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Abstract: The thalamus is a subcortical brain structure linked to the motor system. Since certain
changes within this structure are related to diseases, such as multiple sclerosis and Parkinson’s, the
characterization of the thalamus—e.g., shape assessment—is a crucial step in relevant studies and
applications, including medical research and surgical planning. A robust and reliable thalamus-
segmentation method is therefore, required to meet these demands. Despite presenting low contrast
for this particular structure, T1-weighted imaging is still the most common MRI sequence for tha-
lamus segmentation. However, diffusion MRI (dMRI) captures different micro-structural details of
the biological tissue and reveals more contrast of the thalamic borders, thereby serving as a better
candidate for thalamus-segmentation methods. Accordingly, we propose a baseline multimodal-
ity thalamus-segmentation pipeline that combines dMRI and T1-weighted images within a CNN
approach, achieving state-of-the-art levels of Dice overlap. Furthermore, we are hosting an open
benchmark with a large, preprocessed, publicly available dataset that includes co-registered, T1-
weighted, dMRI, manual thalamic masks; masks generated by three distinct automated methods;
and a STAPLE consensus of the masks. The dataset, code, environment, and instructions for the
benchmark leaderboard can be found on our GitHub and CodaLab.

Keywords: thalamus; segmentation; diffusion MRI; public dataset; deep learning; benchmark

1. Introduction

The thalamus (Figure 1) is a bilateral subcortical brain structure. Each of its two
parts measure on average 20 mm in the left–right direction (radiological convention) and
30 mm in the anterior–posterior direction [1]. It is located in the central region of the brain,
below the ventricles and fornix, and above the hypothalamus (Figures 1 and 2). Despite
its relatively small volume, the thalamus can be further divided into nuclei depending
on the cytological differences existing across different regions of the same structure [1].
The thalamus also has a central physiological role in the nervous system, functioning as
a signal transponder owing to the white matter connecting it to a wide area of the cortex.
Furthermore, it is involved in other functions, including the regulation of sleep, alertness,
motor functions, and spoken language [1,2].

Many neurological disorders are associated with thalamic changes. This region of the
brain includes targets for deep-brain stimulation and stereotactic ablation for the treatment
of symptoms of conditions such as Parkinson’s disease, essential tremors, epilepsy, chronic
pain syndrome, and multiple sclerosis [3,4]. In the context of surgical planning, accurate
segmentation is essential for the success of therapy. Relevant surgical approaches include
focused ultrasound thalamotomy, where the segmentation requirement is the rapidity of
its estimation for improving operation efficacy [5]. Accurate segmentation is also highly
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desirable in the follow-ups and studies of the as-of-yet unclear mechanisms driving these
diseases [6].

Figure 1. The thalamus’s structure and location in the brain.

Figure 2. Location of thalamus in orthogonal views: left thalamus in beige (label 10 in FreeSurferCol-
orLUT) and right thalamus in green (label 49 in FreeSurferColorLUT).
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Magnetic resonance imaging (MRI) is frequently employed to visualize the thalamus, as
it enables the non-invasive observation of in vivo deep brain structures under safe conditions
for the patient. A wide variety of automated tools are available for MRI-based thalamus
segmentation. Nonetheless, manual segmentation is still considered the “gold standard”, as it
overcomes the low contrast and resolution achievable in standard 1.5 and 3T T1-weighted
acquisitions [7]. In fact, these limitations in contrast and resolution may constitute a bias,
thereby yielding suboptimal segmentation results. Unfortunately, manual segmentation has
its own limitations: discrepancies owing to the scarcity of protocols [8–10]; the need for trained
raters; and an excessively large execution time [7], especially for larger datasets. Consequently,
the development of faster and more robust automatic thalamus-segmentation methods is
crucial.

The T1-weighted scan is one of the most widespread MRI sequences owing to the
rapidity and relative simplicity of its acquisition, visual similarity with anatomical slices,
and good spatial resolution [11,12]. For these reasons, it is also one of the most used MRI
types with both manual and automated segmentation methods. In the field of neurological
structures, existing automated segmentation methods can be primarily categorized as
atlas-based or deep-learning-based.

As atlas-based methods, the fsl_anat [13] tool of the FSL software and
FreeSurfer [14] represent atlas-guided thalamus segmentation approaches, serving as the
most popular automated tools, despite their time-intensive underlying algorithms [15]
and tendency to overestimate the thalamic shape compared to manual segmentation [7].
Recently, a less common structural acquisition of white-matter-nulled MP-RAGE images
has been employed to collect data using a 7T MRI scanner, leading to the development
of Thalamus-Optimized Multi-Atlas Segmentation (THOMAS) [1]. Theoretically, such a
sequence would enhance the thalamic contrast on a 7T MRI scanner. THOMAS has been
successfully used to segment 12 thalamic nuclei with Dice coefficients of 0.85 and 0.7 for
large and small nuclei, respectively. Unfortunately, only qualitative results were produced
for its feasibility on 3T MRI, whereas quantitative validation is necessary given the known
complexity of the task [4,16].

Methods built upon deep learning strategies allow for fast thalamic segmentation, at
the cost of requiring a large quantity of data for training in order to avoid overfitting [17,18].
Some exceptional methods [6,19,20] can obtain good segmentation results even with smaller
datasets by using artifices such as multi-scale patches. However, generalizability cannot be
ensured given an insufficient test set.

One of the most recent and high-performing deep learning techniques is Quick-
NAT [17], which employs a Bayesian fully-convolutional neural network to estimate the
thalamus shape from T1-weighted MR images, requiring only 20 s when using a GPU. This
method uses multiple large datasets to ensure consistency across different MRI data.

