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Abstract: The electric network frequency (ENF) is a signal that varies over time and represents the 

frequency of the energy supplied by a mains power system. It continually varies around a nominal 

value of 50/60 Hz as a result of fluctuations over time in the supply and demand of power and has 

been employed for various forensic applications. Based on these ENF fluctuations, the intensity of 

illumination of a light source powered by the electrical grid similarly fluctuates. Videos recorded 

under such light sources may capture the ENF and hence can be analyzed to extract the ENF. Cam-

eras using the rolling shutter sampling mechanism acquire each row of a video frame sequentially 

at a time, referred to as the read-out time (𝑇𝑟𝑜), which is a camera-specific parameter. This parameter 

can be exploited for camera forensic applications. In this paper, we present an approach that exploits 

the ENF and the 𝑇𝑟𝑜 to identify the source camera of an ENF-containing video of unknown source. 

The suggested approach considers a practical scenario where a video obtained from the public, in-

cluding social media, is investigated by law enforcement to ascertain if it originated from a suspect’s 

camera. Our experimental results demonstrate the effectiveness of our approach. 

Keywords: electric network frequency (ENF); rolling shutter mechanism; read-out time, 𝑇𝑟𝑜;  

camera forensics; camera sensor types; ENF extraction 

 

1. Introduction 

Digital multimedia materials, that is, audio, image, and video recordings, contain 

vast amounts of information which can be exploited in forensic investigations. In light of 

how digital manipulation techniques are always developing and how they may have far-

reaching effects on different spheres of society and the economy, the field of digital foren-

sics has seen an increasing growth in recent decades. In order to combat multimedia for-

geries and ensure the authenticity of multimedia material, researchers have focused on 

developing new methods in the field of digital forensics.  

Electric network frequency (ENF) has been utilized in recent years as a tool in foren-

sic applications. Analysis of the ENF is a forensic tool used to verify the authenticity of 

multimedia recordings and spot any attempts at manipulation [1–4]. The ENF is the sup-

ply frequency of an electric power grid and varies in time around its nominal value of 60 

Hz in North America and 50 Hz in Europe, Australia, and much of the rest of the world 

as a result of inconsistencies between power network supply and demand [1,5]. The na-

ture of these inconsistencies can be observed to be random, unique per time, and usually 

quite the same across all locations connected by the same power grid. Consequently, an 

ENF signal recorded at any location in time, connected to a certain mains power can serve 

as a reference ENF signal for the entire region serviced by that power network for that 

period of time [6,7].  
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The ENF’s fluctuating/instantaneous values over time is considered as an ENF signal. 

An ENF signal is embedded in audio files created with devices connected to the mains 

power or located in environments where electromagnetic interference or acoustic mains 

hum is present [1,7,8]. This ENF signal can be estimated from the recordings using time-

domain or frequency-domain techniques and utilized for various forensic and anti-foren-

sic applications, such as time-stamp verification [5,8,9], audio/video authentication 

[10,11], location of recording estimation [12–14], power grid identification [15–20], and 

estimation of camera read-out time [21]. New studies have found that ENF analysis may 

be employed in other areas of multimedia signal processing, such as in audio and video 

record synchronization [22], historical audio recording alignment [23], and video synchro-

nization without overlapping scenes [22]. 

Studies have recently shown that ENF signals can also be extracted from video re-

cordings made under the illumination of a light source powered by a mains grid [5,24–

27]. Fluorescent lights and incandescent bulbs used in indoor lighting fluctuate in light 

intensity at double the supply frequency, causing a nearly impossible to notice flickering 

that occurs in the illuminated environment. As a result, videos captured under indoor 

illumination settings using a camera may contain ENF signals. However most com-

monly/widely used cameras sensors do not capture light in the same manner. Charge-

coupled device (CCD) sensors commonly associated with global shutter mechanisms cap-

ture all the pixels in a video frame at the same time/instant. Unlike CCDs, complementary 

metal oxide semiconductor (CMOS) sensors often have a rolling shutter mechanism that 

causes the sensor to scan the rows of each frame sequentially so that various rows of the 

same frame are exposed at slightly different instants [26,28].  

