
Citation: Jha, P.; Sahu, M.; Isobe, T. A

UML Activity Flow Graph-Based

Regression Testing Approach. Appl.

Sci. 2023, 13, 5379. https://doi.org/

10.3390/app13095379

Academic Editors:

Robertas Damaševičius, Sanjay Misra

and Bharti Suri

Received: 30 March 2023

Revised: 9 April 2023

Accepted: 20 April 2023

Published: 25 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A UML Activity Flow Graph-Based Regression
Testing Approach
Pragya Jha 1,2,*,† , Madhusmita Sahu 1,† and Takanori Isobe 2,*,†

1 Department of Computer Science and Engineering, C. V. Raman Global University,
Bhubaneswar 752054, India

2 Graduate School of Information Sciences, University of Hyogo, Kobe 650-0047, Japan
* Correspondence: pragya.2k6@gmail.com (P.J.); takanori.isobe@ai.u-hyogo.ac.jp (T.I.)
† These authors contributed equally to this work.

Abstract: Regression testing is a crucial process that ensures that changes made to a system do
not affect existing functionalities. However, there is currently no adequate technique for selecting
test cases that consider changes in Unified Modeling Language (UML) activity flow graphs. This
paper proposes a novel approach to regression testing of UML diagrams, focusing on healthcare
management systems. We provide a formal definition of sequence and activity diagrams and their
relationship and construct corresponding activity flow graphs, which are used to develop a regression
testing algorithm. The proposed algorithm categorizes test cases into reusable, retestable, obsolete,
and newly generated categories by comparing old and new versions of UML activity flow graphs. The
methodology is evaluated using a custom-designed hospital management system website as the test
case, and the results demonstrate a significant reduction in time and resources required for regression
testing. Our study provides valuable insights into the application of UML diagrams and activity flow
graphs in regression testing, making it an important contribution to software testing research.

Keywords: Unified Modeling Language (UML) diagrams; sequence diagrams; activity diagrams;
regression testing; hospital management system

1. Introduction

Regression testing is a critical phase in software development that ensures previously
developed and tested software continues to perform as expected after any changes are
made to the system. It is performed during the software maintenance phase and consumes
a significant amount of time, cost, and effort in an organization’s software development life
cycle (SDLC). To minimize these factors, various test case selection, test suite minimization,
and test case priority techniques have been developed. One method that has shown promise
in minimizing the effort required for regression testing is the use of Unified Modeling
Language (UML) models. UML is a standard notation language used for modeling software
systems. It offers a graphical representation of software design, making it easier to visualize,
document, and communicate software requirements and designs. UML diagrams can
be classified into two main categories: structural diagrams and behavioral diagrams.
Structural diagrams represent the system’s static structure, while behavioral diagrams
represent the system’s dynamic behavior. One of the most commonly used UML behavioral
diagrams is the activity diagram, which depicts the system’s activity model. The activity
diagram displays the process from one activity to another, providing a high-level view
of the system’s behavior. The activity diagram can show a collection of activities carried
out by various system elements. The activity diagram is particularly useful in regression
testing since it enables testers to verify that the system continues to function as expected
after changes have been made.

In regression testing using UML models, the activity diagram is used to identify the
critical paths and activities that require testing. By focusing on the most critical paths and

Appl. Sci. 2023, 13, 5379. https://doi.org/10.3390/app13095379 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13095379
https://doi.org/10.3390/app13095379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5198-253X
https://doi.org/10.3390/app13095379
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13095379?type=check_update&version=1

Appl. Sci. 2023, 13, 5379 2 of 21

activities, testers can minimize the number of test cases required, reducing the overall
effort required for regression testing. The activity diagram can also be used to identify the
sequence of activities that need to be tested, ensuring that the system’s behavior remains
consistent after any changes have been made. Another UML behavioral diagram that can
be useful in regression testing is the sequence diagram. The sequence diagram depicts the
interactions between the different objects in the system, showing the order in which the
objects interact. By using the sequence diagram, testers can verify that the system remains
consistent after any changes have been made. They can also ensure that the system’s objects
continue to interact as expected, without any unexpected behavior.

One challenge in regression testing using UML models is the need to ensure that
the generated code is correct. This requires the UML models to be accurate, complete,
and consistent. Any errors or inconsistencies in the UML models can lead to incorrect
code generation, resulting in unexpected behavior in the system. To ensure the accuracy,
completeness, and consistency of the UML models, various verification and validation
techniques can be used, such as consistency checking, model simulation, and model
debugging. Regression testing is a crucial phase in software development that ensures
previously developed and tested software continues to function as expected after any
changes have been made. The use of UML models in regression testing can minimize the
effort required by identifying critical paths, activities, and classes that require testing. UML
models can also ensure the system’s behavior remains consistent after any changes have
been made. However, the accuracy, completeness, and consistency of the UML models
must be verified and validated to ensure that the generated code is correct.

We now present here some existing research works on regression testing on various
UML models and various case studies.

Pilskalns, Uyan, and Andrews give a detailed description of regression testing on
UML designs in [1]. In this work, they consider that due to the frequent changes in the
early stages of the software life-cycle, it is important to have a regression testing approach
that can be applied to the UML model. By categorizing design changes and classifying test
cases accordingly, a set of guidelines can be established for reusing existing test cases and
generating new ones, thus ensuring comprehensive testing of all affected components of
the system. Their approach offers a safe and efficient selective retest strategy. Refai et al.
in [2] presented a technique called FLiRTS (Fuzzy Logic-based Regression Testing System)
in their work, which is based on UML models. The proposed technique involves the
automatic refinement of abstract UML models to create comprehensive models that can
identify traceability relationships. The process of refinement involves some degree of
uncertainty, which is addressed by using fuzzy logic. The technique classifies test cases as
retestable based on the probabilistic correctness associated with the employed refinement.
The authors demonstrated the potential of FLiRTS with a simple case study. The technique
has the potential to be useful in the development of more efficient and effective regression
testing systems.

In the paper [3], Shin and Lim proposed a new test case prioritization (TCP) method
called AVM, which is based on an alternating variable approach, model-based develop-
ment, and mutation testing. The method involves using various mutation operators as
automatic seeding for mutation generation in UML statecharts. The AVM method was
compared with conventional TCP approaches such as a greedy algorithm for code coverage
or fault exposure potential. The effectiveness of the AVM method was evaluated using
the average percentage of fault detection (APFD) as a metric. The authors also performed
empirical research to generate model-based TCP results for three real-world challenges in
the automobile industry: a power window switch module, a body control module, and a
passive entry and start system.

The detection of changes in both syntax and semantics is essential. Arora et al. [4] have
proposed a method that combines UML class diagrams, use cases, and activity diagrams
to identify these changes. By comparing the UML models of the original and updated
code, the method achieves better change detection and enables more effective test case

Appl. Sci. 2023, 13, 5379 3 of 21

creation. In addition, the method reduces the average time required for regression testing by
employing mobile agents to distribute the testing workload. Yadav and Dutta [5], presented
a design and code-based technique with an evolutionary approach for selecting the most
suitable test cases from the test suite. The technique involves using the dependency graph
for an intermediate representation of the object-oriented program to identify changes. The
selection of test cases is performed at the design level using the UML model. Qu et al. [6],
proposed a method using universal UML to handle various graphical model modifications.
To obtain a modified UML graphics module structure, regression testing is required, which
is determined by domain of influence analysis on the impact of UML modifications on the
generated range of graphical model test cases. In [7] Gupta et al. examined the creation
of test cases for online applications and found a lack of real tools for test case generation.
They highlighted the need for an automated regression testing tool to generate test cases
directly from user requirements, which would reduce overall effort and cost.

Khalid et al. proposed an automated model for defining a system’s behavior using
non-deterministic automata (NFA) and a formal model based on discrete mathematical
ideas created using the Vienna Development Method (VDM-SL) to verify the reliability,
accuracy, and effectiveness of the E-health system while reducing maintenance and testing
costs [8]. According to Komashine et al. [9], no common diagrammatic language is used
to create improved health service systems based on the academic literature. Ma et al.
focused on utilizing UML models, such as use case diagrams, class diagrams, sequence
charts, and cooperation diagrams, to meet the daily needs of patient visits and inpatient
drug management [10]. Abdulla et al. [11], conducted an investigation study on hospital
management information systems, including a historical perspective of the system and its
stage of evolution, crucial functionalities, stakeholders, components, a three-layer graphics-
based model (3LGM), architecture design style, and standard HIS communication. Finally,
Rahma et al. emphasized the protection of patient data in the “Hospital Management
System” and how it enables quick information processing, reduces bookkeeping, and
maintains the accuracy of patient information [12].

