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Abstract: Diabetic cardiovascular disease is a common complication of diabetes, which can lead
to high-mortality diseases such as diabetic cardiomyopathy and atherosclerosis in serious cases.
Therefore, effective prevention and management of diabetic cardiovascular disease is demanded.
Clinical medical data officers are faced with a situation of a small amount of data and uneven data
distribution. In this paper, we propose data oversampling synthesis techniques based on weight and
extension algorithms. It can combine 1D-convolutional neural networks and long short-term memory
neural networks to solve the problem of a lack of original data. First of all, a few samples based on
feature weight are synthesized to make the original unbalanced data evenly distributed. Secondly, the
original data are extended and corrected to expand the number of samples. Finally, the deep learning
algorithm is used to extract features and classify whether the data have diabetic cardiovascular
disease. Data synthesis based on weight and extension algorithms was evaluated on the actual
medical datasets and obtained an accuracy of 93.53% and specificity of 94.37%, which confirms that it
is an improved solution compared to the other algorithms. Hence, this paper contributes not only a
substantial saving of human resources but also improves the efficiency of the clinical diagnosis of
diabetic cardiovascular disease, which is conducive to the early detection and treatment of diseases.

Keywords: diabetic cardiovascular disease; data oversampling; data expansion; physiological parameters
of human

1. Introduction
1.1. Background

The occurrence of diabetic cardiovascular disease is due to the impaired function of
arterial endothelial cells caused by high blood sugar, which increases the risk of atheroscle-
rosis [1]. Atherosclerosis is a disease with increased thickness, decreased elasticity, increased
brittleness and easy rupture of the artery wall, which is the main pathological basis of
cardiovascular diseases. Cardiovascular disease is the most serious and prominent problem
of diabetes. The risk of cardiovascular disease in diabetic patients is two to four times
higher than that in non-diabetic patients. Therefore, effective preventive and management
measures should be taken [2]. Researchers worldwide frequently study the treatment and
detection of diabetic cardiovascular diseases. Hematological and urological parameters are
used to judge disease conditions and the effectiveness of therapeutic methods [3], which
makes it possible to make a clinical diagnosis according to these parameters.

With people’s attention to health and the continuous progress of medical technology,
the development of the medical level is more rapid and extensive, which has made a
greater contribution to human health [4]. Artificial intelligence is superior to human
experts in the field of data processing [5], and it has great potential to promote the further
development of medical diagnosis technology. Although deep learning technology has
an excellent performance in the field of automatic diagnostic medical images, it still faces
great challenges in terms of interpretability and analysis of textual biological data [6,7].
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That patients suffering from diseases are detected accurately is an important problem
in the work of medically assisted diseases. However, the actual medical data we used have
the characteristic of unbalanced distribution, which affects the generalization performance
of the supervised learning algorithm [8,9]. For example, a rare disease may occur in the
population of special cases compared with other clinically normal diagnostic criteria in
the differential diagnosis activities of special problems, such as the clinical differential
diagnosis of auxiliary medical diseases.

Another challenge in medically assisted diseases using deep learning models is the
amount of data. At present, electronic health records are widely used in medical research,
but there is no effective and unified method to evaluate the quality of data recorded in
electronic health records. It leads to the limitation of the accuracy of disease classification
using the data of electronic health records [10]. In the training process, if the data are too
few, it is difficult for the model to extract the features effectively and make an accurate
classification. Conversely, over-fitting the characteristics of the training set makes it difficult
to show good robustness on the verification set.

Traditional automatic diagnosis methods need to extract features manually so they are
subjective and one-sided. In addition, the traditional automatic diagnosis does not adapt
to complex data, which affects the accuracy of classification results to a certain extent. The
proposed artificial intelligence algorithm can improve the efficiency of the diagnosis of
diseases, which realizes the function of the pre-triage of patients, save social resources and
medical resources and reduce the period of medical treatment.

1.2. Related Work

Although deep learning technology has shown a strong competitive advantage in
the field of automatic diagnostic medical images, it still faces many major challenges such
as the processing of text-based medical information. At present, many researchers are
committed to developing better resampling methods to reduce the data imbalance ratio
to improve the performance of the classifier [11]. Douzas et al. proposed a simpler and
more effective oversampling method based on the K-mean clustering method and SMOTE
method. It avoided the noise and effectively overcame the inter-class and intra-class
imbalance [12]. Jedrzejowicz et al. made the GEP classifier adapt to the requirements of an
unbalanced data environment by reusing a few class instances and applying an incremental
learning paradigm [13].

Many studies have been reported on the further integration of deep learning tech-
niques with medical diagnostics. Liu et al. proposed that high-frequency ultrasound
based on complete convolutional neural network processing has high diagnostic value for
peripheral neuropathy in patients with type 2 diabetes. It is suggested that high-frequency
ultrasound can be used to evaluate the morphological changes of peripheral nerves in
patients with type 2 diabetes [14]. Lipton et al. built an LSMT prediction model based
on 80,000 multi-label electronic outpatient cases for the multi-label disease prediction of
outpatient case data [15]. Yi et al. built a learning model using RNN to extract drug
interactions [16]. Antoniou et al. verified the feasibility of GAN for training sample data
enhancement through experiments [17].

In the process of actual clinical diagnosis, in addition to the diseases that can be
diagnosed through medical images, many diseases need to be diagnosed through text
medical data, such as diabetes and its complications. Further research is needed on the
accuracy of the deep learning model, especially when the biological samples of text clinical
medical data are unbalanced and small.

