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Abstract: Many composite cantilever plate-like structures have found engineering applications in
different industries. For attaining a meaningful assessment of the plate vibration characteristics, it
is important to have efficient and effective methods for determining the natural frequencies/mode
shapes of composite cantilever plates. In this paper, a method formulated on the basis of the Ritz
method and a simple first-order shear deformation theory (SFSDT) is presented to analyze the free
vibration of thin as well as thick rectangular composite cantilever plates for determining their natural
frequencies. In the SFSDT, the total deflection is the sum of two deflection components, namely,
bending and through-thickness shear-deformation-induced deflections. The successful application
of the Ritz method together with the SFSDT for the free vibration analysis of thick composite plates
relies on the selection of two independent sets of characteristic functions for the bending and through-
thickness shear-deformation-induced deflections, respectively, to satisfy the requirements for the
displacement and force conditions at the fixed edge of the plate. The novelty of the proposed method
is that two independent sets of characteristic functions, namely, polynomials and trigonometric
functions, which satisfy the displacement and force conditions at the fixed edge have been identified
and used in the variational method to construct the eigenvalue problem for extracting the modal
characteristics (natural frequencies and mode shapes) of the plate. It has been shown that the uses of
the selected characteristic functions can produce excellent natural frequencies for both thin and thick
composite cantilever plates. Some existing theoretical and experimental natural frequencies of thin as
well as thick composite plates have been used to demonstrate the accuracy of the proposed method
in predicting natural frequencies. The significant effects of through-thickness shear deformation on
the natural frequencies of composite cantilever plates are studied to show the merit of the present
method. Finally, for illustrating the application of the proposed method in free vibration analysis, a
novel procedure established on the basis of the sensitivity analysis of natural frequencies is presented
to assess the material degradation of composite cantilever plates. The numerical examples have
shown that fewer than 10 iterations are required in the identification process to produce a good
estimation of the current value for each material constant.

Keywords: composite plate; shear deformation theory; Ritz method; free vibration; natural frequency;
composite materials

1. Introduction

Modal characteristics (natural frequency and mode shape) have found different appli-
cations in the areas of structural engineering and solid mechanics. For instance, for safety
reasons, modal characteristics are important parameters to be dealt with in the design,
system identification, and health monitoring of a structure. Regarding the design of a struc-
ture subject to dynamic loads, the natural frequencies of the structure must be taken into
consideration to prevent resonance from occurring. Therefore, to avoid the occurrence of
resonance, many papers have been devoted to the optimal design of structures with the con-
sideration of natural frequency constraints [1–5]. Regarding health monitoring/assessment,
the modal characteristics of a damaged structure are important information for assessing
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structural damage. For instance, many papers have been devoted to the use of natural
frequencies/mode shapes for detecting damage in structures [6–12]. In the area of system
identification, many researchers have used natural frequencies/mode shapes to identify the
system parameters of composite structures [13–20]. For instance, Lee and Kam [17] used
natural frequencies in a Ritz-based method to identify the material constants of flexibly
restrained plates. In the acoustic area, modal characteristics information has been used
to modify the vibration behavior of flat-panel sound radiators for enhancing their sound
radiation efficiency [21–23]. For instance, Jiang et al. [23] used the information of modal
characteristics to mitigate sound pressure level dips for smoothing the sound pressure
level curves of composite panel-form speakers. Therefore, the above literature review has
shown that modal characteristics are important structural parameters that have found
many different engineering applications. Cantilever-plate/beam-like structural parts such
as turbine blades, fighter spoilers, aircraft stabilizers, and missile fins are subject to dynamic
loads which can cause them to vibrate. Furthermore, because of their importance, many
research papers have been published to focus on the free vibration analysis of cantilever-
plate/beam-like structural parts and different methods have been proposed to determine
their modal characteristics [24–37]. Therefore, from the engineering application point of
view, it is still desirable to develop more efficient and effective methods for predicting
the actual vibration behavior of these types of structures. On the other hand, advanced
composite materials have many attractive properties such as high strength in the fiber
direction, ease of being tailored to make fibers coincide with the direction of stress flow,
light weight, and super corrosion resistance capability. Recently, they have been used to
fabricate vibration-susceptible composite plate structures in the wind power, aerospace,
aircraft, and defense industries, among others. The wide application of composite plates
in different industries has led to the development of different methods for determining
the modal characteristics of composite plates [38–49]. In particular, due to its simplicity of
implementation, effectiveness in producing reliable results, and computational efficiency,
the Ritz method has been widely used for the free vibration analysis of plates. For instance,
Kam et al. [46] used Legendre polynomials as characteristic functions in the Ritz method
to study the free vibration and sound radiation of elastically restrained shear deformable
stiffened composite plates. Regarding the use of the Ritz method in vibration analysis, it
is noted that the appropriateness of the chosen characteristic functions can have signifi-
cant effects on the accuracy of the modal characteristics. When the thickness of a plate
increases, the effects of through-thickness shear deformation on the plate deflection may
become too significant to be neglected. However, in the previous studies, cantilever-type
composite plate structures were treated as thin plates and the classical lamination theory
(CLT) was used to analyze the free vibration of such plates. The CLT does not consider the
through-thickness shear deformation so it is only suitable for the analysis of thin plates. In
fact, the thicknesses of many cantilever-type plate structures used in different industries
are generally relatively large so the classical lamination theory becomes inappropriate
for modeling the vibration behavior of such plate structures. Therefore, in order to have
more realistic predictions of the vibration characteristics of relatively thick cantilever-type
composite plate structures, there is a need to develop an appropriate method that can take
the through-thickness shear deformation into consideration. Recently, detailed reviews on
different shear deformation theories for modeling composite plate deflection have been
conducted [50,51]. Among the shear deformation theories, the commonly used theory for
plate analysis is the conventional first-order shear deformation theory (FSDT) [52,53]. In the
conventional FSDT, five independent displacement components (three displacement com-
ponents at the mid-plane and two shear rotations) are required to describe the displacement
field of a thick plate. Furthermore, shear correction factors are needed to correct the effects
of uniform shear stress distribution over the plate thickness on the strain energy of the
plate. Several methods studying the calculation of shear correction factors for composite
laminates have been reported in the literature [54–58]. Besides the conventional FSDT,
another type of FSDT, which is termed simple first-order shear deformation theory (SFSDT),
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has been used for engineering applications. Contrary to the conventional FSDT, the simple
first-order shear deformation theory (SFSDT) only uses four displacement components
to describe the displacement field of a composite plate. Hence, with respect to computa-
tional efficiency, the SFSDT seems to be more advantageous than the conventional FSDT.
Recently, a number of researchers have attempted to apply SFSDT to plate analysis [59–65].
For instance, Thai and his associates [59–61] used SFSDT-based methods to analyze vari-
ous functionally graded/laminated composite/sandwich plates and beams with different
boundary and loading conditions. In their studies, they adopted a shear correction factor
of 5/6 to analyze very thick plates with a length-to-thickness ratio (a/h) as small as 2 in
the numerical examples for illustration. Senjanović [62] developed an SFSDT-based finite
element method to analyze thick plates with a/h ≥ 5 using a shear correction factor equal
to 5/6 or 0.8667. Park and Choi [65] applied the SFSDT to study the bending, buckling, and
free vibration of isotropic plates with the consideration of the in-plane rotation and the use
of a shear correction factor of 5/6. In applying the SFSDT, some researchers have introduced
warping functions to approximate the deformed shapes of the plane cross-sections after
deformation and satisfy the shear stress boundary conditions on the top and bottom plate
surfaces [66–70]. It is noted that all the above works formulated on the basis of SFSDT have
derived the governing equations or equations of motion for plate analysis. The use of the
above SFSDT-based methods for free vibration analysis of thick cantilever composite plates
may be computationally expensive or not simple enough for engineering applications.
By contrast, the incorporation of the advantages of the Ritz method and the SFSDT may
produce a useful technique for plate analysis. Hence, it is worth putting effort into develop-
ing the method formulated on the basis of the Ritz method and SFSDT for the vibration
analysis of composite cantilever plates with the consideration of engineering applications.
On the other hand, it is desirable to have an efficient and effective tool for determining the
modal characteristics of thick composite cantilever plates for solving engineering problems
such as resonance mitigation, material constants identification, and damage detection. For
instance, the natural frequencies of composite cantilever plates can be used to characterize
the material properties of the plates. In particular, the identification of the current material
constants for a plate can help assess the material degradation/structural health of the plate.
As mentioned above, many methods have been proposed to identify the material constants
of composite plates from natural frequencies. In general, most of the existing material
constant identification methods have attempted to determine all the material constants
at the same time. However, when the number of the material constants increases, many
of the existing methods may face one or both of the two difficulties, i.e., it is difficult to
make the solution converge and computationally expensive. For practical applications,
many methods may not be efficient enough to be used in material degradation assessment.
Therefore, regarding practical applications, it is still desirable to search for more efficient
and effective methods for material degradation assessment. Hence, the incorporation of
the proposed SFSDT-based Ritz method and a useful procedure for material degradation
assessment of composite cantilever plates using natural frequencies is the aim of this paper.