The advantages derived from multimodality warrant further investigation. Indeed, the
multimodality of MRI has enabled highly accurate performance, reaching Dice coefficients
of 0.878 and 0.890 for the two thalami when calculated against manual segmentation [21].
Specifically, the random forest algorithm was employed to generate predictions based on
structural (T1 and T2-weighted) and diffusion-weighted MRI. In particular, diffusion MRI
(dMRI) alone has been frequently employed in prior studies to perform this task [21–23].

Among the most recently proposed works, Battistella et al. [24] took advantage of
the orientation-distribution functions calculated using the spherical harmonic model to
detect and characterize the thalamus with satisfactory performance. In fact, the inher-
ent cytological differences within the thalamus serve as the basis for the hypothesis of
dMRI’s sensitivity to the microstructural modulations of this structure. By relying on the
Fourier transform that relates the dMRI signal to the propagator from which the orientation-
distribution function is calculated, information regarding the brain tissue architecture can
be inferred for each voxel [25]. This is possible because the propagator represents the prob-
ability that the water volume inside the brain undergoes displacement r in diffusion time τ,
which reflects the diffusion process constrained by the walls of the compartment therein
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(e.g., the white matter axon). The use of dMRI to obtain microstructural details of brain
tissue offers the potential to enable more robust and accurate segmentation procedures.

Despite the significant potential of deep learning methods and the use of diffusion data
for thalamus segmentation, few attempts have been made to combine the two approaches
for that purpose [26,27]. One reason behind the scarcity of research pertaining to this subject
is the complexity of using multimodality on CNNs, specifically with dMRI. Additional
steps demanded by the use of dMRI data with CNNs include: fitting a diffusion model and
computation of diffusion tensor maps; complex registration processes among different MRI
sequences; changes in the CNN architecture to handle multiple inputs; manipulation of
diffusion tensor maps. All of these steps require a rigorous methodology to express the
advantages of diffusion data. Additional challenges, such as the scarcity of large datasets
and ground truth (manually annotated segmentations), are more pronounced in dMRI, as
the acquisition is more costly and the interpretation of diffusion data is not as trivial as it is
on T1-weighted images [28].

The primary objectives of this study were to provide a benchmark for the development
of more precise thalamus-segmentation methods, taking advantage of diffusion MRI data;
promote fair comparisons among different methods; and interpret the contribution of
dMRI to the segmentation task. The main contributions of this work are: a large processed
benchmark dataset composed of annotated co-registered T1-weighted and diffusion MRI;
a set of different thalamic masks for each subject computed using atlas- and CNN-based
methods and statistically-combined masks; manual ground-truth data provided by experts;
a baseline framework useful in the processing of diffusion data and additional training of
CNNs for thalamus segmentation; and an ablation study on the contribution of dMRI to
this task.

Motivation

As mentioned previously, the vast majority of thalamus-segmentation methods use
exclusively T1-weighted images [6,15–20,29], an MR sequence that fails to present a good
contrast on the thalamus borders (Figure 3-T1). In contrast, diffusion MRI naturally ac-
counts for the different properties of the brain’s microstructure [28,30–33], leading to higher
contrast for certain sub-cortical structures, and consequently greater potential as a tool for
segmentation problems.

Figure 3. Axial slices in the thalamus region with thalamic borders highlighted (areas pointed by
the arrows): T1-weighted image and examples of diffusion indices (fractional anisotropy, mean
diffusivity, and axial diffusivity) from diffusion tensor imaging. Adapted with permission from
Ref. [26]. 2021 Society of Photo-Optical Instrumentation Engineers (SPIE).

For example, when visualizing scalar maps computed from diffusion tensor imaging
(Figure 3), the frontiers of the thalamus with other structures are clearly visible: on FA
maps, for instance, the boundary between the thalamus and internal capsule is shown with
a higher contrast due to the differing anisotropic diffusivity of these structures.

Another indicator of the potential of dMRI for thalamus segmentation is the use of
diffusion indices to parcel the thalamus [2,24,34]. In summary, the parcellation of thalamic
nuclei is reliable only when using diffusion MRI.

Considering that dMRI can highlight more differences between the thalamus and its
neighboring structures than other MRI contrasts, it may even lead to a more appropriate



Appl. Sci. 2023, 13, 5284 5 of 21

delineation of the actual structure, thereby pushing the theoretical limits of segmentation
performance for both manual and automatic methods.

Despite being able to carry a higher contrast for certain brain structures, dMRI presents
some disadvantages, including: an excessive acquisition time in the MR scanner; typically
lower spatial resolution compared to T1-weighted images; a high computational complexity
owing to multiple diffusion directions; complex registration in cases where T1-weighted im-
ages or T1-derived annotations are needed simultaneously; and extra non-trivial processing
steps [31,32], as in the cases of geometrical corrections and model fitting.

One of the primary motivations for the use of CNNs is a significant decrease in
prediction time compared to other available methods. For instance, the segmentation of a
whole brain can be achieved in a matter of seconds—i.e., QuickNAT requires 20 s when
using a GPU—whereas atlas-based methods usually demand hours. Furthermore, the
latest CNN methods represent the current state-of-the-art in terms of overlap metrics for
segmenting brain structures [17,35].

The main downside of these approaches is the requirement for sufficiently large
annotated datasets. Furthermore, the performance of these methods is closely linked to the
quality of the data labels [36]. In addition, the input data must be diverse and consistent to
ensure satisfactory CNN performance. Specifically, the data and labels require appropriate
standardization, especially when working with multimodal data [37].

Despite the high performance of segmentation methods using T1-weighted images,
prior studies have demonstrated the great potential of dMRI for improving the quality of
thalamic segmentation [2,24,26,34]. However, preparing the dMRI to be used in conjunction
with CNNs for this purpose is not a trivial task. Accordingly, a primary motivation of this
work is the need for an appropriate dMRI processing pipeline for CNN approaches, and
there are the additional objectives of providing the preprocessing methodology, prepro-
cessed data, and a benchmark test set to facilitate comparisons with future works.