Ma et al. also proposed the use of UML models to develop a Hospital Information
System (HIS) that satisfies the requirements of various operations such as patient visits,
inpatient care, and drug management. The authors utilized use case diagrams, class
diagrams, sequence charts, and collaboration diagrams to create the system. The paper
also discusses the challenges encountered while developing the system and provides a
future outlook for the HIS system. In another study, Pis¸irgen et al. [13] proposed a UML-
based conceptual model for appointment booking systems that can aid system analysts
and developers in improving their system development activities. The authors utilized
three UML diagrams to represent the users, their relationships with the system, and the
exchange of comments. The proposed model can act as a bridge between developers
and coding, thereby simplifying the development of an appointment booking application.
Akinode et al. [14] presented a web-based patient appointment and scheduling system that
utilizes Angular JS for the frontend, Ajax framework for handling client-server requests, and
Sqlite3 and MYSQL for the backend. The system aims to enhance the delivery of web-based
appointment services by increasing efficiency and quality while reducing waiting time.
Vasilakis et al. [15] conducted a survey on the literature on the application of UML tools in
healthcare systems. The authors introduced and explained the use of four commonly used
UML diagrammatic tools—use case, activity, state, and class diagrams—using a simplified
surgical care service as an example. Despite the use of UML tools in modeling various
aspects of healthcare systems, the survey revealed a lack of systematic evidence regarding
their benefits.

1.1. Motivation and Research Gap

Regression testing is a critical aspect of software development, as it ensures that
changes made to software do not impact existing functionality. While there are numerous
research articles available on regression testing of UML designs, as discussed in the related

Appl. Sci. 2023, 13, 5379 4 of 21

works above, the research on regression testing of UML activity flow graphs is relatively
limited. Activity flow graphs are an important aspect of UML designs, as they provide a
visual representation of the sequence of actions performed by a system. They are partic-
ularly useful for documenting the behavior of complex systems, such as those found in
enterprise applications. One of the primary motivations for researching regression testing
of UML activity flow graphs is the fact that they are more accessible and easier to read and
understand than other UML designs. This ease of understanding is particularly important
when it comes to software development, as it can help to reduce errors and improve the
overall quality of software products. However, without adequate research on regression
testing of UML activity flow graphs, it is challenging to ensure that these designs are being
tested effectively.

Another motivation for this research is to provide guidance and best practices for
software developers and testers. The findings of this research can help to improve the
efficiency and effectiveness of regression testing processes, thereby reducing the time and
resources required to perform this critical task. The research can also provide insights
into the specific challenges and complexities associated with regression testing of UML
activity flow graphs, helping to identify areas where additional training and education
may be necessary. In addition to providing practical benefits for software development,
the research on regression testing of UML activity flow graphs can also have theoretical
implications. For example, this research can help to advance our understanding of the
underlying principles of regression testing, and how these principles apply to specific
types of UML designs. It can also contribute to the development of new theories and
frameworks for testing and quality assurance, helping to improve the overall reliability
and performance of software systems.

Thus, the motivation behind researching regression testing of UML activity flow
graphs is multifaceted, encompassing both practical and theoretical considerations. By fill-
ing the gap in knowledge on this important topic, we can help to improve the quality,
efficiency, and effectiveness of software development and testing processes, ultimately
leading to better software products and better outcomes for businesses and users alike.

It is also important to note that the managerial and economic implications of a UML
Activity Flow Graph-based Regression Testing Approach can be significant.

On the managerial side, the approach can help improve software quality by ensuring
that changes made to the software during its development cycle do not introduce new
errors or problems into the system. This can lead to better customer satisfaction and
retention, which can be a key driver of revenue and profitability for software development
companies. Additionally, the approach can help reduce the time and effort required to test
the software by identifying the specific areas of the system that are affected by changes
made to the software. This can lead to more efficient use of resources, which can be a key
factor in reducing overall development costs. On the economic side, the approach can help
companies reduce the risk of project failure or delays by identifying issues early in the
development cycle. This can help avoid costly rework and delays in the software release
schedule, which can impact revenue and profitability.

Overall, a UML Activity Flow Graph-based Regression Testing Approach can have
important implications for both the managerial and economic aspects of software devel-
opment projects and can help companies achieve their goals of delivering high-quality
software products on time and within budget.

1.2. Contributions and Organization

Although there is a significant amount of research available on the regression testing
of UML designs, such as use case diagrams, class diagrams, and collaboration diagrams,
there is comparatively less research on the regression testing of UML activity flow graphs.
These graphs are critical in the analysis and design of software systems as they provide a
pictorial representation of the workflow or logic of a system. As a result, there is a need for
further investigation and development of regression testing techniques specific to UML

Appl. Sci. 2023, 13, 5379 5 of 21

activity flow graphs to ensure the reliability and effectiveness of software systems which
we try to attempt to study in this paper. The main contributions of this paper are as follows:

• In Section 2, we describe our regression testing approach to UML diagrams. We first
formally define sequence and activity diagrams and show how these definitions show
a relationship between them. Then we show how to construct the corresponding
activity flow graphs which are then used to construct our regression testing algorithm.

• In Section 3, we show our approach to the technique of classifying the test cases which
is the fundamental block of constructing the regression testing algorithm.

• In Section 4, we consider the hospital management system as our test case. Since the
UML models of hospital management systems are generally not available publicly, we
design a custom hospital management system website and test our algorithm on it.

We conclude our paper in Section 6.

2. Our Testing Approach

This paper employs UML 2.0 activity and sequence diagrams to design the system.
The corresponding activity flow graph is utilized to identify and classify test cases as well
as changes in the software. Additionally, the activity flow graph is used to generate new
test cases. The activity diagram is first linked with the sequence diagrams, and then the
paper demonstrates how the activity diagram can be associated with the corresponding
activity flow graph.

2.1. Regression Testing

The selective retest approach for regression testing was provided by Rothermel and
Harrold [16]. They state that their strategy is to find a solution to the following problem:

Let P be a program, and P′ be a modified version of P created by replacing or
modifying some components of the program P. Let T be a set of test cases already
run on P. Find a way of making use of T, to gain sufficient confidence in the
correctness of P′.

With T being the original test suite, the approach to solving this problem outlined by
Rothermel and Harrold is as follows:

1. Create a mapping from P′ to P to identify the changes made to P
2. Use the identified changes of Step 1 to construct a set T′ ⊆ T
3. Test P′ using T′

4. Based on the criteria of test adequacy, check if any parts of the new program have not
been tested yet and generate a new set of tests T”

5. Test the software using T”

2.2. Associating UML Sequence Diagrams and Activity Diagrams

In this section, we present a method to associate activity and sequence diagrams for
workflow modeling, which will enhance our ability to generate test cases from activity
models. The approach is based on the concept that activity diagrams represent all control
and data flows, while sequence diagrams represent method invocations or inter-object
communication. Specifically, for each activity in an activity diagram, a sequence diagram
can be utilized to provide a detailed explanation. This association between sequence
and activity diagrams allows us to easily add more information to the activity diagram.
Figure 1 depicts an example of this association, where multiple sequence diagrams are
linked to a single activity diagram. The association between multiple sequence diagrams
and a single activity diagram is typically established through the use of activity partitions.
An activity partition is a vertical region within an activity diagram that represents a
specific element or component of the system. Each sequence diagram is linked to a specific
activity partition within the activity diagram, indicating that the interactions depicted in
the sequence diagram are related to the activities taking place within that partition. For
example, consider a system for processing customer orders. An activity diagram for this

Appl. Sci. 2023, 13, 5379 6 of 21

system might include partitions for receiving the order, verifying payment, and shipping
the order. Multiple sequence diagrams could be created to show the interactions between
the customer, the order processing system, and the payment processing system. Each
sequence diagram would be associated with the appropriate activity partition within the
activity diagram, providing a detailed view of how each interaction fits into the overall
process. The association between sequence diagrams and activity diagrams in this way can
be very useful for understanding the behavior of a system, particularly in complex systems
with many interacting components. It can help developers to identify potential issues or
inefficiencies in the system, and can also be used to validate the design of the system and
ensure that it meets the requirements of the stakeholders. In this process, each activity node
in the activity diagram generates a method declaration and a series of method calls, which
define the method.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 22

all control and data flows, while sequence diagrams represent method invocations

or inter-object communication. Specifically, for each activity in an activity diagram, a

sequence diagram can be utilized to provide a detailed explanation. This association

between sequence and activity diagrams allows us to easily add more information

to the activity diagram. Figure 1 depicts an example of this association, where mul-

tiple sequence diagrams are linked to a single activity diagram. The association between

multiple sequence diagrams and a single activity diagram is typically established through

the use of activity partitions. An activity partition is a vertical region within an activity

diagram that represents a specific element or component of the system. Each sequence

diagram is linked to a specific activity partition within the activity diagram, indicating

that the interactions depicted in the sequence diagram are related to the activities taking

place within that partition. For example, consider a system for processing customer or-

ders. An activity diagram for this system might include partitions for receiving the order,

verifying payment, and shipping the order. Multiple sequence diagrams could be created

to show the interactions between the customer, the order processing system, and the pay-

ment processing system. Each sequence diagram would be associated with the appropri-

ate activity partition within the activity diagram, providing a detailed view of how each

interaction fits into the overall process. The association between sequence diagrams and

activity diagrams in this way can be very useful for understanding the behavior of a sys-

tem, particularly in complex systems with many interacting components. It can help de-

velopers to identify potential issues or inefficiencies in the system, and can also be used

to validate the design of the system and ensure that it meets the requirements of the stake-

holders. In this process, each activity node in the activity diagram generates a method

declaration and a series of method calls, which define the method.