In this paper, a new SFSDT-based Ritz method is presented to study the free vibration
of composite cantilever plates with different length-to-thickness ratios. Appropriate char-
acteristic functions are proposed to approximate the deflection components which lead
to the total deflection of the plate. The theoretical and experimental natural frequencies
obtained using different methods are used to verify the accuracy of the proposed method.
The effects of plate thickness and fiber angles on the natural frequencies and mode shapes
of composite cantilever plates are studied by means of several numerical examples. A novel
procedure with the consideration of the information obtained from the sensitivity analysis
of natural frequency is presented for material degradation assessment. The proposed
procedure is able to produce a good estimation of any material constant in a few iterations
in the identification process. The material degradation assessment of composite cantilever
plates is performed to show one of the applications of the proposed method.
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2. Vibration Analysis of Composite Cantilever Plate

Consider the free vibration of a rectangular symmetrically laminated composite plate
of size a (length) × b (width) × h (thickness) with the left end clamped as shown in Figure 1.
The fiber angle of the ith layer is θi. Herein, two coordinate systems, namely, reference
coordinate system x-y-z and natural coordinate system ξ-η-z are used to describe the
geometry of the plate. Both x-y and ξ-η are located at the mid-plane of the plate with (0 ≤ x
≤ a, −b/2 ≤ y ≤ b/2) and (0 ≤ ξ ≤ 1, −0.5 ≤ η ≤ 0.5), respectively. The relation between
the two coordinate systems is ξ = x/a and η = y/b.
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In the SFSDT, the total vertical deflection is the sum of two parts, namely, the bend-
ing and through-thickness shear-deformation-induced deflections. Assuming no plate
thickness change and neglecting the in-plane displacements, the displacement field of the
symmetrically laminated plate under free vibration is written as

u(x, y, z, t) = −z ∂Wb
∂x

v(x, y, z, t) = −z ∂Wb
∂y

w(x, y, z, t) = [wb(x, y, t) + ws(x, y, t)]
(1)

where u, v, and w are the displacement components in the x-y-z coordinate system of the
plate; wb is the vertical deflection induced by bending; and ws is the vertical deflection
induced by through-thickness shear deformation. It is noted that herein only two indepen-
dent displacement components (wb and ws) rather than three independent displacement
components (two shear rotations plus one vertical deflection) for the FSDT are required to
describe the displacement field of the plate. In general, it is common practice to use the
natural coordinate system to express the characteristic functions in the Ritz method. Hence,
in the free vibration analysis, the vertical displacement components of the plate in the ξ-η
coordinate system are expressed as

wb(x, y, t) = Wb(ξ, η)sin ωt
ws(x, y, t) = Ws(ξ, η)sin ωt

(2)

where Wb and Ws are the bending and through-thickness shear-deformation-induced
deflected shapes, respectively. Referring to the ξ-η coordinate system, discarding the effect
of time, the strain-displacement relations of the plate are expressed as

εξ = − z
a2

∂2Wb
∂ξ2

εη = − z
b2

∂2Wb
∂η2

γξη = ∂v0
a∂ξ − 2z

ab
∂2Wb
∂ξ∂η

γηz =
1
b

∂Ws
∂η

γξz =
1
a

∂Ws
∂ξ

(3)
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where ε and γ are the normal and shear strains, respectively. The stress–strain relations of a
composite lamina with arbitrary fiber angle in the ξ-η-z coordinate system can be expressed
in the following general form [71]:

σξ

ση

τηz
τξz
τξη

 =


Q11 Q12 0 0 Q16
Q21 Q22 0 0 Q26

0 0 Q44 Q45 0
0 0 Q45 Q55 0

Q16 Q26 0 0 Q66




εξ

εη

γηz
γξz
γξη

 (4)

where σ and τ are the normal and shear stresses, respectively, and Qij is the transformed
lamina stiffness coefficient, which depends on the material properties and lamina fiber angle.
The relations between the transformed and untransformed lamina stiffness coefficients are
expressed as

Q11 = Q11c4 + 2(Q12 + 2Q66)c2s2 + Q22s4

Q12 = (Q11 + Q22 − 4Q66)c2s2 + Q11
(
c4 + s4)

Q22 = Q11s4 + 2(Q11 + 2Q66)c2s2 + Q22c4

Q16 = (Q11 − Q12 − 2Q66)c3s + (Q12 − Q22 + 2Q66)cs3

Q26 = (Q11 − Q12 − 2Q66)cs3 + (Q12 − Q22 + 2Q66)c3s
Q66 = (Q11 + Q22 − 2Q12 − 2Q66)c2s2 + Q66