One of the main issues confronted in the extraction of the embedded ENF signals 

from video recordings (particularly for videos captured with CCD cameras) is the prob-

lem of aliasing to DC due to insufficient/inadequate sampling rates. However, the authors 

of [25,29] demonstrated that the rolling shutter mechanism, although considered tradi-

tionally detrimental to the analysis of image and video, could be exploited to enhance the 

effective sampling rate for ENF extraction from video recording. Due to the sequential 

acquisition of the rows of a frame at distinct time instants, referred to as the read-out time 

𝑇𝑟𝑜, the rolling shutter can facilitate the extraction of ENF signals from video recordings 

by raising the effective sample rate by a factor of the number of rows to prevent the alias-

ing effect.  

The 𝑇𝑟𝑜 is the amount of time it takes the camera to capture the rows of a single 

frame and it is a camera-specific parameter that can be leveraged to characterize CMOS 

cameras with rolling shutter mechanisms. The author of [30] proposed a method that can 

extract a flicker signal and the camera 𝑇𝑟𝑜 from a pirated video and utilize them to iden-

tify the LCD screen and camera used to create the pirated movie. Owing to the similarities 

between the flicker signal and the ENF signal, the authors of [21] appropriated the flicker-

based technique in an ENF-based approach that can estimate the 𝑇𝑟𝑜 value of a camera 

that creates a video containing an ENF. Their experimental results showed that the ap-

proach could estimate the 𝑇𝑟𝑜 value with high accuracy.  

In this work, inspired by [29], we present an approach that exploits the 𝑇𝑟𝑜 and the 

ENF to identify the camera used to record an ENF-containing video. Figure 1 shows the 

block diagram of our proposed method. Our approach considers a practical scenario 

where a video obtained from the public, including social media, is being investigated by 

law enforcement to ascertain if it originated from a suspect’s camera. In our proposed 

approach, the ENF extraction method, adapted from [29], conducts an equal uniform sam-

pling over time by returning zeros during the idle period at the end of every frame period 

to generate the row signals after certain preprocessing. The row signal/reference signal is 

passed through Fourier analysis (spectrogram) to generate the ENF traces. The ENF is 

then extracted by finding the dominant instantaneous frequency within a narrow band 

around the frequency of interest. Quadratic interpolation was utilized to refine the ENF 

estimate. This method attains a high signal-to-noise ratio (SNR) at the cost of the need to 
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know the read-out time (𝑇𝑟𝑜 ) parameter, which is camera-model-dependent. Figure 2 

shows the block diagram for estimating the ENF signal from video frames. 

 

Figure 1. Block diagram of the proposed camera identification approach. 

 

Figure 2. The process of ENF signal estimation from the frames of a video. 

The 𝑇𝑟𝑜 is a sensitive parameter in the method and is employed to compute the num-

ber of zeros to be inserted in the idle period for the specific camera [30] or specific video 

resolution and frame rate [31] that captured the video before analyzing the video, which 

is critical in estimating an ENF signal with no distortion. Our proposed approach there-

fore employs a database of camera 𝑇𝑟𝑜𝑠 and ENF reference signals. For any ENF-contain-

ing video of an unknown source camera, our approach will analyze the video using dif-

ferent 𝑇𝑟𝑜 values. The estimated ENF signals are matched against the reference signals, 

and the performance metrics—normalized cross-correlation (NCC), root mean squared 

error (RMSE), and mean absolute error (MAE)—are then calculated with respect to the 

reference ENF and stored in a database. The 𝑇𝑟𝑜 (camera) with the highest NCC and low-

est RMSE and MAE can then be identified. Our experimental analysis reveals that our 

proposed approach is very useful in identifying a source camera in the intended scenario. 

We summarize the contribution of this paper as follows: 

• We provide a review of ENF extraction from video recordings and the impact of the 

rolling shutter on ENF extraction. 

• We propose a novel ENF-based approach to identify the rolling shutter camera used 

to capture an ENF-containing video of unknown source. 

The remaining sections of this paper are structured as follows: Section 2 describes 

basic ENF concepts, reviews the ENF extraction method for video files, explains the im-

pact of the rolling shutter, and discusses camera read-out time and ENF estimation. Sec-

tion 3 presents the experiment conducted. Section 4 provides the results and discussion. 

Section 5 concludes the paper. 

2. Related Works and Concepts 
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This section provides a review of basic concepts and relevant studies to aid the com-

prehension of the procedures involved in the extraction of ENF signals from videos. The 

relevance of the rolling shutter mechanism and the read-out time, 𝑇𝑟𝑜, in camera forensics 

is also presented.  