2. Materials and Methods

The following subsections provide details pertaining to the method’s pipeline (Figure 4),
including the preprocessing and organizational stages and the segmentation methods and
CNN framework.

The processed dataset used for training, testing, and benchmarking throughout this
study has been made publicly available. Additional details regarding the folder and file tree
are available in the GitHub repository (https://github.com/MICLab-Unicamp/thalamus_
benchmark_diffusion) (accessed on 20 April 2023).

2.1. Dataset

The Human Connectome Project (HCP) [38] is a consortium that studies brain con-
nectivity in healthy adults and releases all relevant data. It provides MR images col-
lected in many modalities, including the structural T1 and diffusion-weighted images
employed throughout this study. HCP T1-weighted acquisition was performed using a
3D magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence (rep-
etition time (TR)/echo time (TE) = 2400/2.14 ms, flip angle (FA) = 8◦, field of view
(FOV) = 224 mm, 0.7 mm isotropic resolution, 256 slices), whereas the diffusion-weighted
images were acquired using a Stejskal–Tanner monopolar diffusion-encoding scheme
(TR/TE = 5500/89 ms, FA = 160◦, FOV = 210 mm, 1.25 mm isotropic resolution, 111 slices,
b-values = 1000/2000/3000 s/mm2 with 90 non-collinear gradient directions for each b-
value and 18 b0 volumes) [38]. The consortium provides minimally pre-processed data for
both modalities [39]. T1-weighted MRI data were corrected for gradient, readout, and bias
field distortions, whereas dMRI data includes b0 intensity normalization and correction for
susceptibility-induced b0 fields, eddy current, subject motion, and gradient distortions.

https://github.com/MICLab-Unicamp/thalamus_benchmark_diffusion
https://github.com/MICLab-Unicamp/thalamus_benchmark_diffusion
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Figure 4. Overview of data processing pipeline and its use for model training: Computation of
diffusion tensor maps, registration of images to diffusion space, automated and manual mask
generation, registration of masks to diffusion space, CNN training, and fine-tuning.

Although the HCP dataset encompasses data from more than 1200 subjects, a total
of 1065 subjects had scans for both diffusion- and T1-weighted MRI. As 2 subjects were
discarded due to issues with the registration process, the dataset used throughout this
study includes 1063 subjects.

The dataset is fairly balanced with respect to subjects’ sex, and has an age distribution
from 22 to 35 years (Figure 5).
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Figure 5. Age range and sex distributions for HCP dataset and test subset.

2.2. Silver Standard Creation

Since the use of manually annotated masks (ground truth) is impractical for a large
dataset, a silver standard may be employed instead. The silver standard is a non-ideal
mask, generated by automatic or semi-automatic methods, that may substitute the gold
standard for specific purposes, as in the case of CNN training prior to fine-tuning.

To generate a silver standard for each subject, three automatic segmentations were
obtained through three different algorithms: FreeSurfer [14] (Figure 6A), fsl_anat [13]
(Figure 6B), and QuickNAT (Figure 6C). This was achieved using only T1-weighted images
(in T1 space), as the methods are optimized to work with this specific MRI sequence.
Finally, the silver standard was generated using the STAPLE method [40,41] to statistically
combine the three segmentations (Figure 6). This procedure was performed for all subjects
in the dataset.

Figure 6. Axial view of the thalamic masks generated by different methods overlaid on silver standard
(in blue): (A) FSL—green; (B) FreeSurfer—red; (C) QuickNAT—yellow; (D) manual segmentation—
purple.

2.3. Manual Segmentation

All manual segmentations were generated following the protocol described in the
supplementary material, which uses the T1-weighted images and diffusion tensor maps
simultaneously, thereby circumventing the low contrast limitation and achieving a more
reliable segmentation of the thalamus.

In summary, the thalamus manual segmentation protocol employed in this work
considers the T1-weighted image and diffusion tensor maps, and the three views (axial,
coronal, and sagittal), to facilitate specialized decision-making processes. It also used
the ITK-SNAP software [42] to simultaneously display multiple grayscale images (e.g.,
T1-weighted and FA) along with the segmentation.

The proposed manual segmentation protocol was designed to facilitate the task and
stabilize the segmentation considering the relatively high inter- and intra-rater variability
in thalamic manual segmentation for T1 images alone, as demonstrated in [7]. Results of the
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proposed manual segmentation protocol are not intended to differ from the segmentation
in T1, as they refer to the same structure.

Of the 60 subjects examined in the manual segmentation task, 16 were classified by a
non-expert rater, and the remaining 44 by a physician with 15 years of experience in brain
structure and manual segmentation on MRI. All manual segmentations performed by the
non-expert also followed protocol and were used only to fine-tune the CNN. Only manual
segmentations were considered for model evaluation, with a total of 20 subjects.

To evaluate the variability of segmentation between the expert and non-expert raters,
five additional subjects were segmented by the latter, and certain metrics were com-
puted (Section 2.7). The comparison (Table 1) indicates that the manual segmentations from
the two raters are closer to each other than to the proposed silver standard, especially when
considering the overlap (Dice coefficient) and volumetric similarity.

Table 1. Inter rater comparison: DC—Dice coefficient; FNR—false negative ratio; VS—volumetric
similarity; AHD—average Hausdorff distance (in voxel size).