(
c4 + s4)

Q44 = Q44c2 + Q55c2

Q55 = Q55c2 + Q44c2

Q45 = (Q55 − Q44)cs

(5)

with
Q11 = E1

1−ν12ν21
; Q12 = υ12E2

1−ν12ν21
; Q22 = E2

1−ν12ν21
; Q44 = G23

Q55 = G13; Q66 = G12; c = cos θi; s = sin θi
(6)

where Qij is the untransformed lamina stiffness constant, Ei is Young’s modulus in the ith
direction, νij is Poisson’s ratio, and Gij is the in-plane shear modulus. For simplicity, the
stress–strain relations in Equation (4) for the ith layer in the plate can be written in matrix
form as

σi = Qiεi (7)

The strain energy U of the plate can be expressed as

U =
1
2

∫
σT

iεidV =
1
2

∫
εi

TQiεidV (8)

In view of Equations (1), (4), and (8), the maximum strain energy Umax of the plate can
be expressed as

Umax =
1

2αa2

x



∂2Wb
∂ξ2

α2 ∂2Wb
∂η2

2α ∂2Wb
∂ξ∂η

aα ∂Ws
∂η

a ∂Ws
∂ξ



T
D11 D12 D16 0 0
D21 D22 D26 0 0
D61 D62 D66 0 0

0 0 0 D44 D45
0 0 0 D54 D55





∂2Wb
∂ξ2

α2 ∂2Wb
∂η2

2α ∂2Wb
∂ξ∂η

aα ∂Ws
∂η

a ∂Ws
∂ξ


dξdη (9)

or

Umax = 1
2αa2

s
[

D11

(
∂2Wb
∂ξ2

)2
+ 2α2D12

(
∂2Wb
∂η2

)(
∂2Wb
∂ξ2

)
+ 4αD16

(
∂2Wb
∂ξ∂η

)(
∂2Wb
∂ξ2

)
+ α4D22

(
∂2Wb
∂η2

)2
+ 4α3D26

(
∂2Wb
∂ξ∂η

)(
∂2Wb
∂η2

)]
[
+4α2D66

(
∂2Wb
∂ξ∂η

)2
+ a2α2D44

(
∂Ws
∂η

)2
+ 2a2αD45

(
∂Ws
∂ξ

)(
∂Ws
∂η

)
+ a2D55

(
∂Ws
∂ξ

)2
]

dη

(10)
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with

Djk =
NL

∑
i=1

Qjk
(i)
(

zi
3 − zi+1

3

3

)
(j, k = 1, 2, 6) (11)

and

Djk = Kp

NL

∑
i=1

Qjk
(i)
(zi − zi+1)(j, k = 4, 5) (12)

where α = b/a, Kp = shear correction factor, and NL = number of layers. Regarding the
determination of Kp, as mentioned above, the exact values of Kp for different composite
laminates can be calculated using the methods reported in the literature. In fact, for
engineering applications, a database collecting the exact values of Kp for different composite
laminates can be established. Herein, for illustration purposes and also without loss of
generality, Kp is assumed to be 0.8. With the consideration of the rotatory inertia effects,
the kinetic energy T of the plate with density ρ and the inclusion of rotatory effects is
expressed as

T =
1
2

∫
V

ρ
( .

u2
+

.
v2

+
.

w2
)

dV (13)

In view of Equations (2) and (13), the maximum kinetic energy Tmax can be written as

Tmax =
ρω2h
2αa2

x

A

[
h2

12

(
∂Wb
∂ξ

)2
+

h2

12

(
∂Wb
∂η

)2
+ Wb

2 + 2WbWs + Ws
2

]
dξdη (14)

The Lagrangian to be used in the Ritz method for the plate is defined as

L = Tmax − Umax (15)

According to the Ritz method, each plate displacement can be approximated using a
finite series of characteristic functions associated with equal numbers of unknown constants.
If the approximated displacements are substituted into Equation (15), the Lagrangian L will
be a function of the undetermined constants. The extremization of L with respect to the
undetermined constants leads to the following eigenvalue problem:[

K − ω2M
]
C = 0 (16)

where K is the stiffness matrix, M, the mass matrix, and C a vector of the undetermined
constants. The solution to the above eigenvalue problem can lead to the determination of
the natural frequencies and mode shapes of the plate.

3. Ritz Method

Regarding the use of the Ritz method in the above plate vibration analysis, it is noted
that the choice of appropriate characteristic functions for approximating the bending and
through-thickness shear-deformation-induced vertical deflection components is vital in
attaining good approximations of the true modal characteristics of the plate. Two issues
should be dealt with in determining the characteristic functions. The first issue is related to
the independence between the two sets of characteristic functions for Wb and Ws, respec-
tively. In view of the total deflection in Equation (1), the two sets of characteristic functions
must be independent so that each deflection component can have its own contribution to
the total deflection. It is worth noting that if the two sets of characteristic functions are
dependent, then, after summation, only one set of characteristic functions will be left to
approximate the total deflection. The consequence of the choice of dependent sets of charac-
teristic functions is that the contribution of Ws to the total deflection will be underestimated.
It has been found that the underestimation of the total deflection will lead to incorrect
predictions of natural frequencies for thick plates, especially those with a/h less than 50.
The second issue is related to the satisfaction of the displacement and force conditions at
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the fixed edge of the cantilever plate. In view of the displacement boundary conditions
at the fixed edge of the cantilever plate, it is required that the vertical displacement and
bending rotation at ξ = 0 equal to zero

W(0, η) = 0 (17)

∂Wb
∂ξ

(0, η) = 0 (18)

In view of Equation (1), Equation (17) can be rewritten as

Wb(0, η) = 0 (19)

and
Ws(0, η) = 0 (20)

As indicted in Ref. [72], different displacement boundary conditions at the fixed
end of a cantilever beam can be chosen to solve for the deflection of the beam under the
conditions that the bending moment and shear force at the fixed end are not zero. For the
cantilever plate under consideration in this study, the requirements of nonzero bending
moment and shear force at the fixed edge of the plate must be observed to maintain the
equilibrium/stability of the plate. It is noted that in view of Equation (3), for having
nonzero shear strain/shear stress at the fixed edge of the plate, ∂Ws

∂ξ (0, η) should not be zero.