2.1. ENF Basics 

The ENF is the supply frequency of an electric power grid. Generators rotating at a 

speed of 50 cycles per second in Europe, Australia, and most parts of the world and 60 

cycles per second in North America generate an alternating current (AC) which travels 

along transmission lines [32]. In an ideal situation, the frequency is fixed at a nominal 

value of 50 Hz or 60 Hz, based on the region. However, as the generation of electricity is 

dependent on the demand for power, it must be produced proportionately. When the de-

mand is high, the frequency drops, and when it is low, the frequency rises temporarily. 

The varying value of the frequency as the power generation and consumption rises and 

drops is regarded as the ENF signal. The following models may be used to describe the 

instantaneous voltage of the power grid: 

𝑊(𝑡)  =  √2𝑊0  csc(𝜎(𝑡)) 

  =  √2𝑊0  cos(2𝜋𝑓𝑝 + 𝜃𝑖(𝑡)  + 𝛼𝑖) 

=  √2𝑊0 cos(2𝜋𝑓𝑝𝑡 + 2𝜋 ∫ 𝑓𝑖(𝜏)𝑑𝜏 + 𝛼𝑖

𝑡

0

 

(1) 

where 𝑓𝑝 denotes the nominal frequency (50/60 Hz) and 𝑊0 denotes mains effective volt-

age, while 𝛼𝑖  denotes the initial phase offset [33]. 𝑓𝑖(𝑡)  is the instantaneous variation 

from the nominal frequency, while 𝜃𝑖(𝑡) is the instantaneous phase that changes based 

on power imbalance caused by demand and supply. The instantaneous mains power fre-

quency at time t can be stated from the equations above as: 

  𝑓(𝑡) =
1

2𝜋

𝑑𝜎(𝑡)

𝑑𝑡
=  𝑓𝑝 + 𝑓𝑖(𝑡)  (2) 

As 𝑓𝑝 remains unchanged, the ENF changes based on 𝑓𝑖(𝑡) fluctuations. Utilizing 

the model in [33], 𝑓𝑖(𝑡) can be expressed as: 

  𝑓𝑖(𝑡)  =   
𝑓𝑝

2𝐾
 (𝐸𝑠(𝑡) −  𝐸𝑑(𝑡))  (3) 

where 𝐸𝑠(𝑡) is the amount of power supplied, 𝐸𝑑(𝑡) is the total amount of power de-

manded plus losses, and K is an inertia constant. So, at each point in time, 𝑓𝑖(𝑡) and 𝑓(𝑡) 

change based on the difference between how much power is produced and how much is 

used. 

2.2. Overview of ENF Extraction from Video 

ENF extraction from audio recordings has been extensively researched. Various con-

ventional frequency estimation techniques based on the short-time Fourier transform 

(STFT) [34] and subspace analysis [35,36] have been implemented to extract the ENF sig-

nals from media recordings. STFT is frequently utilized to analyze time-varying signals, 

including speech signals and ENF signals. With the STFT-based periodogram approach, 

the dominant instantaneous frequency can be extracted by finding the peak positions and 

increasing its accuracy using quadratic interpolation [37] and the weighted energy 

method [5].  
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In contrast, approaches based on subspace analysis, including multiple signal classi-

fication (MUSIC) [35] and estimation of signal parameters using rotational invariance 

techniques (ESPRIT) [36], leverage the signal subspace’s orthogonal relationship to the 

noise subspace. ESPRIT implementations require lower computation and storage costs, 

which gives them an advantage over MUSIC [36]. Researchers have also developed dedi-

cated approaches [38,39] and approaches that combine STFT and subspace analysis to ac-

curately estimate the ENF signal [5]. However, some preprocessing is necessary prior to 

the use of the frequency estimation or tracking techniques mentioned above to accurately 

extract ENF signals from multimedia audio recordings.  

In the case of video recordings, the temporal fluctuation in light intensity included in 

the video frames may be leveraged to extract the ENF signal. The variations in ENF in the 

grid network influences the intensity of illumination from any light source connected to 

the power mains. As a result of the light source flickering at both the positive and negative 

cycles of AC current, the frequency of the light becomes twice the frequency of the mains 

power. The illumination signal may thus be seen as the absolute representation of the 

cosine function in Equation (1) [24]. For instance, for any video recording made under 

indoor illumination powered by 50 Hz power mains, since the polarity of the current 

changes at double the frequency of the mains power, the light flickers at 100 Hz.  