Comparison DC (SD) FNR FPR VS AHD (SD)

expert vs. non-expert 0.8022 (0.0804) 0.1228 0.2472 0.1555 0.2501 (0.0573)

expert vs. STAPLE 0.7880 (0.0310) 0.0070 0.3459 0.4128 0.2190 (0.0340)

non-expert vs. STAPLE 0.7108 (0.0655) 0.0129 0.4397 0.5577 0.3685 (0.0971)

2.4. Data Processing

The HCP dataset was processed to ensure its compatibility with CNN training. Specifi-
cally, minimal steps were taken to standardize and organize the data for use. The processed
benchmark dataset was subsequently released for public access.

Indices describing the brain microstructure were derived from the dMRI data by
reconstructing signals using a diffusion tensor imaging (DTI) model [43]. These models are
frequently employed in clinical activity under the assumption that each diffusion signal
coming from the brain tissue can be described by a Gaussian function. The dMRI signal
fitting is therefore obtained by calculating the tensor, a symmetric 3 × 3 matrix whose
parameters can be derived from the MR volumes acquired in different gradient directions.
Such a tensor is a representation of the 3D diffusion process for any voxel of the 3D volume,
and can be expressed via eigenvalue and eigenvector formulation.

The microstructural indices [44,45] used throughout this study were computed from
such eigenvalues. These indices were: axial diffusivity (AD), radial diffusivity (RD), mean
diffusivity (MD), and fractional anisotropy (FA). All relevant computations were performed
using the DIPY library [46] with the weighted least squares method. Only those dMRI
volume images corresponding to a b-value of 1000 s/mm2 (single shell DTI model) were
selected. This process generated four 3D volumes, one for each microstructural index, for
all subjects of the cohort.

Another crucial process applied to the data is the registration, which placed the
diffusion- and T1-weighted images, and the masks, within a single space, allowing them to
be simultaneously used by the CNN.

Although the HCP dataset comes with a T1w image registered to a diffusion space, it
does not provide an appropriate affine matrix. Therefore, we computed the registration
matrix (rigid transformation) using the T1w images on the T1 and diffusion spaces. Subse-
quently, the matrix was used to translate the masks to the diffusion space. It is important to
emphasize that the registration was visually inspected in 20% of the dataset, including all
subjects with manual segmentation. Likewise, all registration logs were inspected; the two
discarded subjects were flagged.

The decision to transport the T1-weighted images to the diffusion space, rather than the
other way around, was made because the scalar T1-weighted images do not suffer as much
from voxel interpolation during the registration process as tensor images would. Since the
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masks are integer values representing structures of the brain, they were interpolated with
the nearest-neighbor technique.

2.5. Data Organization

From the 1065 subjects selected for the dataset, the registration algorithm could not
converge for 2 subjects, which were discarded. Subsequently, 963 subjects containing only
silver-standard masks were allocated to the training set. From the remaining 100 subjects,
60 were manually segmented and used for fine-tuning and testing. A set composed of
40 subjects was reserved to increase the test set in the future (Table 2).

Table 2. Dataset for benchmark, its division for CNN model development and evaluation, and
available labels. Manual labels for the testing set exist but are not publicly available on the bench-
mark platform.

Labels

Dataset Subjects Freesurfer fsl_anat QuickNAT STAPLE Manual

Training 963 yes yes yes yes no

Fine-tuning
16 yes yes yes yes yes (non-expert)

24 yes yes yes yes yes

Testing 20 yes yes yes yes yes (benchmarking)

Reserved 40 yes yes yes yes no

All subject recruitment procedures and informed consent forms, including consent to
share de-identified data, were approved by the Washington University Institutional Review
Board (IRB) [47]. Permission for using open-access data in the present study was obtained
from the HCP.

2.6. Segmentation Method

Despite frequent proposals of newer architectures and frameworks, current state-of-
the-art deep-learning-based methods, including QuickNAT [17] and nnU-Net [35], are
based on the U-Net architecture, one of the most popular CNN architectures for medical
imaging. We also employed the U-Net [48] architecture to segment the thalamus, as it
represents a baseline segmentation result for the proposed benchmark.

To segment the thalamus using a multimodality dataset, the U-Net model was trained
with a multichannel input: each channel received T1w or diffusion images (Figure 7). This
is the standard U-Net architecture, which is able to handle any amount of input channels by
changing the corresponding hyperparameter [49–53]. When using more than one channel,
the U-Net fuses all input channels in the first convolutional layer, transferring features
extracted from all inputs to the inner layers.

We used image patches throughout the training and fine-tuning procedures, as U-Net
is a fully-convolutional neural network (FCNN) [54], whose training and prediction phases
do not require images of the same size. This is advantageous for many reasons: it increases
the amount of training data; it makes the model more immune to location variance, as the
thalamus may be present anywhere within a patch; it balances the amounts of background
and foreground present during training; and it simplifies the extraction of 2D images from
the 3D MRI to feed the 2D CNN architecture.

For the output, we employed a softmax activation with two channels for the back-
ground and thalamus (foreground), respectively. The target for the output was the thalamus
segmentation mask, guided by a soft Dice loss [55]. During fine-tuning, we exploited the
encoder-decoder nature of the U-Net, freezing the pre-trained encoder and updating only
the decoder weights.



Appl. Sci. 2023, 13, 5284 10 of 21

Encoder Decoder

Feature concatenation

N of output channels
32 64 128 256

512 256 128 64

Input Convoution Output Convolution

U-Net Architecture Volumetric Prediction Methodology

Sagittal U-Net

Coronal U-Net

Axial U-Net

/3

> 0.5 

Figure 7. Thalamus segmentation framework: standard U-Net trained with multi-channel patches,
and aggregation of multiple models for final prediction.