Here, nonzero ∂Ws
∂ξ (0, η) implies the nonconformity of the zero-slope condition at the fixed

edge of the plate. Therefore, both shear stress and slope at the fixed edge being zero cannot
be satisfied at the same time. Nevertheless, as will be shown in the following examples,
the effects of slope nonconformity on the natural frequencies of thick composite cantilever
plates are negligible. Hence, in observing the requirements of the above two issues, the
characteristic functions for approximating Wb and Ws in the natural coordinate system can
be chosen, respectively, as

Wb =
Mb

∑
i=2

Nb

∑
j=0

Aijξ
iη j (21)

and

Ws =
Ms

∑
i=1

{
Bi00sin

(
iπξ

2

)
+

Ns

∑
j=1

[
Bij1sin

(
iπξ

2

)
sin(jπη) + Bij2sin

(
iπξ

2

)
cos(jπη)

]}
(22)

where Aij and Bijk are unknown constants and k is 0, 1, or 2.
It is noted that the two sets of characteristic functions given in Equations (21) and (22),

respectively, are independent. Hence, Wb and Ws can have their own contributions to the
total deflection. Furthermore, the polynomials used to approximate Wb in Equation (21)
produce zero bending-induced deflection and slope but a nonzero bending moment at the
plate fixed end. On the other hand, the trigonometric characteristic functions used to ap-
proximate Ws in Equation (22) produce zero through-thickness shear-deformation-induced
deflection but nonzero shear stress at the plate fixed edge. Therefore, at the fixed edge,
the sum of Wb and Ws gives zero total deflection. In formulating the eigenvalue problem
of Equation (16) for determining the modal characteristics of the plate, for convenience
replace Amn and Bijk by the following unknown constants Ck:

C1 = A20; C2 = A21; · · · ; Crm = AMb Nb ; CRm+1 = B100; CRm+2 = B111; CRm+3 = B112;
CRm+4 = B121; CRm+5 = B122; · · · ; CRm+Rn = BMs Ns2

(23)

with the subscripts Rm and Rn defined, respectively, as

Rm = (Nb + 1)(Mb − 1) (24)
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Rn = Ms + 2MsNs (25)

Hence, in the ξ-η coordinate system, Wb and Ws are expressed as

Wb =
Mb
∑

i=2

Nb
∑

j=0
Crb ξ iη j

with
rb = (i − 2)(Nb + 1) + j + 1.

(26)

Ws =
Ms
∑

i=1

{
Crs sin

(
iπξ

2

)
+

Ns
∑

j=1

[
Crs+1sin

(
iπξ

2

)
sin(jπη) + Crs+2sin

(
iπξ

2

)
cos(jπη)

]}
with

rs = Rm + 2Ns(i − 1) + 2(j − 1)

(27)

The deflection components of Equations (26) and (37) will then be used to derive
Equation (16). The terms in the stiffness and mass matrices of Equation (16) are listed in
Appendix A.

4. Vibration Testing of Thick Composite Cantilever Plate

To verify the accuracy of the proposed method for the free vibration of thick composite
cantilever plates, a rectangular composite plate comprising 332 layers of carbon/epoxy
laminae was subjected to free vibration testing. A schematic description of the vibration
test apparatus is shown in Figure 2. A detailed description of the fabrication, vibration
testing, and material characterization of the plate is given in [73]. In the vibration test, one
short side of the plate was clamped by a rigid fixture so that the plate could behave like a
cantilever plate. The dimensions of the cantilever were a = 139.96 mm, b = 85.16 mm, and
h = 27.16 mm with a/h = 5.15. During the vibration test, a hammer was used to strike the
plate at different locations while a small accelerometer of 0.6 g was placed at a specific
location. The vibration signals measured by the accelerometer were used to determine the
frequency response spectra for the plate. The above testing procedure was repeated for
several locations of the accelerometer. A typical frequency response spectrum is shown
in Figure 3. The measured frequency response spectra were then used to extract the
average values of the first six natural frequencies. The average values of the first six natural
frequencies (fi, i = 1, . . . , 6) determined from all the measured frequency response spectra
are given as follows: f 1 = 302 Hz, f 2 = 517 Hz, f 3 = 858 Hz, f 4 = 929 Hz, f 5 = 1013 Hz, and
f 6 = 1144 Hz.
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It is noted that the coefficients of variation of the first six natural frequencies are less
than 7%.

Furthermore, the material properties of the composite lamina obtained from tests
are given as E1 = 124.73 GPa, E2 = 5.43 GPa, ν12 = 0.30, G12 = 4.10 GPa, G23 = 0.67 GPa,
G13 = 4.10 GPa, and ρ = 1570.47 kg/m3.

5. Results and Discussion

The proposed method is used to study the free vibration of several thin as well as
thick composite cantilever plates the natural frequencies of which are available in the
literature. First, a series of convergence tests were performed for thick plates with different
length-to-thickness ratios to determine the appropriate number of terms, i.e., Ms and Ns,
adopted in Equation (18). It is worth pointing out that Narita and Lessie used Equation (21)
to study the free vibration of thin composite cantilever plates. They found that the use of
Mb = Nb = 10 for approximating the thin plate deflection can make the solution converge.
Hence, in this study, Mb = Nb = 10 is also used for approximating Wb. As for Ws, the square
cantilever plate with zero fiber angles, a = 1 m, a/h = 5, and the following information
about glass/epoxy are used to perform the convergence test:

E1 = 60.7 GPa, E2 = 24.8 GPa, ν12 = 0.23, G12 = 11.99 GPa, G23 = 11.99 GPa,
G13 = 11.99 GPa, ρ = 1000 kg/m3, and E1/E2 = 2.45.

The convergence test results listed in Table 1 show that the natural frequencies of the
plate converge when Mb = Nb = 10 and Ms = Ns = 5 which are also applicable to other plates
with different fiber angles and length-to-thickness ratios.

Table 1. Convergence test of thick glass/epoxy composite plate with zero fiber angle and a/h = 5
(Mb = Nb = 10).

Ms, Ns
Natural Frequency (Hz)

1 2 3 4 5

1 235.99 332.14 672.86 1198.49 1415.35

2 235.87 331.8 663.72 953.18 1199.73

3 235.84 331.73 663.51 911.79 1162.57

4 235.84 331.73 663.51 910.89 1160.2

5 235.84 331.73 663.5 910.88 1160.19
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The proposed method is then used to determine the natural frequencies of a thin square
glass/epoxy cantilever plate with a fiber angle equal to 30◦ and aspect ratio a/h = 150. The
predicted normalized natural frequencies are listed in Table 2 in comparison with those
reported in the literature. The small differences between the normalized natural frequencies
predicted using the present method and those obtained by Narita and Leissa imply that
the shear deformation Ws has negligible effects on the natural frequencies of the plate. It
is worth pointing out that for this case, the number of terms in Ws also has insignificant
effects on the natural frequencies of the plate. For comparison purposes, the 2D Shell99
element of the commercial finite element code ANSYS [74] is also used to determine the
natural frequencies of the plate. As shown in Table 2, the natural frequencies predicted
using the present method are more accurate than those predicted using Shell99.

Table 2. Normalized natural frequencies of thin square glass/epoxy composite cantilever plate with
fiber angle equal to 30◦ (a/h = 150).