Figure 1. Activity Diagram and Sequence Diagram Association.

In this section, we provide a formal definition of activity diagrams and sequence

diagrams and clarify their connection. We explain which elements of activity dia-

grams and sequence diagrams are relevant for workflow modeling and collaboration

modeling, respectively. This definition will help us beHer understand the relationship be-

tween activity diagrams and sequence diagrams and their roles in the software devel-

opment process.

2.2.1. Formal Definition of Sequence Diagram

Sequence diagrams, or SD, are tuples. It consists of a collection of objects and their

interactions. The communication takes place through message passing. According to Li

[17], a message has four main parts: an action, a sender or sender’s obi, a receiver or

receiver’s obj, and the order in which the message is delivered. There are five different

types of actions that can be taken: synchronous message, asynchronous message, return,

create, and destroy.

Definition 1 (Sequence DiagraM). A sequence diagram, SD = {o, m}, is a tuple, where:

1. o = {x|x is an object/actor}

2. m = {m|m is a message}.

Figure 1. Activity Diagram and Sequence Diagram Association.

In this section, we provide a formal definition of activity diagrams and sequence
diagrams and clarify their connection. We explain which elements of activity diagrams
and sequence diagrams are relevant for workflow modeling and collaboration modeling,
respectively. This definition will help us better understand the relationship between activity
diagrams and sequence diagrams and their roles in the software development process.

2.2.1. Formal Definition of Sequence Diagram

Sequence diagrams, or SD, are tuples. It consists of a collection of objects and their
interactions. The communication takes place through message passing. According to
Li [17], a message has four main parts: an action, a sender or sender’s obi, a receiver or
receiver’s obj, and the order in which the message is delivered. There are five different
types of actions that can be taken: synchronous message, asynchronous message, return,
create, and destroy.

Definition 1 (Sequence Diagram). A sequence diagram, SD = {o, m}, is a tuple, where:

1. o = {x|x is an object/actor}
2. m = {m|m is a message}.

2.2.2. Formal Definition of Activity Diagram

An activity diagram is a graphical representation of a process, where nodes are con-
nected by edges to show the flow of control and information. This type of diagram is
commonly used in software modeling and can be associated with various modeling ele-
ments such as Use Cases, Classes, Interfaces, and Collaborations. Tokens, which represent
control or information values, move along the edges from the source node to the sink
nodes based on actions and conditions. Activity diagrams consist of two types of modeling
elements: activity nodes and activity edges.

Activity nodes are classified into three types: action nodes, control nodes, and object
nodes. Action nodes take input data and control tokens, create new tokens, and transmit
them to output activity edges when they are ready. Control nodes route tokens through the
graph and have components for decision-making, splitting or merging the flow for parallel
processing, and so on. Object nodes give and take data tokens and can also act as buffers,
collecting tokens while waiting to go downstream.

Appl. Sci. 2023, 13, 5379 7 of 21

Activity edges are classified into two types: control flow edges and object flow edges.
Control flow edges depict the flow of control throughout the activity, while object flow
edges depict the movement of items during the activity. This article focuses on the data
and control flow of activity diagrams, both of which are critical for test generation.

Definition 2 (Activity Diagram). An activity diagram is defined as a 6-tuple,

AD = (As, Tc, Cg, Fr, aS, aE)

where

1. As = as1, as2,· · · , asm, represents a set of activity states
2. Tc = tc1, tc2,· · · , tcn represents a set of completion transitions
3. Cg = cg1, cg2,· · · , cgn denotes a set of guard conditions
4. Ci corresponds to the transition ti
5. F = (ai, tj, cgk) or (tj, cgk, ai)| tj∈ Tc, ai∈ As, cgk∈ Cg represents the flow relationship between

transitions and activity states
6. aS∈ As is the starting activity state
7. aE∈ As is the ending activity state
8. (aS, t), (t, aS), (aE, t)∈ F for only one transition t.

In more detail, As is a finite set of activity states, and Tc is a finite set of completion
transitions. Cg is a set of guard conditions where Ci corresponds to transition ti in Tc. F is a
set of flow relationships between transitions and activity states, where an element in F can
be either (ai, tj, cgk) or (tj, cgk, ai) depending on the direction of flow.

2.3. Transforming Activity Diagrams to Activity Flow Graphs

This subsection outlines the process of converting an activity diagram into an activity
flow graph (AFG). The following steps are involved in this conversion:

• Navigate the activity diagram from start to finish, identifying options, conditions,
concurrent executions, and loop statements.

• Create an entry in the Control Flow Activity Mapping Table (CFAMT) for each condi-
tional statement encountered during the traversal of the activity diagram.

• Create nodes in the AFG based on the entries in the CFAMT.
• Convert loop statements into conditional statements in the CFAMT.
• Create an entry in the CFAMT for each statement with concurrent execution and

represent the different execution paths in the AFG.

2.4. UML Testing Approach

To better understand regression testing for UML designs, it is important to first briefly
discuss the UML testing technique. This technique involves creating an integrated model
using class diagrams, sequence diagrams, and activity diagrams as the foundation for
testing UML designs. An activity diagram provides a visual representation of the system’s
activities and the sequence in which they occur. By examining the diagram, testers can
identify the different scenarios that the system may encounter during its operation. To
generate regression test cases from an activity diagram, testers must first analyze the
diagram to identify the possible paths the system may take. Testers should examine the
different actions that occur during each step and determine the inputs and outputs that the
system produces. They should also consider any conditional statements or loops that may
affect the system’s behavior. Once testers have identified the possible paths and actions,
they can begin creating test cases. Each test case should target a specific path or action and
should include the necessary inputs to trigger that action. Testers should also specify the
expected outputs for each test case. To ensure thorough testing, testers should create test
cases that cover all possible paths through the activity diagram. They should also consider
any error conditions that may arise and create test cases to verify that the system handles

Appl. Sci. 2023, 13, 5379 8 of 21

these conditions properly. After creating the test cases, testers can execute them to verify
that the system behaves as expected. They should record the results of each test case and
any defects that are discovered. Any defects should be reported to the development team,
who can then fix the issues and rerun the regression test cases to verify that the fixes have
been successful.

Creating an activity diagram from a sequence diagram is the first step. The activity
diagram is mapped to an activity flow graph (AFG) in the second step. To create the Activity
Flow Graph (AFG), the vertices and arcs of a directed acyclic graph are mapped from the
object and sequence method calls present in an Activity Diagram. The relationships in the
Sequence Diagram and the Activity Diagrams are preserved by the mapping between them.
The mapping process entails two steps: (1) linking activity diagram methods to the objects
from which they originated, and (2) traversing the diagram to map subsequent method
executions to its edges. These edges are also marked with any restrictions that the Activity
Diagram might place on how they should be used. Combining each AFG with the various
pieces of information is the third step. A modified Activity Flow Graph is the result of this
(AFG). The integrated model that unifies Activity Diagrams and Sequence Diagrams I now
represented by the AFG.

For every test case, T, in an activity diagram, AD, we can construct a corresponding
path, PT as an execution path from the starting activity state to the end activity state
consisting of activities and transitions, i.e., ∀T ∈ T[x], PT = as1 → tc1 → as2 → tc2 → · · ·
→ tcm → asm, where ai ∈ As, t ∈ T[x], as1 is the initial state and asm is the final state. The
collection of test cases is T[x] and with every test case in T[x] there is a corresponding path
PT. To navigate the AFG, values from the test cases are used (symbolic execution). We can
now formally define the test case which will be used to identify and classify existing test
cases and generate new test cases.

Definition 3 (Test Cases). A test case T in a UML diagram is a set of attributes satisfying certain
conditions for the vertices of the PT in the AFG.

2.5. UML Regression Testing

In order to address the issues that arise in regression testing of UML designs, we
pose three research questions and follow the approach to regression testing as defined by
Rothermel and Harrold:

1. Firstly, we try to determine if it is possible to distinguish and categorize modifications
made to various iterations of a UML design.