In addition, decaying energy’s higher harmonics frequently exist at integer multiples 

of 100 Hz when the mains power signal mildly deviates from a perfect sinusoid. In addi-

tion, the higher harmonics bandwidth is larger than the main component since the actual 

ENF signal of interest is a narrowband signal rather than a completely stable sinusoid. 

Consequently, the nth harmonic component bandwidth will be n times the ENF compo-

nent bandwidth at 100 Hz. Hence, the Nyquist theorem states that a sampling rate of at 

least 200 Hz is required to reliably extract illumination frequency from recorded data [24].  

Despite the fact that the majority of consumer cameras cannot offer such high frame 

sampling rates, the illumination frequency can still be estimated from an aliased fre-

quency. Assuming that 𝑓𝑠 is the sampling frequency of the camera and 𝑓ℓ is the light-

source illumination frequency, then the aliased illumination frequency 𝑓𝑎 is expressed as 

[30]: 

𝑓𝑎 = |𝑓ℓ − 𝑗. 𝑓𝑠| <  
𝑓𝑠

2
,    ∃𝑗 ∈ 𝑁  (4) 

Therefore, when a 100 Hz illumination signal from a light source is sampled using a 

camera with a frame rate of 29.97 Hz, the aliased base frequency of the ENF will be ob-

tained as 10.09 Hz, while the aliased second harmonic will be obtained as 9.79 Hz. The 

aliased effect as a result of an insufficient camera sampling rate is mainly associated with 

cameras with the global shutter mechanism. 

The first work on ENF extraction from a video recording [5] calculated the average 

intensity of each frame of a white wall video to produce an intensity signal. This signal 

over time was then passed through a temporal bandpass filter with a passband matching 

the desired frequency to extract the ENF. Given that the video’s content was largely con-

sistent between frames, the existence of a considerable amount/value of energy in the fre-

quency of interest was attributed to the ENF signal. In the second experiment with video 

recording with movement, directly averaging the pixel values of the whole frame may not 

have been an appropriate preprocessing step prior to carrying out frequency analysis be-

cause of the inconsistency in the content of each frame of the video. The authors, however, 

averaged the pixel intensities of relatively steady regions in the video where there was not 

much inconsistency and extracted the ENF signal from the average pixel intensity spec-

trogram. The extracted ENF was utilized for time-of-recording and tampering detection 

applications.  
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The authors of [22,23,40] also designed ENF extraction methods based on calculating 

the average intensity of each frame when the foreground is uniform (in the case of a white 

wall video) or eliminated using motion compensation (in the case of videos with motion) 

to generate the intensity signal which is passed through Fourier analysis to extract the 

ENF. The extracted ENF is further used for video synchronization applications.  

Researchers have also employed image segmentation approaches for analyzing vid-

eos for ENF analysis. The authors of [24,26] proposed ENF estimation methods based on 

exploiting super-pixels. The method reported in [24] computed the average number of 

steady super-pixels instead of all steady pixels contained in a frame. The method was ap-

plied to a video dataset of 160 videos of different lengths recorded under different condi-

tions using cameras that adopted both CMOS and CCD sensors. The method segmented 

each video into super-pixel regions and identified the steady points within each region 

throughout all the frames. The steady pixels of all regions of each video frame were then 

averaged to generate the intensity signal from which a “so-called ENF vector” was com-

puted along each successive video frame of a particular shot. Then, the similarity of the 

computed ENF vectors was examined to detect the presence or absence of an ENF signal 

in the test video.  

The method described in [26] is based on simple linear iterative clustering (SLIC) 

[41,42] for image segmentation. The authors employed the SLIC algorithm to generate 

regions of similar properties termed super-pixels whose average intensity exceeds a cer-

tain threshold to generate the mean intensity time series. The authors opined that, in those 

regions, the embedded ENF is not impeded by interference and noise, including shadows, 

textures, and brightness, resulting in more precise estimations irrespective of whether the 

test video is static or non-static. The method was applied to a public dataset of static and 

non-static CCD videos [43], and the mean intensity time-series signal generated was 

passed through an ESPRIT or STFT method to estimate the ENF.  