The aforementioned training strategy can be applied to multiple models. We used a
multi-view 2D approach to obtain a volumetric thalamus segmentation (Figure 7). First, we
predicted the volumetric segmentation three times using different 2D CNN models trained
for each respective slicing orientation (axial, sagittal, and coronal). Subsequently, the three
volumetric predictions were combined into a single final prediction volume as follows:
Seg = ((A+ S+C)/3) > 0.5. Here, A, S, and C denote the activations for the axial, sagittal,
and coronal networks, respectively. Although such a view aggregation requires more
computation than a single-view 2D CNN, it significantly improves segmentation quality,
primarily by eliminating low-confidence misclassified voxels from the predictions [56].
Furthermore, it requires considerably less computational resources than an equivalent
3D approach. The latter does not guarantee superior performance to the single-view 2D
approach [57]. In fact, prior studies have shown equivalent results when comparing 2D
view aggregation with the 3D convolutional approach [17,52,58,59].

2.7. Evaluating Metrics

The following metrics were used to evaluate segmentation performance on the test set,
with the manual segmentation done by a specialist used as ground truth: Dice coefficient,
false negative error, false positive error, Jaccard coefficient, and average Hausdorff distance.
However, we focused solely on the Dice coefficient and average Hausdorff distance, as they
will be used for the purpose of an open benchmark.

The requirement for different metrics to evaluate segmentation results arises from
the complementarity of these metrics in comparing method output to the ground truth.
For example, whereas the Dice coefficient evaluates the overall accordance between two
objects, the average Hausdorff distance indicates the behavior of agreement in the shells of
the volumes [60].

To define some of the metrics used in this study, we consider the four basic cardinalities
of the confusion matrix that indicate overlap between the two masks. True positives (TP):
number of positive voxels included in both the automatic segmentation and ground-truth
mask; false positives (FP): number of positive voxels included in the automatic segmentation
but not in the ground-truth mask; true negatives (TN): number of voxels taken as negative
(background) in both the automatic segmentation and ground-truth mask; false negatives
(FN): number of positive voxels in the ground-truth mask that were not included in the
automatic segmentation.

The Dice similarity coefficient, or Dice coefficient (DC), is a spatial overlap index that
ranges from 0 to 1, denoting zero overlap and complete overlap, respectively, [61].

DC =
2TP

2TP + FP + FN
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The Hausdorff distance (HD) is a measure of dissimilarity comparing image segmen-
tations [62]. Given the set of voxels VA of mask A and the set of voxels VB of mask B the
Hausdorff distance is such that

HD(VA, VB) = max(h(VA, VB), h(VB, VA))

where h(VA, VB) is the directed Hausdorff distance given by

h(VA, VB) = maxx∈VA{miny∈VB{||x− y||}}

where ||x − y|| is an arbitrary norm (in our case, Euclidean distance). In this work, the
dimension of the Hausdorff distance is expressed in voxel size.

The average Hausdorff distance (AHD), or simply average distance, is more stable and less
sensitive to outliers than the conventional HD, representing the mean HD over all points

AHD(VA, VB) = max(d(VA, VB), d(VB, VA))

2.8. Computational Framework

To conduct the training process, we employed Python Jupyter Notebooks and PyTorch
Lightning, a wrapper of the PyTorch library that facilitates the “software engineering”
stages of the training process—e.g., logging, data loading, model checkpointing, and the
training loop. Training was performed on an Nvidia RTX 2080 Ti GPU (11 GB GDDR6 and
4352 CUDA cores), i9-9900K CPU @ 3.60 GHz, and 64 GB of RAM.

With this setup, the training and fine-tuning, described in Sections 2.6 and 3.3, require
for each CNN model about 60 min and 15 min, respectively. The segmentation prediction
for each CNN model takes less than 5 s. Among all processes described in this work, only
training, fine-tuning, and prediction ran on the GPU, as they are the only ones designed to
use CUDA cores.

2.9. Leaderboard Platform

For the benchmark, we are hosting a competition on the CodaLab platform [63], where
participants may submit their segmented data to be automatically evaluated and entered
in the leaderboard. Our competition can be found at https://codalab.lisn.upsaclay.fr/
competitions/8329 (accessed on 20 April 2023).

The evaluation criteria are based on the Dice coefficient score, computed using the
complete testing dataset. Individuals and groups can submit their segmented data directly
on the platform, with a limitation of two submissions per day. To appropriately submit
segmented data, detailed information can be found on our CodaLab page.

Our GitHub (https://github.com/MICLab-Unicamp/thalamus_benchmark_diffusion)
(accessed on 20 April 2023) offers the baseline for CNN training, and all necessary code to
process and organize the data prior to submission.

3. Experiments and Results

The following subsections present the experiments conducted throughout this study,
and their results.

3.1. Data Preparation for CNN Training and Predicting

The first step encompasses the filtering and normalization of data. The T1-weighted
MR, AD, RD, MD, and FA images were all normalized between zero and one to be used
as input for the CNN. Prior to that, a percentile filter was applied to eliminate 0.2% of
the highest values in each channel, as defined in preliminary experiments. This step is
necessary to eliminate any spurious voxel values and keep all input channels within the
same normalized range. Failure to follow this step may result in suboptimal performance,
as high-value voxels and discrepancies among the maximum values of each map may

https://codalab.lisn.upsaclay.fr/competitions/8329
https://codalab.lisn.upsaclay.fr/competitions/8329
https://github.com/MICLab-Unicamp/thalamus_benchmark_diffusion
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obscure brain tissue information from the CNN, and any comparison study would not be
valid.

The next step is to generate patches from the images to be used for training. Patches
were extracted for the three data views, allowing three corresponding models to be trained
and combined. Of the 60 patches extracted for each subject, all were randomly selected;
however, 50 were centered inside the thalamus to ensure good balancing of the amounts
of voxels inside and outside the segmenting structure. We stress that all input channels
and masks must be taken to have exactly the same size and coordinates for each patch to
maintain the alignment of input data.