2. Secondly, we explore the feasibility of utilizing these changes for selecting test cases
in a secure and efficient manner for regression testing purposes.

3. Lastly, we investigate the feasibility of identifying the areas in a UML design that
require new test cases for test generation.

To address the aforementioned research questions, we adopt the regression testing
approach proposed by Rothermel and Harrold. To detect modifications made to distinct
versions of a UML design, we employ the approach developed by Briand et al. [18].

In the context of regression testing for UML designs, we formulate the following
problem inspired by Rothermel and Harrold’s approach to retesting:

Given software So, a test set T (used to test So), and a modified version of So, Sm.
Determine a strategy for utilizing the test set T to obtain a satisfactory level of
confidence in the accuracy of Sm.

Following the approach described by Rothermel and Harrold, we outline our approach
to solve this problem as follows:

1. Create a mapping from So to Sm to identify the changes. We denote these changes by
ρ. Then classify the tests into mutually exclusive sets: Reusable (Ut), Retestable (Rt), or
Obselete (Ot)

Appl. Sci. 2023, 13, 5379 9 of 21

2. Using the results obtained from Step 1 construct a set of retestable tests R′t⊆ Rt, which
may reveal changes in Sm.

3. Test Sm using R′t.
4. Generate a new set of tests T′ if it is identified that certain parts of the software are

not tested adequately.
5. Test the software Sm using T′.

Our methodology for regression testing is based on the definition of a UML test case T.
In UML test cases, conditions are assigned values to enable traversal of a path PT consisting
of vertices v1, . . . , vn in the AFG. Each vertex vi is associated with a condition, ci(vl1, . . . ,
vlm), which is a Boolean function taking (vl1, . . . , vlm) as arguments. The function guards
the edge (vi, vj) in the AFG. The values (vl1, . . . , vlm) must satisfy the requirements along
the path PT in order to traverse the edge. Simple conditional statements are always true
for vertices without explicit conditions, such as a vertex with a single edge leaving it. The
execution of the test case traverses a path in the AFG.

2.6. Normalizing Original Data

It is important to note that the original data used in a given analysis may exhibit
varying scales. For example, in a banking dataset, the input variables “Staff” and “Deposit”
may be denoted in different scales, such as “Person” and “Dollars”, respectively. In such
cases, it is prudent to consider that results obtained from the proposed approaches may not
be deemed acceptable from a managerial and economic standpoint.

In order to mitigate these issues, it is recommended that the users first normalize the
original data using an appropriate normalization technique, before using the normalized
data in their proposed approaches to obtain results corresponding to the normalized data.
Subsequently, these results should be converted back to the original data scale in order to
make them meaningful and interpretable to end-users.

Normalization is a process of transforming the original data into a common scale
so that it can be analyzed and compared accurately. The normalization process typically
involves scaling the data to have zero mean and unit variance, or to be within a specific
range (e.g., 0 to 1). Here’s a general overview of how to normalize data for UML-based
regression testing, and then convert the results back to the original data:

1. Determine the normalization method: Choose a normalization method that is appro-
priate for your data and analysis. Some common normalization methods include
Min-Max scaling, Z-score scaling, and Robust scaling.

2. Normalize the data: Apply the chosen normalization method to the original data.
This can typically be conducted using a library in your programming language of
choice. For example, in Python, you can use the MinMaxScaler class from the sklearn.
preprocessing module to scale the data to the range [0, 1].

3. Generate test cases based on the normalized data: Use the normalized data to generate
test cases for the UML regression testing approach described in the following sections.

4. Execute the test cases on the normalized data: Use the generated test cases to perform
UML-based regression testing on the normalized data. This involves running the test
cases on the UML model to ensure that it still behaves as expected.

5. Convert the results back to the original data scale: After performing the regression
testing on the normalized data, we must convert the results back to the original data
scale to make them meaningful to the end-users. To do this, use the inverse of the
normalization method applied earlier. For example, if we had used Min-Max scaling,
we would multiply the results by the range of the original data and add the minimum.

We provide here a Python pseudocode example of how to normalize the data, generate
test cases based on the normalized data, perform regression testing on the normalized data,
and convert the results back to the original data:

Appl. Sci. 2023, 13, 5379 10 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 22

2. Normalize the data: Apply the chosen normalization method to the original data.

This can typically be conducted using a library in your programming language of

choice. For example, in Python, you can use the MinMaxScaler class from the sklearn.

preprocessing module to scale the data to the range [0, 1].

3. Generate test cases based on the normalized data: Use the normalized data to gener-

ate test cases for the UML regression testing approach described in the following sec-

tions.

4. Execute the test cases on the normalized data: Use the generated test cases to perform

UML-based regression testing on the normalized data. This involves running the test

cases on the UML model to ensure that it still behaves as expected.

5. Convert the results back to the original data scale: After performing the regression

testing on the normalized data, we must convert the results back to the original data

scale to make them meaningful to the end-users. To do this, use the inverse of the

normalization method applied earlier. For example, if we had used Min-Max scaling,

we would multiply the results by the range of the original data and add the mini-

mum.

We provide here a Python pseudocode example of how to normalize the data, gener-

ate test cases based on the normalized data, perform regression testing on the normalized

data, and convert the results back to the original data:

Note that this is just a pseudocode and may need to be modified to fit the specific

requirements of your UML designs.

3. Identifying the Changes in Software Design and Classifying Test Cases

We focus on the UML designs consisting of Sequence Diagrams, Activity diagrams,

and Activity flow graphs. Our approach addresses the challenges of accommodating

potential changes that may occur within these diagrams by examining the funda-

mental building blocks of Sequence Diagrams. The Sequence Diagram contains objects,

lifelines, conditions, and messages. The Activity diagrams consist of states, transi-

tions, and conditions. The modification, addition, or removal of any of these ele-

ments may impact the software’s behavior.

To handle the complexity of software design changes, our method establishes a

significant set of rules for categorizing modifications. Due to the undecidable nature

of discovering all executed paths and determining their alterations with changing

designs, we require a finite number of paths in a directed graph. Changes in design

elements in software can be classified as adding, deleting, or modifying. We

Note that this is just a pseudocode and may need to be modified to fit the specific
requirements of your UML designs.

3. Identifying the Changes in Software Design and Classifying Test Cases

We focus on the UML designs consisting of Sequence Diagrams, Activity diagrams,
and Activity flow graphs. Our approach addresses the challenges of accommodating
potential changes that may occur within these diagrams by examining the fundamental
building blocks of Sequence Diagrams. The Sequence Diagram contains objects, lifelines,
conditions, and messages. The Activity diagrams consist of states, transitions, and con-
ditions. The modification, addition, or removal of any of these elements may impact the
software’s behavior.

To handle the complexity of software design changes, our method establishes a sig-
nificant set of rules for categorizing modifications. Due to the undecidable nature of
discovering all executed paths and determining their alterations with changing designs, we
require a finite number of paths in a directed graph. Changes in design elements in software
can be classified as adding, deleting, or modifying. We partition all changes into two groups
based on their effect on paths: non-path design changes (NC) and path design changes
(PC). NS, MS, and DS include all changes made, modified, and deleted, respectively.

Design changes can be classified as create, modify, or delete operations, along with
either a path change (PC or NC). The type of change, such as “create” (ρc), “modify”
(ρm), or “delete” (ρd), can usually be identified from its title. However, determining
whether a change affects a path is more complex. Depending on how an element is used
in the Sequence Diagram, a change to that element may or may not impact a path. For
example, a class can be instantiated or used in a condition but not in a sequence diagram.
This categorization helps to identify which nodes in the graph influence restability and
obsolescence for test cases that contain these nodes in their execution paths.

3.1. Classifying Test Cases

Graph paths are connected to test cases and design changes via the vertices connected
to particular design change vertices. The test cases, T, linked to a path PT are also impacted
by design changes. We introduce the software change difference function δρ(T) to describe
this relationship. The set of vertices connected to a change, δρ, in the software is denoted
by Vρ. The difference function is then defined as follows:

δρ(T) =
{

1 if ∃v ⊆ Vρ in PT
0 otherwise

Appl. Sci. 2023, 13, 5379 11 of 21

The difference function, δρ, takes the test case T as an argument. If a vertex in the
test case-related path PT is affected by a change ρ in the software, the function returns a
1; otherwise, it returns a 0. To identify the test cases impacted by ρ, we use the difference
function. By comparing the vertices impacted by the change to the paths connected to
a test case, the function then identifies affected test cases. Algorithm 1 describes the
difference function.

Algorithm 1 The Difference Function (δρ(T)) for a change ρ of a test case T

Input: The test case T and its path in the graph PT
l = len(PT); for i← 1, . . . , l do

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 22

partition all changes into two groups based on their effect on paths: non-path design

changes (NC) and path design changes (PC). NS, MS, and DS include all changes

made, modified, and deleted, respectively.