Method
Normalized Natural Frequency

1 2 3 4 5

Narita and Leissa [39] 2.95 7.16 18.14 20.01 26.45

Present 2.95 7.16 18.14 20.01 26.45

* (error %) 0.00% 0.00% 0.02% 0.00% 0.00%

ANSYS (Shell99) 2.96 7.18 18.48 20.35 26.93

(error %) 0.10% 0.18% 1.86% 1.72% 1.82%
* error % = (|Narita and Leissa − Other method|/Narita and Leissa) × 100%.

Next, the proposed method is used to determine the natural frequencies of symmetri-
cally laminated graphite/epoxy cantilever plates with a/h = 73.2 and different fiber angles
to compare with those obtained using other methods. The properties of the graphite/epoxy
material are given as follows:

E1 = 112 GPa, E2 = 11 GPa, ν12 = 0.25, G12 = 4.48 GPa, G23 = 4.48 GPa, G13 = 4.48 GPa,
ρ = 1500 kg/m3.

The natural frequencies of the composite cantilever plates with various lamination
arrangements obtained using different methods are listed in Tables 3–5 for comparison.

Table 3. Natural frequencies of graphite/epoxy [02, 30, −30]s square cantilever plate (a = 76.2 mm,
a/h = 73.2).

Method
Natural Frequency (Hz)

1 2 3 4 5

Experiment [75] 234.2 362 728.3 1449 1503

CPT [75] 261.9 363.5 761.8 1662 1709

* (error %) 11.83% 0.41% 4.60% 14.70% 13.71%

Present 246.59 348.36 742.45 1535.96 1568.75

(error %) 5.29% 3.77% 1.94% 6.00% 4.37%
* error % = (|Experimental − Theoretical|/Experimental) × 100%.

The inspection of the differences between the experimental and theoretical normal-
ized natural frequencies in Tables 3–5 shows that the present method can produce results
closely matching the experimental data for all the composite plates under consideration.
Furthermore, the fact that the present method can predict the first natural frequencies more
accurately than the CPT reveals the significant effects of across-thickness shear deforma-
tion on the modal characteristics of the plates. It is noted that the value of E1/G13 = 25
gives the major contribution to the across-thickness shear deformation. Therefore, the
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through-thickness shear deformation effects on plate modal characteristics may become too
significant to be neglected when the thickness of the cantilever plate or E1/G13 gets larger.

Table 4. Natural frequencies of graphite/epoxy [0, 45, −45, 90]s square cantilever plate (a = 76.2 mm,
a/h = 73.2).

Method
Natural Frequency (Hz)

1 2 3 4 5

Experiment [75] 196.4 418 960 1215 1550

CPT [75] 224.3 421.8 1012 1426 1722

* (error %) 14.21% 0.91% 5.42% 17.37% 11.10%

SFSDT 211.6 402.78 971.41 1328.81 1620.03

(error %) 7.74% 3.64% 1.19% 9.37% 4.52%
* error % = (|Experimental − Theoretical|/Experimental) × 100%.

Table 5. Natural frequencies of graphite/epoxy [45, −452, 45]s square cantilever plate (a = 76.2 mm,
a/h = 73.2).

Method
Natural Frequency (Hz)

1 2 3 4 5

Experiment [75] 131.2 472 790.5 1168 1486

CPT [75] 138.9 499.5 805 1326 1648

* (error %) 5.87% 5.83% 1.83% 13.53% 10.90%

SFSDT 133.17 475.47 771.32 1258.3 1559.41

(error %) 1.50% 0.73% 2.43% 7.73% 4.94%
* error % = (|Experimental − Theoretical|/Experimental) × 100.

The proposed method is then used to predict the natural frequencies of thick cantilever
plates. First, consider the free vibration of a thick isotropic cantilever plate with a/h = 5.
The first four normalized natural frequencies of the plate are listed in Table 6 in comparison
with the experimental data available in the literature. It is noted that the results obtained
using the present method are acceptable. In particular, for the first mode, the percentage
difference between the first theoretical and experimental normalized natural frequencies is
less than 1.8% while that of the finite element method (FETM) is larger than 11.24%.

Table 6. Normalized natural frequencies of an isotropic plate (a/h = 5).

Method
Normalized Natural Frequency

1 2 3 4

Experiment [25] 0.1967 0.4392 1.0788 1.3086

FETM [25] 0.2188 0.4582 1.1676 1.383

* (error %) 11.24% 4.33% 8.23% 5.69%

Present 0.2002 0.4794 1.0747 1.35

(error %) 1.79% 9.15% 0.38% 3.17%
* error % = (|Experimental − Theoretical|/Experimental) × 100%.

Next, the proposed method is used to determine the natural frequencies of the [0◦]332
carbon/epoxy cantilever plate which has been tested. The theoretical natural frequencies
predicted using the present method are compared with the experimental ones as tabulated
in Table 7. It is noted that for comparison purposes, the 2D Shell99 and 3D Solid186 elements
of ANSYS have also been used to determine the natural frequencies. The comparison shows
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that both the present method and ANSYS, no matter whether 2D or 3D elements, are able
to produce acceptable results. Compared with the experimental natural frequencies, the
absolute percentage differences for 3D Solid186, the present method, and 2D Shell99 are
less than or equal to 5.79, 6.36, and 8.68%, respectively.

Table 7. Natural frequencies of carbon/epoxy [0◦]332 composite cantilever plate (a/b = 1.88,
a/h = 5.15).

Method
Natural Frequency (Hz)

1 2 3 4 5 6

Test 302 517 858 929 1013 1144

ANSYS (2D) 309.63 495.77 871.88 930.32 1017.8 1243.3

* (error %) 2.53% 4.11% 1.62% 0.14% 0.47% 8.68%

ANSYS (3D) 304.97 499.83 808.31 918.64 1009.53 1157.7

(error %) 0.98% 3.32% 5.79% 1.12% 0.34% 1.20%

Present 303.48 499.2 852.3 911.13 999.74 1216.75

(error %) 0.49% 3.44% 0.66% 1.92% 1.31% 6.36%
* error % = (|Test − Theoretical|/Test) × 100%.