Data were subsequently allocated among training, validation, fine-tuning, and testing
subsets. The testing set comprised the data of 20 subjects, for whom manual segmentation
was performed by the specialist. For the training phase, 963 subjects (Table 2) were split
among the training and validation sets according to an 80:20 ratio.

A data augmentation method was also applied during model training. This augmen-
tation was not performed on the raw diffusion or tensorial data, but on the scalar maps
computed from the DTI models, as the interpolation of tensors is not as straightforward
as that of scalar maps. Two data augmentation techniques were applied to the images:
rotation constrained by limits of −5◦ to +5◦ with a random distribution, and horizontal
reflection. We note that the latter does not apply to the sagittal view, which does not exhibit
lateral symmetry. Furthermore, the masks and input channels must undergo identical
transformations to keep them aligned. Data augmentations such as translations were not
used, as the patching also functions as an augmentation method to make the CNN more
generalizable to translations.

Finally, the training masks were appropriately standardized, as the automated segmen-
tation methods (FSL, FreeSurfer, QuickNAT, and STAPLE) assign different labels to each
thalamus with respect to laterality. The standardization consists of setting the background
and structures to zero and one, respectively, (we employed a single label for both thalami).
Nonetheless, the offered framework supports multiple labels, allowing for multi-structure
segmentation as necessary.

3.2. Setting Hyperparameters

The hyperparameters for the training were obtained from preliminary experiments.
Patch sizes of 64 × 64 were chosen based on the optimal balance, training time, and data
storage. The learning rate was defined as 10−3, with a decay factor of 0.1 for every time
the validation loss function did not yield a significant improvement for 20 epochs. We
defined an offset of 30 epochs for training to terminate in the absence of improvement.
Adam was selected as the optimizer, as it yields substantially faster convergence and better
quantitative results than SGD [64].

The preliminary experiments also helped to define the approach regarding single or
multiple views. Using all available channels as input, the dice metrics of the test dataset
(Figure 8) indicate that the sagittal and axial views led to the worst results, whereas the
coronal and combined views led to the best results. We also note that the aggregated view
yielded the best AHD in terms of both average and standard deviation, indicating better
and more stable segmentation behavior. This occurred because the aggregation of views
corrects any misclassified voxels that appear far from the segmented thalamus. Accordingly,
view aggregation was chosen as the approach to be used.

3.3. Gaining Performance by Fine-Tuning

As the silver-standard mask was computed by combining three other automatic
segmentations, the CNNs were not initially fit to the manual segmentation protocol. Instead,
the CNN models were replicating the segmentation resulted from the STAPLE method. To
make the CNN model replicate the manual segmentation (ground truth), fine-tuning was
conducted with manually annotated data, presenting a substantial improvement (Table 3).
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Figure 8. Dice and average Hausdorff coefficients for each automatic segmentation method evaluated
on the test set.

Table 3. Dice coefficient (DC), average Hausdorff distance (AHD) in voxel size, and their respective
standard deviations (sd) for the test dataset before and after fine-tuning.

Not Fine-Tuned Fine-Tuned

Input Maps DC sd DC AHD sd AHD DC sd DC AHD sd AHD

FA, MD, RD, AD, T1 0.7775 0.0223 0.2320 0.0253 0.8970 0.0116 0.1102 0.0129

FA, MD, RD, AD 0.7721 0.0229 0.2389 0.0259 0.8904 0.0100 0.1158 0.0105

T1 0.7676 0.0242 0.2440 0.0272 0.8904 0.0154 0.1158 0.0157

Fine-tuning was performed by freezing the encoder component of U-Net and training
solely the decoder component. Conceptually, the feature extraction of the CNN model
was kept intact, and the reconstruction of the segmentation was adjusted to the manual
label. The same training hyper-parameters from the training phase were used during the
fine-tuning phase.

During the fine-tuning phase, 40 subjects with manual segmentation as ground truth were
used (Table 2). The input configuration (input channels and their order) was kept identical.

3.4. Input Maps Ablation Study

As our primary hypothesis assumed that diffusion tensor maps can improve the
quality of thalamus segmentation, the performances of models trained with each input
map individually were compared to those of models trained with a combination of input
maps. All models were trained using the data distribution described in Section 3.1. The
reported results are the average metrics among the 20 subjects from the test set.

The results (Table 4) indicate that the model trained on T1-weighted images yielded
the worst results for every computed metric. While they are still within state-of-the-art
levels, the worst Dice coefficients were obtained when the T1-weighted image was the only
input channel (DC of 0.8837). The same consideration is valid for the average Hausdorff
distance (AHD of 0.1230).

In contrast, models trained using diffusion tensor maps as input (single or combined
maps) exhibited improvements in Dice score. In fact, the worst result presented by a model
trained with a single diffusion map was a Dice coefficient of 0.8925 (AD), and the only
combined-channel model that yielded a Dice coefficient below 0.89 was that trained on MD
and T1. Furthermore, all combined models produced superior results to those of the model
using solely T1 images.

Noteworthy results were also obtained by the model trained on the combination of
all available maps. This combination, which can be regarded as the addition of T1 to the
combination of all diffusion maps, improved the DC from 0.8904 to 0.8970. Nonetheless, if
we consider the addition of diffusion indices to T1, the DC increases from 0.8837 to 0.8970,
representing a much more substantial improvement. Regardless of interpretation, this
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combination yielded the best performance in terms of the evaluation metrics, indicating that
the segmentation that uses all input channels exhibited more agreement with the ground
truth. This result is intriguing, as T1 images were associated with decreased performance
when combined with singular diffusion maps (FA and MD).