Design changes can be classified as create, modify, or delete operations, along

with either a path change (PC or NC). The type of change, such as “create” (ρc), “mod-

ify” (ρm), or “delete” (ρd), can usually be identified from its title. However, deter-

mining whether a change affects a path is more complex. Depending on how an

element is used in the Sequence Diagram, a change to that element may or may not

impact a path. For example, a class can be instantiated or used in a condition but not in

a sequence diagram. This categorization helps to identify which nodes in the graph

influence restability and obsolescence for test cases that contain these nodes in their

execution paths.

3.1. Classifying Test Cases

Graph paths are connected to test cases and design changes via the vertices connected

to particular design change vertices. The test cases, T, linked to a path PT are also impacted

by design changes. We introduce the software change difference function δρ(T) to describe

this relationship. The set of vertices connected to a change, δρ, in the software is de-

noted by �ρ. The difference function is then defined as follows:

�� = �1 if ∃� ⊆ � in ��
0 otherwise

The difference function, δρ, takes the test case T as an argument. If a vertex in

the test case-related path PT is affected by a change ρ in the software, the function

returns a 1; otherwise, it returns a 0. To identify the test cases impacted by ρ, we use the

difference function. By comparing the vertices impacted by the change to the paths con-

nected to a test case, the function then identifies affected test cases. Algorithm 1 describes

the difference function.

Algorithm 1 The Difference Function (δρ(T)) for a change ρ of a test case T

Input: The test case T and its path in the graph PT

l = len(PT); for i ← 1,…, l do

v = PT(i) ; // PT(i) denotes the ith vertex of the path PT

if v ∈ � then

return 1;

end

end

return 0;

Consider we have two software, So be the original and Sm be modified. The mod-

ifications (or changes ρ) between these two software possibly are either “create” (ρc) or

“modify” (ρm) or “delete” (ρd). We have already created sets of vertices named NS, MS, and

DS corresponding to the changes that create, modify or delete elements of the UML

model. All the changes made between So and Sm due to “create”, i.e., ρc, are added to

the set NS, all “modify” changes, i.e., ρm, are added to the set NM, and all the “delete”

changes, i.e., ρd, are added to the set ND. It is easy to see that all these vertices represent a

change ρ, and it will either affect the test path PT or will not affect the test path. Those

changes which will affect the test path will be included in the set PCS and those changes

which do not affect the path will be included in the set NCS.

Once this classification of the vertices has been made, we can now classify the

test cases into three mutually exclusive sets: Reusable (Ut), Retestable (Rt), or Obsolete (Ot).

end
return 0;

Consider we have two software, So be the original and Sm be modified. The mod-
ifications (or changes ρ) between these two software possibly are either “create” (ρc) or
“modify” (ρm) or “delete” (ρd). We have already created sets of vertices named NS, MS, and
DS corresponding to the changes that create, modify or delete elements of the UML model.
All the changes made between So and Sm due to “create”, i.e., ρc, are added to the set NS,
all “modify” changes, i.e., ρm, are added to the set NM, and all the “delete” changes, i.e., ρd,
are added to the set ND. It is easy to see that all these vertices represent a change ρ, and it
will either affect the test path PT or will not affect the test path. Those changes which will
affect the test path will be included in the set PCS and those changes which do not affect
the path will be included in the set NCS.

Once this classification of the vertices has been made, we can now classify the test
cases into three mutually exclusive sets: Reusable (Ut), Retestable (Rt), or Obsolete (Ot).

3.1.1. Obsolete Test Cases (Ot)

Obsolete test cases are addressed in the first rule. Test cases that are outdated, such as
those where the input signature does not match the conditions in the design, are referred to
as obsolete test cases. The attribute values and types connected to a test case are what we
refer to as the input signature.

A test case (T) is dependent on the path (PT) linked to it, as is clear from the definition
of a test case. Therefore, the old test cases are no longer valid if a change ρ causes to alter a
path by changing an element because the test case’s signature might no longer correspond
to the design’s structure. To be safe, we estimate the number of test cases that have been
rendered obsolete by assuming that all modified test case signatures are useless. New test
cases must be created in order to accomplish this. The next section talks about creating
new cases.

There may be new, modified, or deleted paths in the graph if ρc, ρm, or ρd is a member
of the PCS. Therefore, it is recommended that we disregard any test cases that incorporate
design modifications that are present in both the MS and the PCS. These conditions can be
summed up as follows:

Ot = {T|δρ(T) = 1} ∩ {T ∈ PCS} ∩ {T ∈MS}

The other thing to note here is that a similar analogue can be provided for those test
case paths whose elements were affected by the change ρd. This means that the test case

Appl. Sci. 2023, 13, 5379 12 of 21

has a test case signature that is no longer valid since an element has been removed. These
conditions can be summed up as follows:

Ot = {T|δρ(T) = 1} ∩ {T ∈ PCS} ∩ {T ∈ DS}

Combining the above two expressions we have

Ot = {T|δρ(T) = 1} ∩ {T ∈ PCS} ∩ {T ∈MS} ∩ {T ∈ DS}

As a result, it is necessary to create new test cases because it is safe to assume that any
test cases that traverse changes (difference function) and are in the PCS are no longer valid.
Therefore, the set of obsolete test cases is defined as follows:

Ot = {T|δρ(T) = 1} ∩ {T ∈ PCS} (1)

3.1.2. Retestable Test Cases (Rt)

The second rule addresses the retestable test cases. The test cases that can be used
to retest the design are called retestable test cases. A test case, T, is retestable if a design
change, ρ, is in the path i.e., δρ(T) = 1, but does not change the path. When a method, for
instance, adds a new parameter, the path of a test case is unaffected. Thus, it is easy to see
that the first condition of these tests satisfies that it belongs to the set of non-path change,
i.e., it is an element of the set NCS. Now let us discuss the effects of the changes in the sets
NS i.e., ρc, MS i.e., ρm, and the DS i.e., ρd.

If a change belongs to the set NS and it does not alter the path PT of the test case T,
then it will belong to the set of retestable tests. The condition of it being an element of NCS
should always satisfy. Thus, we have

Rt = {T|δρ(T) = 1} ∩ {T ∈ NCS} ∩ {T ∈ NS}

If a change belongs to the set MS and it does not alter the path PT of the test case T,
then it will belong to the set of retestable tests. The condition of it being an element of NCS
should always satisfy. Thus, we have

Rt = {T|δρ(T) = 1} ∩ {T ∈ NCS} ∩ {T ∈MS}

Similarly, if a change belongs to the set DS and it does not alter the path PT of the test
case T, then it will belong to the set of retestable tests. The condition of it being an element
of NCS should always satisfy. Thus, we have

Rt = {T|δρ(T) = 1} ∩ {T ∈ NCS} ∩ {T ∈ DS}

Therefore, all test cases that traverse changes, which are members of the NCS set,
should be classified as retestable.

3.1.3. Reusable Test Cases (Ut)

All test cases that have not been labeled as outdated or retestable should be regarded
as reusable. Reusable test cases are saved for potential future use and are not used during
the subsequent round of testing. It should however be noted that an obsolete classification
takes precedence over the other two classifications if a test case travels through multiple
changes. Similarly, a reusable classification is superseded by a retestable. Thus, in the
priority list, reusable classification has the least priority.

3.1.4. Algorithm to Classify Test Cases

When all the above techniques for classifying test cases are combined, a classifying
algorithm is created. Given a software design So and a test suite To for So and a modified
software Sm, Algorithm 2 describes the procedure for classifying the test cases for testing

Appl. Sci. 2023, 13, 5379 13 of 21

a UML design of the software. This procedure makes use of “change tables”, “change
categories”, and classification rules. In our algorithm, we make use of arrays as bit vectors
for implementation in practice. The entry i in the array is 1 if there exists a change ρ which
affects a vertex vi. We also have arrays as bit vectors for the sets NS, MS, DS, PC, and NC.
Any vertex vi is a member of these arrays if element i = 1. Implementation using arrays
and bit vectors makes it easier to compute the retestable, reusable, and obsolete test cases.