The present method is used to study the effects of length-to-thickness ratio (a/h) on the
natural frequencies of carbon/epoxy plates with different fiber angles. Consider the first
six natural frequencies of the composite cantilever plates with different length-to-thickness
ratios and lamination arrangements. Herein, the natural frequency f determined using
the present method is normalized with respect to the f * determined using the CPT. The
relations between the normalized natural frequency and length-to-thickness ratio for the
[0]8, [0, 902, 0]s, and [45, −452, 45]s plates are shown in Figures 4–6, respectively. It is noted
that the plate thickness has significant effects on the natural frequencies for all the plates.
In particular, each normalized natural frequency becomes lower as the length-to-thickness
gets smaller and such effects become more prominent for higher modes.
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With respect to engineering applications, the natural frequencies predicted using
the present method together with the natural frequencies determined experimentally can
be used to identify material constants for the quality control of composite plates after
fabrication or health assessment of existing cantilever composite plates. Regarding an
existing cantilever plate having been operated in a severe environment for some time,
the degradation of the constituent material will cause the values of the plate’s natural
frequencies to decrease. In practice, the current natural frequencies of the plate can be
determined via vibration testing. The deviations of the current natural frequencies from
the original ones can then be used to identify the current material constants such as
E1, E2, and G12 for the health assessment of the plate. It is a common practice to use
several measured natural frequencies in an optimization method to identify all the material
constants simultaneously. However, for some material constant identification problems, the
search for the true solution in the identification process may encounter difficulties in making
the solution converge, or the adopted search algorithm, in terms of computation time, is
too expensive to be used for practical applications. Herein, for illustration, a procedure
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is presented to identify the current material constants of laminated composite cantilever
plates with different length-to-thickness ratios. First, consider the sensitivity analysis of
natural frequencies subject to the variation of each material constant for a graphite/epoxy
[0]8 cantilever plate with a/h = 120. The percentage changes in the natural frequencies for
a 20% reduction in each material constant are listed in Table 8.

Table 8. Percentage changes in natural frequency induced by reductions in the material constants of
a graphite/epoxy plate (a/h = 120).

Material
Constant

Natural Frequency Reduction

1 2 3 4 5

E1 −10.50% −6.40% −1.66% −6.70% −6.09%

E2 −0.05% −0.15% −5.54% −8.53% −0.05%

G12 −0.01% −3.83% −3.12% −1.27% −0.06%

v12 −0.09% −0.06% −0.04% 0.03% −0.09%

It is noted that each material constant may have effects of different extents on the nat-
ural frequencies. For instance, compared with other material constants, Young’s modulus
E1 has the most prominent effects on the first natural frequency of the plate while Poisson’s
ratio v12 has insignificant effects on the first five natural frequencies. The information will
be used in the identification procedure to estimate the current material constants E1, E2, and
G12. For illustrating the idea of the proposed identification procedure, rather than testing,
the current “measured” natural frequencies are determined using the present method. The
first five original and “measured” natural frequencies associated with, respectively, the
original and degraded material constants are assumed to be as follows:

• Natural frequency (Hz)
• Original: f 1 = 11.66, f 2 = 15.01, f 3 = 31.86, f 4 = 69.96, f 5 = 72.90;
• Measured: f 1* = 10.43, f 2* = 13.42, f 3* = 28.49, f 4* = 62.58, f 5* = 65.20.
• and material constants
• Original: E1 = 112.00 GPa, E2 = 11.00 GPa, ν12 = 0.2, G12 = 4.48 GPa;
• Degraded: E1 = 89.60 GPa, E2 = 8.80 GPa, ν12 = 0.2, G12 = 3.58 GPa.

For the material degradation assessment of thin plates, it is reasonable to assume
v12 to be constant and G12 = G13 = G23. After reviewing the sensitivity analysis results
listed in Table 9, it is possible that a chosen natural frequency can be used to estimate a
particular material constant. In this case, the natural frequency f 1, f 2, or f 4 will be used
individually to estimate, respectively, material constant E1, G12, or E2 using a minimization
technique. First, let the original material constants be X(1) = E1, X(2) = E2, and X(3) = G12.
The updated material constant X(i)* is equal to q(i) X(i) in which the parameter q(i) satisfies
the condition of (ql < q < qu) with ql = 0 and qu = 1. The updated material constants are used
in the proposed method to predict the selected natural frequency f(q(i)) which depends on
the chosen values of the parameters q(i). The minimization procedure for identifying the
current E1 using the first natural frequency is given as follows:

• Step 1. Calculate the upper bound frequency fu using q(1) = q(2) = q(3) = 1 and lower
bound frequency fl using q(1) = 0.1 and q(2) = q(3) = 1. Set qu = 1 and ql = 0.1.

• Step 2. Set q(1) = 0.5, q(2) = q(3) = 1.
• Step 3. Let X(i)* = q(i)X(i); choose f * = f 1*.
• Step 4. Calculate the error function e(q(i)) = {f (q(i)) − f *}/f *. If e < 0.01, go to Step 8.
• Step 5. If e (q(i)) > 0, then let qu = q(1) and calculate the upper bound frequency fu for

qu. Otherwise, if e (q(i)) < 0, then let ql = q(1) and calculate the lower bound frequency
fl for ql.

• Step 6. Update q(1) = ql + (f * − fl) (qu − ql)/(fu − fl).
• Step 7. Go to Step 4.
• Step 8. Stop the iteration.
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Table 9. Current material constants of graphite/epoxy [0◦]8 cantilever plate (a/h = 120).

Current Material Constant E1 G12 E2

Actual 89.6 3.58 8.8

Identified 89.52 3.57 8.81

* error (%) 0.09 0.53 0.07
* error % = (|Actual − Identified|/Actual) × 100%.

After performing the above minimization procedure, the best estimate of the current
E1 has been attained with q(1) = 0.7993. Once the best estimate of E1 has been attained,
the above minimization procedure can be used to find the best estimate of the current G12
by initiating q(1) = 0.7993, q(2) = 1, q(3) = 0.5, and f * = f 2* in the minimization process.
Similarly, once the best estimates of the current E1 and G12 are available, i.e., q(1) = 0.7993
and q(3) = 0.7957, the above minimization procedure can be used to find the best estimate
of the current E2 by initiating q(1) = 0.7993, q(2) = 0.5, q(3) = 0.7957, and f * = f 4* in the
minimization process. It is noted that the proposed minimization procedure requires fewer
than 10 iterations to identify each current material constant. The identified current material
constants are listed in Table 9 in comparison with the actual ones. It is noted that the
proposed material constant identification method can produce good results for a thin plate
with a maximum error of less than 0.6%.

The proposed minimization procedure is then used to identify the material constants
of the same [0◦]8 cantilever plate but with a/h = 20. Again, consider the sensitivity analysis
of natural frequencies subject to the variation of each material constant for the plate. The
percentage changes in the natural frequencies for a 20% reduction in each material constant
are listed in Table 10.

Table 10. Percentage changes in natural frequency induced by reductions in the material constants of
a graphite/epoxy plate (a/h = 20).

Material Constant
Natural Frequency Reduction

1 2 3 4 5

E1 −10.29% −6.35% −1.64% −2.79% −9.18%

E2 −0.05% −0.14% −5.49% −1.49% −6.98%

G12 −0.30% −3.81% −3.09% −1.28% −1.77%

G23 0.00% −0.08% −0.12% −0.27% 0.00%

It is noted that each material constant may have effects of different extents on the
natural frequencies. For instance, with respect to the first natural frequency, Young’s
modulus E1 has the most prominent effects on the first natural frequency of the plate while
the effects of the other material constants are insignificant. The sensitivity information will
be used in the identification procedure to estimate the current material constants E1, E2,
G12, and G23. For illustration purposes, the current “measured” natural frequencies are
again determined using the present method instead of testing. The first five original and
“measured” natural frequencies associated with, respectively, the original and degraded
material constants are assumed to be as given below. The original and degraded material
constants used in this case are the same as those of a/h = 120.