Table 4. Evaluation metrics for each CNN input map combination on the test set: DC—Dice coefficient;
FNR—false negative ratio; FPR—false positive ratio; JAC—Jaccard coefficient; VS—volumetric
similarity; AHD—average Hausdorff distance (in voxel size). The best and worst DC and AHD
results are in bold.

Fine-Tuned DC (SD) FNR FPR JAC VS AHD (SD)

T1 0.8837 (0.0154) 0.1649 0.0596 0.7920 −0.1193 0.1230 (0.0157)

FA 0.8945 (0.0089) 0.1390 0.0677 0.8092 −0.0795 0.1116 (0.0097)

MD 0.8931 (0.0122) 0.1326 0.0776 0.8071 −0.0615 0.1143 (0.0133)

RD 0.8935 (0.0115) 0.1364 0.0724 0.8077 −0.0715 0.1137 (0.0134)

AD 0.8925 (0.0131) 0.1419 0.0680 0.8061 −0.0829 0.1143 (0.0142)

FA, T1 0.8943 (0.0107) 0.1373 0.0700 0.8090 −0.0754 0.1119 (0.0112)

FA, MD 0.8943 (0.0113) 0.1327 0.0754 0.8089 −0.0638 0.1126 (0.0136)

MD, T1 0.8882 (0.0136) 0.1462 0.0716 0.7992 −0.0842 0.1185 (0.0132)

FA, MD, RD, AD 0.8904 (0.0100) 0.1509 0.0623 0.8026 −0.0994 0.1158 (0.0105)

FA, MD, RD, AD, T1 0.8970 (0.0116) 0.1182 0.0853 0.8135 −0.0367 0.1102 (0.0129)

Furthermore, results regarding the standard deviation reflect the segmentation stability
for each map and certain combinations (Figure 9). Again, we note that models trained on
T1-weighted images exhibited the highest dispersion in both DC and AHD. Nevertheless,
among the models trained with a single input, that trained with FA, produced the best
average and dispersion results.

Figure 9. Dice coefficient and average Hausdorff coefficient for each input map combination evaluated
on the test set. Star (∗) denotes statistical significance (p < 0.05) when compared to our best model
(all_maps). All p-values were estimated using a two-sided Wilcoxon signed-rank test.

A statistical analysis was conducted through a two-sided Wilcoxon signed-rank test to
compare the CNN models (Figure 9) and other methods (Figure 10) in terms of performance
against our best model, namely, the model that used all diffusion maps in conjunction with
T1-w images as input. We note that in addition to exhibiting better metrics when compared
to other methods, our approach’s results are significantly different, statistically. Identical
analyses were performed to compare every CNN model with a single input channel (Table 5)
to interpret their equivalences. From these tests, it is apparent that the statistical differences
between the T1 models and any of the diffusion models are much more significant than
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those between models that use diffusion maps as input. This implies that any of the tested
CNN models that use diffusion maps as input produce different results when compared
to a CNN with T1w images as input. Simultaneously, it is apparent that all CNN models
using single diffusion maps as input produced mutually similar results.

Table 5. Analysis of statistical significance between CNN models through two-sided Wilcoxon
signed-rank test on the test set, considering only models with a single input channel. Star (*) indicates
that the pair exhibits mutual statistical significance (p < 0.05).

Dice Coefficient—DC Average Hausdorff Distance—AHD

FA MD RD AD FA MD RD AD

T1 * 0.0020 * 0.0056 * 0.0083 * 0.0014 * 0.0023 * 0.0153 * 0.0172 * 0.0094

FA 0.4524 0.6742 0.3683 0.0973 0.2611 0.2774

MD 0.7012 0.8983 0.8983 0.4749

RD 0.7285 1.0000

3.5. Comparison with Existing Segmentation Tools

The results achieved by the proposed pipeline were compared to those of common
methods. Tools that are easy to use and well-validated in the thalamus-segmentation task
were selected for reproducibility purposes. To maximize diversity and generalizability, two
classes of segmentation methods were employed: atlas-based and CNN-based.

This comparison may be considered somewhat biased, as the ground-truth was gener-
ated with a combination of T1-weighted images and dMRI, whereas all other methods only
used T1. However, the masks generated with the assistance of dMRI are assumed to be
equivalent to those generated only on T1, as both represent the same structure.

FSL and FreeSurfer were evaluated as representative atlas-based methods. Their
segmentations were computed in the T1 original space, and subsequently registered to the
diffusion space to be compared against manual segmentation.

The QuickNAT framework was evaluated as an off-the-shelf CNN-based method. Al-
though the original QuickNAT weights were not fine-tuned to this specific dataset, all input
data were normalized according to the author’s requirements (FreeSurfer’s mri_convert
–conform command).

The results (Figure 10) indicate that the best evaluating metrics, excluding those
exhibited by our method, were obtained by FSL. All other methods, including STAPLE,
exhibited considerable differences in performance compared to the proposed method.
While these methods exhibited Dice coefficients in the range of 0.75 to 0.78, our CNN model
achieved DC values exceeding 0.9.

Figure 10. Dice and average Hausdorff coefficients for each segmentation method evaluated on the
test set. Star (∗) denotes statistical significance (p < 0.05) when compared to our optimal CNN model
(all_maps). All p-values were estimated using a two-sided Wilcoxon signed-rank test.
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3.6. Qualitative Results

A visualization of the 3D segmentations is used to display the similarities and differ-
ences between the ground-truth and each method’s results (Figure 11).

Figure 11. Thalamus segmentation: ground truth (manual segmentation) in red, silver standard (STA-
PLE) in blue on the (left), and CNN prediction (with the best model—all input channels combined)
in blue on the (right).