Algorithm 2 Classifying Test Cases

Input: An array of test cases T[x], An array of the changes in the software ρ[y]
Output: Classified test cases Ot, Rt, and Ut
Ot ← empty list;

Rt ← empty list;
Ut ← empty list;

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 23

Algorithm 2 Classifying Test Cases
Input: An array of test cases T[x], An array of the changes in the software ρ[y]
Output: Classified test cases Ot, Rt, and Ut
Ot ← empty list;
 Rt ← empty list;
 Ut ← empty list;
 for i ← 1 to x do
 for j ← 1 to y do
 if δρ[j](T[i]) = 1 then
 if δρ[j] ∈ PC and δρ[j] ∈ DS then
 Ot.append(T[i]);
 end
 if δρ[j] ∈ PC and δρ[j] ∈ MS then
 Ot.append(T[i]);
 end
 if δρ[j] ∈ NC and δρ[j] ∈ NS then
 Rt.append(T[i]);
 end
 if δρ[j] ∈ NC and δρ[j] ∈ MS then
 Rt.append(T[i]);
 end
 if δρ[j] ∈ NC and δρ[j] ∈ DS then
 Rt.append(T[i]);
 end
 end
 else
 Ut.append(T[i]);
 end
 end
end

3.1.5. Generating New Tests
In this section, we use a modified version of Graph G′ corresponding to the modified

software Sm. The current test cases do not cover every change, necessitating the creation
of new test cases. This might be the result of test cases never traveling the new design
paths or test cases being deemed obsolete. Because the change changed a path, a test
case is no longer valid. A number of new tests must be developed to replace each outdated
test. Finding the intersection of the PC and the NS (in G′) and the PC and the MS (in G′)
will allow us to create test cases. This can be described as

NewT = {{PC ∩ NS} ∪ {PC ∩ MS}}

It is easy to see that those changes that necessitate new path generation are identified
by the set NewT. By definition, every change in the graph G′ must be situated in a
vertex. All of the conditions from the test case, if it is a part of the MS, leading to the
vertex and including the vertex are put in a set to test the change. We conduct a search
to find all paths leading to the vertex if the change is a component of the NS. The search’s
conditions c0,…, ci are added to a NewCT set that creates test cases. We employ the
depth-first search method similar to that of [19] for each member of the NewCT set. The
corresponding algorithm is described in Algorithm 3.

end

3.1.5. Generating New Tests

In this section, we use a modified version of Graph G′ corresponding to the modified
software Sm. The current test cases do not cover every change, necessitating the creation
of new test cases. This might be the result of test cases never traveling the new design
paths or test cases being deemed obsolete. Because the change changed a path, a test case
is no longer valid. A number of new tests must be developed to replace each outdated test.
Finding the intersection of the PC and the NS (in G′) and the PC and the MS (in G′) will
allow us to create test cases. This can be described as

NewT = {{PC ∩ NS} ∪ {PC ∩MS}}

It is easy to see that those changes that necessitate new path generation are identified
by the set NewT. By definition, every change in the graph G′ must be situated in a vertex.

Appl. Sci. 2023, 13, 5379 14 of 21

All of the conditions from the test case, if it is a part of the MS, leading to the vertex and
including the vertex are put in a set to test the change. We conduct a search to find all paths
leading to the vertex if the change is a component of the NS. The search’s conditions c0, . . . ,
ci are added to a NewCT set that creates test cases. We employ the depth-first search method
similar to that of [19] for each member of the NewCT set. The corresponding algorithm is
described in Algorithm 3.

Algorithm 3 Generating new test cases for regression testing of UML models

Input: NewCT,NS, MS, and G′

Output: A set of test cases test_cases
CondT ← empty set;

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 23

Algorithm 3 Generating new test cases for regression testing of UML models
Input: NewCT,NS, MS, and G′
Output: A set of test cases test_cases
CondT ← empty set;
 foreach vertex in G′.vertices() do
 if vertex.change() ∈ NewCT then

 conditions ← get_conditions_leading_to_vertex(vertex);
 CondT ← CondT ∪ conditions;

 end
 if vertex.change ∈ NS then

paths ← find_paths_leading_to_vertex(vertex);
 foreach path in paths do

 conditions ← get_conditions_from_path(path);
 CondT ← CondT ∪ conditions;

 end
 end
 if vertex.change ∈ MS then

 paths ← find_paths_leading_to_vertex(vertex);
 foreach path in paths do

 conditions ← get_conditions_from_path(path);
 CondT ← CondT ∪ conditions;

 end
 end
end
test_cases ← generate_test_cases_from_NewCT(CondT);
 return test_cases;

Procedure generate_test_cases_from_NewCT(CondT)

 Input: The set of conditions CondT

 Output: A set of test cases T
 T ← ∅;
 vertices ← all vertices in G;
 foreach v ∈ vertices do

 paths ← find all paths from the root of G′ to v;
 foreach path ∈ paths do

 conditions ← conditions leading to v in path;
 if conditions ⊆ CondT then

 T ← T ∪ path;
 end
 end

 end
 return T;

This algorithm assumes that the get_conditions_leading_to_vertex function returns
a set of conditions that lead to the given vertex and that the find_paths_leading_to_vertex
function returns a list of all paths leading to the vertex. The get_conditions_from_path
function would return the conditions along a given path, and the gener-
ate_test_cases_from_NewCT function would use the conditions in the CondT set to gen-
erate new test cases.

3.1.6. Safety and Complexity

Appl. Sci. 2023, 13, 5379 15 of 21

This algorithm assumes that the get_conditions_leading_to_vertex function returns a set
of conditions that lead to the given vertex and that the find_paths_leading_to_vertex function
returns a list of all paths leading to the vertex. The get_conditions_from_path function would
return the conditions along a given path, and the generate_test_cases_from_NewCT function
would use the conditions in the CondT set to generate new test cases.

3.1.6. Safety and Complexity

In order to ensure the security of our method, we need to select tests from the initial
test set that have the potential to identify bugs in the modified program. Our test case
selection procedure is based on categorizing changes in a directed graph. We use the delta
function to identify changes in the directed graph, and then connect them to a path. This
path outlines how the modifications impact testing, and enables us to confidently choose a
regression test suite. Rothermel [17] has demonstrated that the control flow graph, which
is a more complex model that contains cycles, is also reliable.

A test selection method must be efficient in order to be effective, as it should be quicker
than repeating the entire set of tests. The performance of Algorithm 2 is dependent on the
number of test cases, x, and design changes, y. Therefore, the algorithm has a complexity of
O(xy). In contrast, repeating all tests would have a runtime of O(n log(n)). This method
works best when the number of changes is small in comparison to the total number of
test cases.

4. Case Study

The case study of this paper is a hospital management system that manages patients
from outside the hospital. In this section, we consider the changes in the hospital man-
agement system with the addition of the follow-up method. Follow-up is an essential
part of patient care, and it involves monitoring the patient’s health status after a medical
procedure or treatment. To improve the efficiency of the hospital management system, we
propose the inclusion of follow-up-related attributes in the Patient, Doctor, and Admin
classes. These attributes will allow the hospital staff to schedule follow-up appointments,
track the progress of patients, and ensure that they receive timely and appropriate care. By
integrating the follow-up method into the hospital management system, we aim to provide
better patient care and improve the overall efficiency of hospital operations.

There are no standard repositories of UML models of hospital management systems
due to different proprietary reasons. Therefore, to evaluate the effectiveness of regression
testing in this context, a custom website for a hospital management system was constructed,
and the required attributes and methods were incorporated. A series of changes were then
made to the system, and the resulting test cases generated by the regression testing process
were evaluated. Screenshots from the website used for testing purposes are provided in
Figures A1 and A2.

4.1. Sequence Diagrams of the Case Study

Based on the proposed changes to the hospital management system, a new approach to
encourage patients to attend their scheduled follow-up appointments is being implemented.
This approach involves imposing a fine on patients who cancel or modify their follow-up
appointments, with the amount of the fine being determined by the number of days prior
to the appointment that the modification or cancellation was made. This new system aims
to reduce the rate of missed appointments and improve the continuity of care for patients.

In Figure 2, the old follow-up sequence diagram is described. In this diagram note that
there is no method to cancel/modify the appointment nor is any fine imposed on the patient
for the same. In the updated diagram, the patient requests a follow-up appointment, and
the admin requests the doctor to check availability. Once the doctor confirms availability,
the admin schedules the appointment and gives the appointment date to the patient.
The patient attends the follow-up appointment, and if they want to cancel or modify it,
the admin computes the number of days left until the appointment and imposes a fine

Appl. Sci. 2023, 13, 5379 16 of 21

accordingly. The fine amount is imposed on the patient, and the process is complete. The
updated diagram is described in Figure 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 22

There are no standard repositories of UML models of hospital management sys-

tems due to different proprietary reasons. Therefore, to evaluate the effectiveness of

regression testing in this context, a custom website for a hospital management system

was constructed, and the required aHributes and methods were incorporated. A series of

changes were then made to the system, and the resulting test cases generated by the re-

gression testing process were evaluated. Screenshots from the website used for testing

purposes are provided in Figures A1 and A2.