• Natural frequency (Hz):
• Original: f 1 = 69.10, f 2 = 89.53, f 3 = 189.14, f 4 = 404.19, f 5 = 410.12;
• Measured: f 1* = 61.77, f 2* = 80.05, f 3* = 169.14, f 4* = 361.37, f 5* = 366.89.

Herein, following the same idea of the proposed current material constant identifi-
cation procedure, the first “measured” natural frequency is used to identify the current
E1, the second to identify G12, the third to identify E2, and the fourth to identify G23. The
best estimates of the current material constants are listed in Table 11 in comparison with
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the actual ones. It is noted that the present material constant identification procedure can
produce acceptable results for the relatively thick plate, with a maximum error of less
than 4.5%.

Table 11. Current material constants of graphite/epoxy [0◦]8 cantilever plate (a/h = 20).

Current Material Constant E1 G12 E2 G23

Actual 89.6 3.584 8.8 3.58

Identified 89.17 3.58 8.79 3.74

* error (%) 0.48 0.01 0.1 4.46
* error % = (|Actual − Identified|/Actual) × 100%.

The above examples have shown that the information of frequency sensitivity analysis
can greatly reduce the number of material constants required to be used in the minimization
process so that only a few iterations, usually fewer than 10, are needed to identify any
material constant. The attainment of good estimates of material constants in an efficient
and effective way is the merit of the proposed material constant identification procedure.
It is also worth pointing out that the proposed procedure can be applied to identify the
material constants of laminated composite plates with other boundary conditions.

6. Conclusions

A new SFSDT-based Ritz method has been presented to analyze the free vibration
of rectangular thick laminated composite cantilever plates. In the proposed method, the
two sets of characteristic functions used to model, respectively, the two deflection com-
ponents, namely, bending and through-thickness shear-deformation-induced deflections,
for forming the total plate deflection, are required to be independent and satisfy the dis-
placement and force conditions at the fixed edge of the plate. It has been shown that the
selection of the polynomial type characteristic functions for modeling the bending-induced
deflection, and the trigonometric type characteristic functions for the through-thickness
shear-deformation-induced deflection is applicable for the free vibration of thin as well
as thick composite plates. The existing theoretical and experimental results of several
composite plates under free vibration have been used to verify the accuracy of the proposed
method. In particular, the proposed method can predict exactly the same natural frequen-
cies as those reported in the literature for thin symmetrically laminated composite plates.
As for thick composite plates, the present method can predict the first six natural frequen-
cies with percentage differences of less than 6.4% when compared with the experimental
natural frequencies of a thick composite plate with a 0◦ fiber angle and length-to-thickness
ratio equal to 5.15. A number of square composite cantilever plates with different length-to-
thickness ratios and fiber angles have been analyzed using the proposed method to study
the effects of through-thickness shear deformation on the natural frequencies of the plates.
It has been shown that irrespective of fiber angles, the decrease in length-to-thickness
ratio can cause significant decreases in the natural frequencies of the plates, especially
for higher modes. In particular, for the sixth natural frequency of the graphite/epoxy
[0, 902, 0]s square plate with a length-to-thickness ratio equal to 5, the decrease in the
natural frequency is about 50%. For application illustration, the proposed method has been
used in the assessment of material degradation of composite cantilever plates. A novel
procedure has been presented to identify the material constants of degraded composite
cantilever plates using the information obtained from the sensitivity analysis of natural
frequencies subjected to any material constant variation. In the proposed procedure, the
number of design variables to be determined in a minimization technique has been greatly
reduced so that the convergence problems which may have been encountered in many
existing material constant identification methods can be circumvented. The examples have
illustrated that the proposed material constant identification procedure can produce good
estimates of the true current E1, E2, and G12 with errors less than 4.5%, and in identifying
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each material constant, fewer than 10 iterations are needed to produce a good estimate of
the true value.
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Appendix A

Elements of system matrices:
 K11 · · · K1(Rm+Rn)

...
. . .

...
K(Rm+Rn)1 · · · K(Rm+Rn)(Rm+Rn)

− ω2

 m11 · · · m1(Rm+Rn)
...

. . .
...

m(Rm+Rn)1 · · · m(Rm+Rn)(Rm+Rn)





C1
...

CRm+Rn

 =


0
...
0

 (A1)

1. Mass matrix M

mqr =
ρh
α

[
a2φ

(0000)
mbmbnbnb

+ h2

12 φ
(1100)
mbmbnbnb

+ h2

12 φ
(0011)
mbmbnbnb

]
(A2)

here

q = 1, 2, 3, . . . , Rm
r = 1, 2, 3, . . . , Rm

mqr =
ρha2

α
Cφ

(0000)
mbmsnb0 (A3)

here

q = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms
r = 1, 2, 3, . . . , Rm

mqr =
ρha2

α
Sφ

(0000)
mbmsnbns

(A4)

here

q = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = 1, 2, 3, . . . , Rm

mqr =
ρha2

α
Cφ

(0000)
mbmsnbns

(A5)

here

q = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = 1, 2, 3, . . . , Rm
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mqr =
ρha2

α
Cφ

(0000)
mbmsnb0 (A6)

here

q = 1, 2, 3, . . . , Rm
r = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms

mqr =
ρha2

α
CCφ

(0000)
msms00 (A7)

here

q = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms
r = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms

mqr =
ρha2

α
SCφ

(0000)
msmsns0 (A8)

here

q = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms

mqr =
ρha2

α
CCφ

(0000)
msmsns0 (A9)

here

q = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms

mqr =
ρha2

α
Sφ

(0000)
mbmsnbns

(A10)

here

q = 1, 2, 3, . . . , Rm
r = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

mqr =
ρha2

α
SCφ

(0000)
msmsns0 (A11)

here

q = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms
r = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

mqr =
ρha2

α
SSφ

(0000)
msmsnsns

(A12)

here

q = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

mqr =
ρha2

α
SCφ

(0000)
msmsnsns

(A13)

here

q = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms



Appl. Sci. 2023, 13, 5101 19 of 24

mqr =
ρha2

α
Cφ

(0000)
mbmsnbns

(A14)

here

q = 1, 2, 3, . . . , Rm
r = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

mqr =
ρha2

α
CCφ

(0000)
msmsns0 (A15)

here

q = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms
r = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

mqr =
ρha2

α
SCφ

(0000)
msmsnsns

(A16)

here

q = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

mqr =
ρha2

α
CCφ

(0000)
msmsnsns

(A17)