When comparing the manual annotation with the silver-standard mask, is is apparent
that the latter considers the thalamus a much broader structure than the former. Other
studies [7] have observed similar results. Another important consideration is that the
segmentation performed by the model after fine-tuning exhibits only minor differences
when compared with the specialist’s annotation, with only a few voxels misclassified the
borders of the thalami.

4. Discussion

Fine-tuning represents an effective approach when adjusting a model to manually
segmented data. Prior to fine-tuning, our CNN models produced inferior results compared
to those achieved by the atlas-based methods and QuickNAT segmentation. However,
the fine-tuning process yielded an absolute improvement of approximately 0.12 in the
Dice coefficient. It is important to remember that the encoder was frozen throughout
the fine-tuning phase, and only the decoder weights that reconstructed the segmentation
were trained.

Although minor differences in metrics were observed when aggregating all input, the
diffusion indices computed from DTI clearly improved the quality of thalamus segmen-
tation when used as input channels to the CNN. These differences in metrics were more
significant for the FA map and combination of all available maps when compared to the
case of using T1-weighted images alone as input. Further improvements may be obtained
by extending the proposed approach to other microstructural indices [65], especially when
multi-shell data, such as NODDI and MAP-MRI, are available, as for HCP.

As a single-input channel, T1-weighted achieved a Dice coefficient of approximately
0.88, representing the current state-of-the-art in thalamus segmentation, as reported in the
original QuickNAT work [17]. Therefore, the proposed method surpasses state-of-the-art
performance by incorporating dMRI, showing that aggregated multimodal information is
beneficial for the thalamus-segmentation task.

The DC attained by our reproduction of the QuickNAT was in the range of 0.79, as
opposed to the result of 0.88 reported by [17]. However, we stress that the QuickNAT
model was not fine-tuned to this specific dataset, and the only addition to the framework
was the “FreeSurfer conform”, as it is a requirement for the QuickNAT pipeline.

Among the three possible views, the sagittal view yielded the lowest dice coefficient.
A possible reason for this occurrence is the lack of thalamus symmetry under this view,
which restricts the horizontal-reflection technique. Furthermore, the thalamus shape is
more elongated in the anteroposterior axis, favoring the partial volume issue being more
pronounced in this view. This also explains the best segmentation quality in the coronal
view, where the thalamus exhibits the smallest cross section.
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Our best results were obtained when using all input maps simultaneously (diffusion
combined with T1). However, certain specific combinations unexpectedly led to deteri-
orated performance; i.e., the combination of the FA and MD yielded worse results than
either of its constituent maps. We hypothesize that the aggregation of maps with small
statistical differences is disadvantageous for the CNN model, as the resultant increase in
information does not outweigh the increase in complexity. However, further investigation
is required to understand this mechanism and determine the optimal map combinations
for this task.

Although the FSL masks yield better validation metrics compared to other automatic
masks, they were not selected as the silver standard during the training phase. Instead,
the masks created by combining FSL, FreeSurfer, and QuickNAT via STAPLE were used
for this purpose, as the combination of atlas- and CNN-based methods is more likely to
eliminate model bias.

As all CNN models used and shared throughout this study were trained and evaluated
on these specific benchmark data, we do not expect identical results if they are applied
directly to other datasets. This is one of the limitations of the presented method. To
successfully use our models and framework with other data, we recommended retraining
or fine-tuning the models in the new data domain. With appropriate fine-tuning, the model
is expected to yield comparable performance irrespective of dataset.

Additionally, our method was not tested on data from patients. Thus, in the presence
of disease, the performance of the method cannot be ensured. Actually, the performance is
expected to decrease if the model is not fine-tuned to adverse conditions.

The only segmented structure considered throughout this study was the thalamus.
However, the framework proposed here also offers the possibility of working with other
structures—such as the caudate, hippocampus, and putamen—as the dataset is published
with a variety of pre-segmented structures.

Future work will focus on segmenting the thalamus nuclei. The presented framework
is also able to perform structure parcellation—e.g., thalamus parcellation into nuclei—if
the proper ground truth is available. For this purpose, other diffusion maps, such as the
tensorial morphological gradient [22], could be beneficial to achieving optimal results.

5. Conclusions

This study presents a ready-to-use framework for the development of thalamus-
segmentation methods, comprising a processed multimodal dataset, code for reproducing
the baseline model, and a test set for benchmarking. The dataset, based on the HCP
data, encompasses a total of 1063 processed subjects with diffusion data, T1-weighted
images, segmentation masks from FSL, FreeSurfer, QuickNAT, and a combination of the
aforementioned masks through the STAPLE method. Furthermore, the dataset includes a
subset with professionally segmented images.

For benchmarking purposes, researchers can submit their predictions to a leaderboard
made available on our Codalab platform. A complete framework for training a CNN model
is also available on our GitHub for other researchers to build upon.

Our proposed method combines T1-weighted images with diffusion MRI, represent-
ing a valid option for accurate segmentation of the thalamic structure. We demonstrated
that the addition of diffusion MRI yields improvements in thalamus segmentation. Com-
parisons with existing state-of-the-art methods indicate the superiority of our approach,
although a more fair comparison would demand the fine-tuning of QuickNAT using our
manual masks.

The automatic generation of silver-standard masks circumvented the lack of a large
volume of manually annotated data. The model, pre-trained on the silver-standard mask
and fine-tuned on a small quantity of manual masks, led to an absolute improvement of
0.122 in the Dice coefficient.
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Supplementary Materials: The file describing the thalamus manual segmentation protocol can be
downloaded at: https://www.mdpi.com/article/10.3390/app13095284/s1. The dataset, code, environ-
ment, and instructions for the benchmark leaderboard can be found at https://github.com/MICLab-
Unicamp/thalamus_benchmark_diffusion and https://codalab.lisn.upsaclay.fr/competitions/8329 (ac-
cessed on 20 April 2023).
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