4.1. Sequence Diagrams of the Case Study

Based on the proposed changes to the hospital management system, a new approach

to encourage patients to aHend their scheduled follow-up appointments is being imple-

mented. This approach involves imposing a fine on patients who cancel or modify

their follow-up appointments, with the amount of the fine being determined by the

number of days prior to the appointment that the modification or cancellation was

made. This new system aims to reduce the rate of missed appointments and improve

the continuity of care for patients.

In Figure 2, the old follow-up sequence diagram is described. In this diagram note

that there is no method to cancel/modify the appointment nor is any fine imposed on the

patient for the same. In the updated diagram, the patient requests a follow-up appoint-

ment, and the admin requests the doctor to check availability. Once the doctor con-

firms availability, the admin schedules the appointment and gives the appointment

date to the patient. The patient aHends the follow-up appointment, and if they want

to cancel or modify it, the admin computes the number of days left until the ap-

pointment and imposes a fine accordingly. The fine amount is imposed on the patient,

and the process is complete. The updated diagram is described in Figure 3.

Figure 2. Original Follow-Up sequence diagram. Figure 2. Original Follow-Up sequence diagram.Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 22

Figure 3. Updated Follow-Up sequence diagram incorporating the changes.

4.2. Activity Diagrams of the Case Study

The activity diagrams depicted in Figures 4 and 5 have been created for the orig-

inal and updated follow-up operation that is corresponding to the sequence diagrams in

Figures 2 and 3 respectively. These diagrams are then analyzed to identify any

changes in the operation’s semantics, including conditional statements, unique or

independent paths, control flow, and any addition or deletion of functionality. Any

operations that correspond to changes in the activity diagrams are also identified in the

sequence diagrams, and their classified test suites are updated accordingly.

Figure 3. Updated Follow-Up sequence diagram incorporating the changes.

Appl. Sci. 2023, 13, 5379 17 of 21

4.2. Activity Diagrams of the Case Study

The activity diagrams depicted in Figures 4 and 5 have been created for the original and
updated follow-up operation that is corresponding to the sequence diagrams in Figures 2 and 3
respectively. These diagrams are then analyzed to identify any changes in the operation’s
semantics, including conditional statements, unique or independent paths, control flow, and
any addition or deletion of functionality. Any operations that correspond to changes in the
activity diagrams are also identified in the sequence diagrams, and their classified test suites are
updated accordingly.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 22

Figure 4. Original Follow-Up Activity dia gram.

Figure 5. Updated Follow-Up activity diagram incorporating the changes.

Figure 4. Original Follow-Up Activity dia gram.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 22

Figure 4. Original Follow-Up Activity dia gram.

Figure 5. Updated Follow-Up activity diagram incorporating the changes.
Figure 5. Updated Follow-Up activity diagram incorporating the changes.

Appl. Sci. 2023, 13, 5379 18 of 21

4.3. Activity Flow Graph of the Case Study

We now construct the corresponding activity flow graph from the activity diagram.
Converting an activity diagram to its corresponding activity flow graph involves transform-
ing the abstract representation of the system’s behavior in the activity diagram into a more
concrete and detailed representation of the system’s execution paths. This process typically
involves identifying the activities in the activity diagram and representing them as nodes
in the activity flow graph. The control flow between activities in the activity diagram is
represented by directed edges in the activity flow graph. Decision points in the activity
diagram, such as conditional branches, are translated into corresponding branches in the
activity flow graph. Finally, a start node and an end node are added to the activity flow
graph to represent the beginning and end of the activity or process being modeled. The
resulting activity flow graph provides a more detailed and concrete representation of the
system’s behavior that can be used for implementation and testing. The corresponding
activity flow graph is demonstrated in Figures 6 and 7.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 22

4.3. Activity Flow Graph of the Case Study

We now construct the corresponding activity flow graph from the activity diagram.

Converting an activity diagram to its corresponding activity flow graph involves trans-

forming the abstract representation of the system’s behavior in the activity diagram into

a more concrete and detailed representation of the system’s execution paths. This process

typically involves identifying the activities in the activity diagram and representing

them as nodes in the activity flow graph. The control flow between activities in the

activity diagram is represented by directed edges in the activity flow graph. Decision

points in the activity diagram, such as conditional branches, are translated into corre-

sponding branches in the activity flow graph. Finally, a start node and an end node

are added to the activity flow graph to represent the beginning and end of the activity

or process being modeled. The resulting activity flow graph provides a more detailed

and concrete representation of the system’s behavior that can be used for implemen-

tation and testing. The corresponding activity flow graph is demonstrated in Figures

6 and 7.

Figure 6. Original Follow-Up Activity flow graph.
Figure 6. Original Follow-Up Activity flow graph.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 22

Figure 7. Updated Follow-Up activity flow graph incorporating the changes.

4.4. Classified and New Test Cases

We now use Algorithm 2 to classify the old test cases. In Table 1, the old test cases

are classified into reusable, retestable, and obsolete test cases.

Table 1. Classification of the test cases.

Obsolete Retestable Reusable

1 9 108

We employed our regression testing approach wherein we evaluated our 118 exist-

ing test cases, categorized them, and created new ones to cover the changes that

were not previously tested. Through this approach, we discovered that out of the 118

test cases, only 9 were classified as retestable, and 1 was classified as obsolete. The

remaining test cases were deemed reusable and should be kept for future reference. How-

ever, we did find a need to generate 6 new test cases. Overall, the results indicated that

the regression testing approach proved effective in retesting the system.

5. Threat to Validity

To mitigate potential threats to the validity of our classified test case selection,

we have increased the depth of coverage by identifying additional test cases that are

needed for completeness. It is important to acknowledge that our approach may face

an external threat to its validity due to the limited availability of UML models in the

public domain. This is because there is currently no standardized repository of UML

models, and many real-world industrial systems are proprietary, which can restrict

access to relevant UML models. As a result, the generalizability of our findings may

be limited by this lack of availability.

6. Conclusions

The paper presents a new retesting technique for evaluating UML designs, which is

both secure and efficient. The technique involves categorizing modifications made to

UML designs and establishing rules to classify test cases based on these categories. The

approach also uses a regenerative approach to generate new test cases in cases where the

Figure 7. Updated Follow-Up activity flow graph incorporating the changes.

Appl. Sci. 2023, 13, 5379 19 of 21

4.4. Classified and New Test Cases

We now use Algorithm 2 to classify the old test cases. In Table 1, the old test cases are
classified into reusable, retestable, and obsolete test cases.

Table 1. Classification of the test cases.

Obsolete Retestable Reusable

1 9 108

We employed our regression testing approach wherein we evaluated our 118 existing
test cases, categorized them, and created new ones to cover the changes that were not
previously tested. Through this approach, we discovered that out of the 118 test cases, only
9 were classified as retestable, and 1 was classified as obsolete. The remaining test cases
were deemed reusable and should be kept for future reference. However, we did find a
need to generate 6 new test cases. Overall, the results indicated that the regression testing
approach proved effective in retesting the system.

5. Threat to Validity

To mitigate potential threats to the validity of our classified test case selection, we have
increased the depth of coverage by identifying additional test cases that are needed for
completeness. It is important to acknowledge that our approach may face an external threat
to its validity due to the limited availability of UML models in the public domain. This is
because there is currently no standardized repository of UML models, and many real-world
industrial systems are proprietary, which can restrict access to relevant UML models. As a
result, the generalizability of our findings may be limited by this lack of availability.

6. Conclusions

The paper presents a new retesting technique for evaluating UML designs, which
is both secure and efficient. The technique involves categorizing modifications made to
UML designs and establishing rules to classify test cases based on these categories. The
approach also uses a regenerative approach to generate new test cases in cases where
the selective retest suite fails to cover all changes. The proposed approach was tested on
620 UML designs, and the results show that the technique is effective in identifying and
testing changes made to UML designs. However, the authors acknowledge that as the
integrated model expands to include more views, the complexity of the test suites will grow
significantly, making regression testing even more critical in ensuring the effectiveness and
efficiency of the testing process. The proposed approach has several potential benefits,
including reducing the time and effort required for regression testing, improving the
accuracy and coverage of the testing process, and providing a more secure and efficient
method for evaluating UML designs. However, the approach will require further refinement
and testing as it is expanded to encompass additional UML views. Overall, the paper
presents a promising new technique for UML-based regression testing that has the potential
to improve the quality and reliability of software systems. The authors’ future work will
focus on expanding the approach to cover additional UML views and further refining the
technique to make it even more effective and efficient.