Another method based on averaging pixels with particular characteristics to extract 

the ENF from non-static videos was proposed by the author of [27]. The method first em-

ployed a background subtraction algorithm named ViBe [44] to mitigate the deviation 

brought by movement and applied a differentiator filter at pixel level to eliminate the 

time-dependent mean value at each point before averaging the pixels. Luminance differ-

ences beyond a set threshold are suppressed, requiring only pixels classified as valid in 

both the current and previous frames to be processed. The frame-level signal is passed to 

a phase-locked loop-based FM demodulator [45] after preprocessing to extract the ENF, 

considering its autoregressive manner. The method is applied to estimate the time of re-

cording of CCD videos, and the simulation results showed its effective performance. 

However, if the variations caused by movement affect a significant number of pixels in 

every frame, this method may be insufficient for extracting the ENF.  

Some other extraction methods take advantage of the higher ENF sampling fre-

quency of the rolling shutter mechanism, which is based on the number of rows multiplied 

by the video frame rate. However, the rolling shutter method introduces the problem of 

idle time between consecutive frames where no sampling is performed. Therefore, some 

light samples are lost during the idle time period which occurs at the end of every frame. 

The authors of [25] first leveraged the rolling shutter mechanism to address the inadequate 

sampling rate for ENF extraction from video recordings. They formulated an L-branch 

filter-bank model of the mechanism for their analysis and showed how the dominant ENF 

harmonic is shifted to different frequencies as a result of the idle period in videos recorded 

with the rolling shutter mechanism. To extract the ENF, the method ignores the idle time 

and utilizes the average of each row’s pixel values as temporal samples and concatenates 

them to form a row signal when the foreground has a uniform color or is eliminated using 

motion compensation. The row signal is then passed through a spectrogram to generate 

the ENF traces. The ENF is then extracted by finding the dominant instantaneous fre-

quency within a narrow band around the desired frequency. The multi-rate signal analy-

sis employed in this method to evaluate the concatenated signal reveals that neglecting 
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the frame’s idle time during direct concatenation might result in mild distortion to the 

estimated ENF traces [46].  

To avert such distortion, the authors of [29] proposed a periodic zero-padding ap-

proach to deal with the idle time problem. The authors argued that instead of ignoring the 

idle period, an equally uniform sampling along time should be conducted by returning 

zeros to the end of each row signal until they reached the length of time that corresponded 

to the idle period before the concatenation. This zero-padding strategy is capable of pro-

ducing ENF traces that are free of distortion, but it does need prior knowledge of the 

length of the idle period. The idle period can be determined using the camera read-out 

time, which is model-specific [21]. Experimental results demonstrated that the approach 

enhanced the SNR of the estimated ENF signal.  

The authors of [28] introduced a MUSIC combining spectrum method that exploits 

the rolling shutter mechanism without knowing the idle time. Figure 3 shows the overall 

framework of the proposed method. Given a test video, the method computes row-by-

row the average pixel intensity and concatenates these values in a singular time series, 

s[n], using a sampling rate of frame rate multiplied by the number of rows.  

 

Figure 3. Framework of the proposed MUSIC approach. 

The time-series signal, s[n], is then passed through the preprocessing stages, where 

the local average is subtracted to enable a more precise result, particularly when a video 

features movement. The signal, s[n], is further down-sampled to 1 kHz after applying an 

anti-aliasing filter. Using the resulting signal, s[n], MUSIC and Fourier domain analyses 

are conducted in parallel, and the respective spectra are combined to extract the ENF. The 

proposed method is applied to time-of-recording verification, and the experimental re-

sults showed its effectiveness even in the more difficult scenario of 1 min recordings of 

both static and non-static videos.  

The authors of [47] designed a phase-based method to extract the ENF signal lever-

aging the rolling shutter mechanism. The method attempted to address the idle time prob-

lem by employing row-by-row samples individually at the frame level to avoid any dis-

continuity caused by the idle time. The proposed method is modeled as: 

 𝑋𝑗
𝜃[ℓ] =  𝐴𝑗 . sin(2𝜋

𝑓𝑗

𝑓𝑠

ℓ +  ∅𝑗) + 𝑑𝑗   (5) 

With a parameter set 𝜃 = (𝐴𝑗 , 𝑓𝑗 , ∅𝑗 , 𝑑𝑗), where 𝐴𝑗 is the amplitude, 𝑓𝑗 is the light in-

tensity instantaneous frequency, ∅𝑗 is the initial phase of the ENF signal when the initial 

row of the jth frame was obtained, and 𝑑𝑗 is the DC value. 𝑓𝑠 = 𝐿
𝑇𝑟𝑜

⁄  is the sampling 

rate, where L is the number of recorded samples during the read-out time and 𝑇𝑟𝑜 is the 

read-out time. The phases of the row signals are estimated by fitting/applying the sug-

gested model to each row signal given the jth row signal’s L-dimensional vector 𝑥𝑗. The 
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value of the ENF is then calculated from the phase differences between successive row 

signals after certain optimizations steps. 

