error is 2–8% according
to the Specifications for Design of Highway Cable-stayed Bridge (JTG/T 3365-01-2020) [1], which is taken as 5%
in the design stage. According to the updated parameters in the construction stage, the stay cable tension error is
taken as 10%, and the weight error of the concrete girder and the unbalanced load error is taken as 5%.
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