Author Contributions: Conceptualization, P.J.; Validation, P.J.; Writing—original draft, P.J.; Writing—
review & editing, P.J., M.S. and T.I.; Visualization, M.S.; Supervision, M.S. and T.I.; Funding acquisi-
tion, T.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Appl. Sci. 2023, 13, 5379 20 of 21

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Screenshots of the custom-made Hospital Management Website for this research.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 22

selective retest suite fails to cover all changes. The proposed approach was tested on 620

UML designs, and the results show that the technique is effective in identifying and test-

ing changes made to UML designs. However, the authors acknowledge that as the inte-

grated model expands to include more views, the complexity of the test suites will grow

significantly, making regression testing even more critical in ensuring the effectiveness

and efficiency of the testing process. The proposed approach has several potential benefits,

including reducing the time and effort required for regression testing, improving the ac-

curacy and coverage of the testing process, and providing a more secure and efficient

method for evaluating UML designs. However, the approach will require further refine-

ment and testing as it is expanded to encompass additional UML views. Overall, the paper

presents a promising new technique for UML-based regression testing that has the poten-

tial to improve the quality and reliability of software systems. The authors’ future work

will focus on expanding the approach to cover additional UML views and further refining

the technique to make it even more effective and efficient.

Author Contributions: Conceptualization, P.J.; Validation, P.J.; Writing—original draft, P.J.; Writ-

ing—review & editing, P.J., M.S. and T.I.; Visualization, M.S.; Supervision, M.S. and T.I.; Funding

acquisition, T.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest

Appendix A

Screenshots of the custom-made Hospital Management Website for this research.

Figure A1. Home Page.

Figure A2. Admin Login Page.

Figure A1. Home Page.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 22

selective retest suite fails to cover all changes. The proposed approach was tested on 620

UML designs, and the results show that the technique is effective in identifying and test-

ing changes made to UML designs. However, the authors acknowledge that as the inte-

grated model expands to include more views, the complexity of the test suites will grow

significantly, making regression testing even more critical in ensuring the effectiveness

and efficiency of the testing process. The proposed approach has several potential benefits,

including reducing the time and effort required for regression testing, improving the ac-

curacy and coverage of the testing process, and providing a more secure and efficient

method for evaluating UML designs. However, the approach will require further refine-

ment and testing as it is expanded to encompass additional UML views. Overall, the paper

presents a promising new technique for UML-based regression testing that has the poten-

tial to improve the quality and reliability of software systems. The authors’ future work

will focus on expanding the approach to cover additional UML views and further refining

the technique to make it even more effective and efficient.

Author Contributions: Conceptualization, P.J.; Validation, P.J.; Writing—original draft, P.J.; Writ-

ing—review & editing, P.J., M.S. and T.I.; Visualization, M.S.; Supervision, M.S. and T.I.; Funding

acquisition, T.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest

Appendix A

Screenshots of the custom-made Hospital Management Website for this research.

Figure A1. Home Page.

Figure A2. Admin Login Page.
Figure A2. Admin Login Page.

References
1. Pilskalns, O.; Uyan, G.; Andrews, A. Regression testing uml designs. In Proceedings of the 2006 22nd IEEE International

Conference on Software Maintenance, Philadelphia, PA, USA, 24–27 September 2006; IEEE: New York, NY, USA, 2006; pp.
254–264.

2. Al-Refai, M.; Cazzola, W.; Ghosh, S. A fuzzy logic based approach for model-based regression test selection. In Proceedings of the
2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems (MODELS), Austin, TX,
USA, 17–22 September 2017; IEEE: New York, NY, USA, 2017; pp. 55–62.

3. Shin, K.W.; Lim, D.J. Model-based test case prioritization using an alternating variable method for regression testing of a
UML-based model. Appl. Sci. 2020, 10, 7537. [CrossRef]

4. Arora, P.K.; Bhatia, R. Agent-based regression test case generation using class diagram, use cases and activity diagram. Procedia
Comput. Sci. 2018, 125, 747–753. [CrossRef]

5. Yadav, D.K.; Dutta, S. Regression test case selection and prioritization for object oriented software. Microsyst. Technol. 2020, 26,
1463–1477. [CrossRef]

6. Qu, M.; Wu, X.; Tao, Y.; Wang, G.; Dong, Z. Research on regression test method based on multiple UML graphic models. Int. J.
Grid Util. Comput. 2020, 11, 517–524. [CrossRef]

7. Gupta, N.; Yadav, V.; Singh, M. Automated regression test case generation for web application: A survey. ACM Comput. Surv.
(CSUR) 2018, 51, 1–25. [CrossRef]

8. Khalid, M.; Afzaal, H.; Hassan, S.; Zafar, N.A.; Latif, S.; Rehman, A. Automated UML-based Formal Model of E-Health System.
In Proceedings of the 2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics
(MACS), Karachi, Pakistan, 14–15 December 2019; IEEE: New York, NY, USA, 2019; pp. 1–6.

9. Komashie, A.; Clarkson, P.J. Can Diagrams Help Improve Healthcare Systems Design and Care Delivery? In Proceedings of
the DS 84: Proceedings of the DESIGN 2016 14th International Design Conference, Dubrovnik, Croatia, 16–19 May 2016; pp.
1885–1894.

10. Ma, L.; Zhao, H.; You, S.J.; Ge, W. Analysis and design of hospital management information system based on UML. AIP Conf.
Proc. 2018, 1967, 040012.

https://doi.org/10.3390/app10217537
https://doi.org/10.1016/j.procs.2017.12.096
https://doi.org/10.1007/s00542-019-04679-7
https://doi.org/10.1504/IJGUC.2020.108444
https://doi.org/10.1145/3232520

Appl. Sci. 2023, 13, 5379 21 of 21

11. Abdulla, M.N.; Al-Mejibli, I.; Ahmed, S.K. An investigation study of hospital management information system. IJARCCE 2017, 6,
406–411. [CrossRef]

12. Rahma, M.; Rahma, M.; Jwena, R.; Karim, M. Design and Implementation a Patient Friendly and Easy Hospital Management
System. Ph.D. Dissertation, Sonargaon University (SU), Dhaka, Bangladesh, 2022.

13. Pişirgen, A.; Peker, S. A UML-Based Conceptual Model for Appointment Booking Systems. In Proceedings of the 2021 6th
International Conference on Computer Science and Engineering (UBMK), Ankara, Turkey, 15–17 September 2021; IEEE: New
York, NY, USA, 2021; pp. 812–817.

14. Akinode, J.L.; Oloruntoba, S.A. Design and implementation of a patient appointment and scheduling system. Int. Adv. Res. J. Sci.
Eng. Technol. 2017, 4. [CrossRef]

15. Vasilakis, C.; Lecnzarowicz, D.; Lee, C. Application of unified modelling language (UML) to the modelling of health care systems:
An introduction and literature survey. Int. J. Healthc. Inf. Syst. Inform. (IJHISI) 2008, 3, 39–52. [CrossRef]

16. Rothermel, G.; Harrold, M.J. A safe, efficient algorithm for regression test selection. In Proceedings of the 1993 Conference on
Software Maintenance, Montreal, QC, Canada, 27–30 September 1993; IEEE: New York, NY, USA, 1993; pp. 358–367.

17. Li, X.; Liu, Z.; Jifeng, H. A formal semantics of UML sequence diagram. In Proceedings of the 2004 Australian Software
Engineering Conference, Melbourne, Vic, Australia, 13–16 April 2004; IEEE: New York, NY, USA, 2004; pp. 168–177.

18. Briand, L.C.; Labiche, Y.; Soccar, G. Automating impact analysis and regression test selection based on UML designs. In
Proceedings of the International Conference on Software Maintenance, Montreal, QC, Canada, 3–6 October 2002; IEEE: New York,
NY, USA, 2002; pp. 252–261.

19. Pragya, J.; Sahu, M.; Bisoy, S.K.; Sain, M. Application of Model-Based Software Testing in the Health Care Domain. Electronics
2022, 11, 2062. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.17148/IJARCCE.2017.6184
https://doi.org/10.17148/IARJSET.2017.41203
https://doi.org/10.4018/jhisi.2008100103
https://doi.org/10.3390/electronics11132062

	Introduction
	Motivation and Research Gap
	Contributions and Organization

	Our Testing Approach
	Regression Testing
	Associating UML Sequence Diagrams and Activity Diagrams
	Formal Definition of Sequence Diagram
	Formal Definition of Activity Diagram

	Transforming Activity Diagrams to Activity Flow Graphs
	UML Testing Approach
	UML Regression Testing
	Normalizing Original Data

	Identifying the Changes in Software Design and Classifying Test Cases
	Classifying Test Cases
	Obsolete Test Cases (Ot)
	Retestable Test Cases (Rt)
	Reusable Test Cases (Ut)
	Algorithm to Classify Test Cases
	Generating New Tests
	Safety and Complexity

	Case Study
	Sequence Diagrams of the Case Study
	Activity Diagrams of the Case Study
	Activity Flow Graph of the Case Study
	Classified and New Test Cases

	Threat to Validity
	Conclusions
	Appendix A
	References