2.3. Rolling Shutter Impact on ENF Extraction 

When using the rolling shutter, the pixels of each frame are captured by scanning 

over a rectangular CMOS sensor row-by-row rather than recording all of the pixels in a 

frame at one time instance, as is done with a global shutter. Consequently, the ENF is 

embedded by successively recording the intensity of each frame row. The sequential cap-

turing of rows of each frame enables a considerably faster sensing of the ENF signal as a 

result of the upscaling of the effective sampling rate by multiplying it with the number of 

rows of the sensed frame. The process of acquiring video using a camera with a rolling 

shutter mechanism is illustrated in Figure 4. In every frame period 𝑇𝑐 = 1
𝑓𝑐

⁄ , where 𝑓𝑐 is 

the frame rate, every frame’s row is successively sampled and captured for 𝑇𝑟𝑜 seconds, 

accompanied by 𝑇𝑖𝑑𝑙𝑒  seconds of inactivity before moving on to the next frame row 

[23,48]. 

 

Figure 4. Rolling shutter mechanism video acquisition process [48]. 

The 𝑇𝑟𝑜 is referred to as the read-out time of the camera, which is the length of time 

it takes to obtain the rows of a frame. Every camera has a unique 𝑇𝑟𝑜 value [21,31]. Fur-

thermore, the work in [31] demonstrates that inside a camera device, the 𝑇𝑟𝑜  might 

change based on the resolution or frame rate of a video. Due to the exposure of pixels in 

different rows at different times, and their simultaneous display during playback, the roll-

ing shutter can generate skew, blur, and other visual distortions, particularly with objects 

moving rapidly and in quick flashes of light [49]. As a result of the associated distortions, 

the rolling shutter’s sequential read-out process has long been seen as unfavorable to im-

age/video quality. Conversely, recent research has demonstrated that techniques such as 

computational photography and computer vision can be employed to exploit the rolling 

shutter mechanism [50,51]. 
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2.4. Camera Read-Out Time (𝑇𝑟𝑜) and ENF Estimation 

The 𝑇𝑟𝑜 is the duration during which a camera captures the rows of a video frame. 

It is camera-specific and is not often listed in the user manual or specification catalog [46]. 

The 𝑇𝑟𝑜 is a sensitive parameter that can be exploited for several applications, including 

camera forensics. Camera forensics has become an important area of study for a variety of 

applications, including verifying whether a query image and video pair originated from 

one source camera and verifying the origin of a questionable image or video [52,53].  

The author of [30] proposed a method that can extract a flicker signal and the camera 

𝑇𝑟𝑜 from a pirated video and utilize them to identify the LCD screen and camera used to 

create the pirated movie. The authors of [21] presented a method that exploits the ENF 

and the 𝑇𝑟𝑜 for camera forensics of rolling shutter cameras. They essentially estimate the 

𝑇𝑟𝑜 of the camera for each frame using vertical phase analysis modeled as: 

 𝑇𝑟𝑜 =  
𝐿𝜛𝑏

2𝜋𝑓𝑒
  (6) 

where L denotes the frame’s number of rows, 𝜛𝑏 represents the vertical radial frequency, 

which is calculated from the slope of the vertical phase line, and 𝑓𝑒 represents the ENF 

component that oscillates around the nominal frequency. The slope of the vertical phase 

line may be acquired by estimating the ENF phases 𝜙[ℓ] (ℓ ∈ {1, 2, 3, 4, 5, . . . , 𝐿} for every 

one of the rows. 𝜙[ℓ] is extracted by applying the Fourier transform to the time series of 

the ℓth row, which can be generated by calculating the mean intensity of the lth row of 

every video frame. The authors of [29] made use of the 𝑇𝑟𝑜 to compute the number of 

zeros that correspond to the idle time for the specific camera [30] or the specific video 

resolution and frame rate [31] that captured the video, which enabled a better estimation 

of the ENF signal with no distortion compared to the method described in [25], where the 

𝑇𝑟𝑜 was not exploited. 