here

q = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

2. Stiffness matrix K

Kqr =
D11
αa2 φ

(2200)
mbmbnbnb

+ 2αD12
a2

(
φ
(2002)
mbmbnbnb

+ φ
(0220)
mbmbnbnb

)
+ 2D16

a2

(
φ
(2101)
mbmbnbnb

+ φ
(1210)
mbmbnbnb

)
+ α3D26

a2 φ
(0022)
mbmbnbnb

+ α2D26
a2

(
φ
(0121)
mbmbnbnb

+ φ
(1012)
mbmbnbnb

)
+ 2αD66

a2 φ
(1111)
mbmbnbnb

(A18)

here

q = 1, 2, 3, . . . , Rm
r = 1, 2, 3, . . . , Rm

Kqr =
1

αa2

(
a2α2

2
D44CCφ

(0011)
msms00 + a2αD45CCφ

(1010)
msms00 + a2αD54CCφ

(0101)
msms00 +

a2

2
D55CCφ

(1100)
msms00

)
(A19)

here

q = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms
r = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms

Kqr =
1

αa2

(
a2α2

2
D44SCφ

(0011)
msmsns0 + a2αD45SCφ

(1010)
msmsns0 + a2αD54SCφ

(0101)
msmsns0 +

a2

2
D55SCφ

(1100)
msmsns0

)
(A20)

here

q = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms

Kqr =
1

αa2

(
a2α2

2
D44CCφ

(0011)
msms0ns

+ a2αD45CCφ
(1010)
msms0ns

+ a2αD54CCφ
(0101)
msms0ns

+
a2

2
D55CCφ

(1100)
msms0ns

)
(A21)

here

q = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns
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r = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms

Kqr =
1

αa2

(
a2α2

2
D44SCφ

(0011)
msmsns0 + a2αD45SCφ

(1010)
msmsns0 + a2αD54SCφ

(0101)
msmsns0 +

a2

2
D55SCφ

(1100)
msmsns0

)
(A22)

here

q = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms
r = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

Kqr =
1

αa2

(
a2α2

2
D44SSφ

(0011)
msmsnsns

+ a2αD45SSφ
(1010)
msmsnsns

+ a2αD54SSφ
(0101)
msmsnsns

+
a2

2
D55SSφ

(1100)
msmsnsns

)
(A23)

here

q = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

Kqr =
1

αa2

(
a2α2

2
D44SCφ

(0011)
msmsnsns

+ a2αD45SCφ
(1010)
msmsnsns

+ a2αD54SCφ
(0101)
msmsnsns

+
a2

2
D55SCφ

(1100)
msmsnsns

)
(A24)

here

q = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

Kqr =
1

αa2

(
a2α2

2
D44CCφ

(0011)
msmsns0 + a2αD45CCφ

(1010)
msmsns0 + a2αD54CCφ

(0101)
msmsns0 +

a2

2
D55CCφ

(1100)
msmsns0

)
(A25)

here

q = Rm + qi + 2(qi − 1)Ns; qi = 1, 2, 3, . . . , Ms
r = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

Kqr =
1

αa2

(
a2α2

2
D44SCφ

(0011)
msmsnsns

+ a2αD45SCφ
(1010)
msmsnsns

+ a2αD54SCφ
(0101)
msmsnsns

+
a2

2
D55SCφ

(1100)
msmsnsns

)
(A26)

here

q = Rm + (qi − 1) + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

Kqr =
1

αa2

(
a2α2

2
D44CCφ

(0011)
msmsnsns

+ a2αD45CCφ
(1010)
msmsnsns

+ a2αD54CCφ
(0101)
msmsnsns

+
a2

2
D55CCφ

(1100)
msmsnsns

)
(A27)

here

q = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

r = Rm + qi + 2(qi − 1)Ns + 2qj; qi = 1, 2, 3, . . . , Ms; qj = 1, 2, 3, . . . , Ns

3. where
mb = sb + 2 (A28)

nb = sb − 1 (A29)

q
(Nb + 2)

= (Nb + 2)× sb + sb (A30)

ms = ss + 2 (A31)

ns = ss + 1 (A32)
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q − Rm − 1
(2Ns + 1)

= (2Ns + 1)× ss + ss (A33)

with

φ
(ijkl)
mmnn =

∫ 1

0

∫ 0.5

−0.5

(
∂(i)ξm

∂ξ(i)

)(
∂(j)ξm

∂ξ(j)

)(
∂(k)ηn

∂η(k)

)(
∂(l)ηn

∂η(l)

)
dη dξ (A34)

Sφ
(ijkl)
mmnn =

∫ 1

0

∫ 0.5

−0.5

(
∂(i)ξm

∂ξ(i)

)[
∂(j)

∂ξ(j)
sin
(

mπξ

2

)](
∂(k)ηn

∂η(k)

)[
∂(l)

∂η(l)
sin(nπη)

]
dη dξ (A35)

Cφ
(ijkl)
mmnn =

∫ 1

0

∫ 0.5

−0.5

(
∂(i)ξm

∂ξ(i)

)[
∂(j)

∂ξ(j)
sin
(

mπξ

2

)](
∂(k)ηn

∂η(k)

)[
∂(l)

∂η(l)
cos(nπη)

]
dη dξ (A36)

SSφ
(ijkl)
mmnn =

∫ 1

0

∫ 0.5

−0.5

[
∂(i)

∂ξ(i)
sin
(

mπξ

2

)][
∂(j)

∂ξ(j)
sin
(

mπξ

2

)][
∂(k)

∂η(k)
sin(nπη)

][
∂(l)

∂η(l)
sin(nπη)

]
dη dξ (A37)

CCφ
(ijkl)
mmnn =

∫ 1

0

∫ 0.5

−0.5

[
∂(i)

∂ξ(i)
sin
(

mπξ

2

)][
∂(j)

∂ξ(j)
sin
(

mπξ

2

)][
∂(k)

∂η(k)
cos(nπη)

][
∂(l)

∂η(l)
cos(nπη)

]
dη dξ (A38)

SCφ
(ijkl)
mmnn =

∫ 1

0

∫ 0.5

−0.5

[
∂(i)

∂ξ(i)
sin
(

mπξ

2

)][
∂(j)

∂ξ(j)
sin
(

mπξ

2

)][
∂(k)

∂η(k)
sin(nπη)

][
∂(l)

∂η(l)
cos(nπη)

]
dη dξ (A39)

r
(Nb + 2)

= (Nb + 2)× (mb − 2) + nb + 1 (A40)

q
(Nb + 2)

= (Nb + 2)× (mb − 2) + nb + 1 (A41)

r − Rm − 1
(2Ns + 1)

= (2Ns + 1)× (ms − 1) + ns − 1 (A42)

q − Rm − 1
(2Ns + 1)

= (2Ns + 1)× (ms − 1) + ns − 1 (A43)
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