3. Experiment 

We obtained a video dataset recorded with an iPhone 6s back camera under electric 

lighting in an indoor environment using different frame rates. The videos were static-

scene videos recorded in Raleigh, USA, where the ENF nominal value is 60Hz. The power 

mains signals recorded concurrently with the videos were also acquired and served as the 

ground-truth ENF signals. We selected seven cameras for the experiments and obtained 

their 𝑇𝑟𝑜 values reported in [21], as shown in Table 1. In a real-life scenario, our approach 

will need a database of the 𝑇𝑟𝑜 values of all cameras and a database of ENF reference 

signals. For this study, we used videos whose camera frame heights (L) = 480, frame rates 

= 23.0062, and 𝑇𝑟𝑜s = 19.8 ms. Each 𝑇𝑟𝑜 value was used with our adapted method [29] to 

analyze the video. The 𝑇𝑟𝑜 that corresponds to the camera used to record the video will 

lead to the estimation of an ENF that best matches the reference signal. In our adapted 

ENF estimation method, 𝑇𝑟𝑜  is a sensitive parameter and is employed to compute the 

number of zeros to be inserted in the idle period before analyzing the video, which is 

critical in estimating an ENF signal with no distortion. Three performance metrics: the 

normalized cross-correlation (NCC), the root mean squared error (RMSE), and the mean 

absolute error (MAE) are used to evaluate the (dis)similarity between the estimated ENF 

signal {𝑣}𝑘=1
𝑚  and the reference signal {𝑟}𝑘=1

𝑚 . The NCC is evaluated as: 

 
∑ 𝑟𝑘

𝑐𝑣𝑘
𝑐𝑀

𝑘=1

√(∑ 𝑟𝑘
𝑐2 ∑ 𝑣𝑘

𝑐2𝑀
𝑘=1

𝑀
𝑘=1

   (7) 

where 𝑟𝑘
𝑐 = 𝑟𝑘 −

1

𝑀
∑ 𝑟𝑛𝑛 , 𝑣𝑘

𝑐 = 𝑣𝑘 −
1

𝑀
∑ 𝑣𝑛𝑛 , and the variables with overhead bars are re-

spective sample means. The RMSE is evaluated as: 
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 √(∑ (𝑟𝑘 − 𝑣𝑘)2
𝑀

𝑘=1
/𝑀) (8) 

and the MAE is evaluated as: 

   ∑ |𝑟𝑘

𝑀

𝑘=1
− 𝑣𝑘|/𝑀    (9) 

When a test ENF signal {𝑣𝑘} is examined against the reference ENF signal {𝑟𝑘}, the 

(dis)similarity is evaluated using {�̂�𝑘} instead of {𝑣𝑘}, �̂�𝑘 ≝ �̂�1𝑣𝑘 + �̂�0, and (�̂�0, �̂�1) are the 

least-square estimates when {𝑣𝑘} is regressed on {𝑟𝑘}. This measure will guarantee that 

the RMSE and MAE metrics can be compared directly to the fluctuations in the reference 

ENF signal. 

Table 1. Cameras and parameters used in our experiment. 

Camera ID Model L 𝑻𝒓𝒐 (ms) 

1 iPhone 6s back camera 480 19.8 

2 Sony Cybershot DSC-RX 100 II 1080 13.4 

3 iPhone 5 front camera 720 22.9 

4 iPhone 5 back camera 1080 27.4 

5 Sony Handycam HDR-TG1 1080 14.6 

6 Canon SX230-HS 240 18.2 

7 iPhone 6 1080 30.9 

4. Results and Discussion 

When a video is analyzed using the true 𝑇𝑟𝑜 value of the camera used to capture it 

together with the true ENF nominal value where it is captured, the extracted ENF will be 

a near-to-perfect match with the reference signal, which shows that the video originated 

from the camera. Figure 5 shows the analysis performed using a 𝑇𝑟𝑜 value of 19.8 ms, 

which is the 𝑇𝑟𝑜 value of the iPhone 6s used to record the video. The extracted ENF pro-

vides a better match to the reference signal compared to the analysis results in Figures 6 

and 7, where the 𝑇𝑟𝑜 values of 13.4 ms (Sony Cybershot DSC-RX 100 II) and 30.9 ms (iPh-

one 6) were used, respectively. The performance of the estimated ENF signals against the 

reference signal at different 𝑇𝑟𝑜 values were also evaluated in terms of NCC, RMSE, and 

MAE, as shown in Table 2. The results further show that the 𝑇𝑟𝑜 value corresponding to 

the camera used to capture the video under analysis will lead to the extraction of an ENF 

signal with the highest correlation and the lowest error rate relative to the reference signal. 

Table 2. (Dis)similarity between the extracted ENF and the reference ENF. 

Camera Model 𝑻𝒓𝒐 (ms) NCC RMSE MAE 

iPhone 6s back camera 19.8 0.970 0.0016 0.0012 

Sony Cybershot DSC-RX 100 II 13.4 0.940 0.0023 0.0018 

iPhone 5 front camera 22.9 0.961 0.0017 0.0013 

iPhone 5 back camera 27.4 0.934 0.0023 0.0018 

Sony Handycam HDR-TG1 14.6 0.952 0.0020 0.0015 

Canon SX230-HS 18.2 0.921 0.0018 0.0014 

iPhone 6 30.9 0.944 0.0022 0.0016 
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Figure 5. Sample of the ENF signal extracted from a video file (red) using a 𝑇𝑟𝑜 value of 19.8 ms 

(iPhone 6s) and matched against the reference signal (black). The bottom right corner shows the 

measure of similarity and dissimilarity between the extracted signal and the reference signal. 

 

Figure 6. Sample of the ENF signal extracted from a video file (red) using a 𝑇𝑟𝑜 value of 13.4 ms 

(Sony Cybershot DSC-RX 100 II) and matched against the reference signal (black). The bottom right 

corner shows the measure of similarity and dissimilarity between the extracted signal and the ref-

erence signal. 
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Figure 7. Sample of the ENF signal extracted from a video file (red) using a 𝑇𝑟𝑜 value of 30.9 ms 

(iPhone 6) and matched against the reference signal (black). The bottom right corner shows the 

measure of similarity and dissimilarity between the extracted signal and the reference signal. 

Figure 8 shows a plot of the correlations of the ENF signals extracted using different 

𝑇𝑟𝑜 values. It can be observed that the 𝑇𝑟𝑜 of the iPhone 6s (19.8 ms) which was used to 

capture the video used in the analysis produced an ENF signal with the highest correla-

tion. It can also be seen in Figures 9 and 10 that the signal extracted using the correct 𝑇𝑟𝑜 

(the 𝑇𝑟𝑜 of the camera that captured the video) had the lowest error rate. 

 

Figure 8. NCC of the extracted ENF and the reference ENF. 
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Figure 9. RMSE of the extracted ENF and the reference ENF. 

 

Figure 10. MAE of the extracted ENF and the reference ENF. 

Our results show that if a 𝑇𝑟𝑜 database of all cameras and the database of ENF refer-

ence signals are obtained, an ENF-containing video of unknown source can be analyzed 

using our approach to trace the source camera. 
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5. Conclusions 

In this study, we have presented an approach that exploits the 𝑇𝑟𝑜 and the ENF to 

trace an ENF-containing video to its source camera. We adapted an ENF estimation 

method in which the 𝑇𝑟𝑜 is a sensitive parameter and is employed to compute the number 

of zeros to be inserted in the idle period for the specific camera that captured a video or 

the specific resolution and frame rate of the video before analyzing it, which is critical in 

estimating an ENF signal with no distortion. The 𝑇𝑟𝑜 value that corresponds to the cam-

era used to record the video will lead to the estimation of an ENF that best matches the 

reference signal. In essence, our approach is based on the idea that, given an ENF-contain-

ing video from an unknown source camera, we can apply different 𝑇𝑟𝑜 values to analyze 

the video and the 𝑇𝑟𝑜 value (camera) that leads to the extraction of an ENF signal with 

the highest correlation and lowest error margin when compared with the reference ENF 

can be said to have produced the video. We performed experiments using the 𝑇𝑟𝑜 values 

of seven cameras and the results validate our idea. Our approach could prove very useful 

in a practical scenario where a video obtained from the public, including social media, is 

being investigated by law enforcement to ascertain if it originated from a suspect’s cam-

era. The limitation of our proposed approach is the computation cost required to calculate 

the 𝑇𝑟𝑜  values for the ENF extraction process and the matching of the extracted ENF 

against a large ENF reference database. Our approach can be further studied using several 

videos and more camera 𝑇𝑟𝑜 values to examine its consistency in achieving useful perfor-

mance. 
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