1.3. Contributions

This study strives to improve the classification effect using a small sample of un-
balanced text biological data of diabetic cardiovascular disease from the data level and
algorithm level. It can make an accurate judgment on the diagnosis results of each piece of
medical data. Therefore, we put forward data synthesis based on weight and extension
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algorithms, which can automatically judge the health condition of patients and carry out
the preliminary diagnosis of diabetic cardiovascular diseases. This research saves medical
resources and labor costs, which is of positive significance for medical development. The
main contributions of this work are as follows:

(1) At the data level, we use the weighted Minkowski distance to define the IOWA op-
erator SMOTE for some sample spacing [18]. From the eigen weights, the weighted
Minkowski distance of the IOWA operator can be obtained to calculate the distance to
the nearest neighboring point. Then, by SMOTE interpolation, increase the distribu-
tion density of a few samples and combine a few samples to achieve sample balance.

(2) At the algorithmic level, extended learning, the 1D-CNN and LSTM networks are
proposed [19–22] for data classification. Extended learning has been proven to be
a fast and effective technique, especially in the case of very limited raw data [23].
We combine the 1D-CNN with LSTM to process the encoded data searching for the
features hidden in the original data, and also introduce attention mechanisms in
memory neurons to learn associative features of distant data.

(3) We used human hematology data and human urine data to illustrate the algorithm
initially and compared the performance of different algorithms. Compared with
electronic health records, medical testing information with unified standards has
higher reliability [24]. The human hematology tests used in this paper include blood
glucose tests, blood routine tests, urine routine tests and biochemical tests. Different
parameters are often obtained by different methods, which can reflect different health
conditions of the human body [25–27]. The proposed data synthesis based on weight
and extension algorithms has been preliminarily applied to the diagnosis of diabetic
cardiovascular disease using textual data from Human Hematology and Urology.

The rest of this article is organized as follows: Section 2 introduces the data synthesis
based on weight and extension algorithms proposed in this paper. Section 3 describes
the actual clinical dataset and experimental results used in this paper. Section 4 discusses
the performance of the proposed method in the context of real clinical data on diabetic
cardiovascular disease and the comparative results of different losses. Section 5 provides
the conclusion of this paper.

2. Materials and Methods

We proposed data synthesis based on weight and extension algorithms. It can use
biological data of human urine parameters and hematology parameters to automatically
assist a diagnosis of cardiovascular disease based on deep learning. First of all, a few
samples based on feature weight are synthesized to make the original unbalanced data
evenly distributed. Secondly, the original data are extended and corrected to expand the
number of samples. Finally, the deep learning algorithm is used to extract features and
classify whether the data have diabetic cardiovascular disease. The proposed algorithm can
be used for data synthesis and enhancement which provides accurate and rapid decision
support for the prediction of diabetic cardiovascular disease, even when the distribution
of original data is uneven and the number of samples is small. The system has positive
significance for the development of auxiliary diagnosis technology using text medical data,
as it can automatically judge the health status according to the input medical data which
improves the efficiency of disease diagnosis.

2.1. Data Synthesis Based on Weight and Extension Algorithms

Figure 1 shows the flow chart of data synthesis based on weight and extension algo-
rithms. First, we determine whether the datasets for diabetic cardiovascular disease are
unbalanced. If they are unbalanced, the samples of a few classes based on feature weight
should be combined to make the original samples evenly distributed. Secondly, the data are
enhanced and the number of samples is expanded by extending and modifying the algo-
rithm. Finally, the deep learning algorithm is used for feature extraction and classification
of the dataset to preliminarily obtain the results of diabetic cardiovascular disease.
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Figure 1. Data synthesis based on weight and extension algorithms flow charts.

Since the task of the classification layer is a binary classification task, we adopt the
sigmoid classification function. Each neuron in the output layer represents a kind of
health condition and corresponds to a unique heat vector. The sigmoid function is shown
in Equation (1):

sigmoid(x) =
1

1− e−x (1)

2.2. SMOTE Algorithm Based on IOWA Operator

The synthetic minority oversampling technique (SMOTE) [28], which uses the inter-
polation method, is used to balance the unbalanced dataset by inserting the new minority
samples over the line between each minority sample and its K neighbor sample. The classic
SMOTE method uses the Euclidean distance (Equation (2)) to calculate the nearest neighbor
set of the minority sample set. Then, the new synthesizing samples are inserted between
the minority sample set and the k-nearest neighbor sample set until an appropriate number
of the new sample set is obtained:

D =

√
n

∑
i=1

(Xi − Xk)
2 (2)

where there are n samples in the minority sample set X, Xi is the i-th sample of X, Xk is the
k-th nearest neighbor sample of Xi and D is the distance between the calculated minority
sample Xi and its nearest neighbor Xk.

The classical OWA operator assumes that the values of the elements to be aggregated
are related to the defined weights, but the weights for each item of high-dimensional
data are not balanced. So, the IOWA (induced ordered weighted average) algorithm was
introduced [29]. The basic principle of the IOWA operator is to calculate the accuracy of
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each moment through the predicted value and assign weight coefficients to every single
model in the order of accuracy from high to low. The predicted value and the actual value
are from the sum of the square’s error function. As follows, it establishes the combined
prediction model with the minimum value as the target.

Let (〈a1, x1〉, 〈a2, x2〉, . . . , 〈an, xn〉) be n two-dimensional arrays, then the IOWA opera-
tor can be obtained from Equation (3):

IOWAW(〈a1, x1〉, 〈a2, x2〉, . . . , 〈an, xn〉) =
n

∑
i=1

wibi (3)

where, IOWAW is the n-dimensional-induced ordered weighted average operator generated
by a1, a2, . . . ,an, bi is the i-th largest input vector in a1, a2, . . . , an in order from the largest
to the smallest, W = (w1, w2, . . . , wn)

T is the weighted vector of OWA which satisfies
n
∑

i=1
wi = 1, wi ≥ 0. The IOWA operator is an orderly weighted average of the corresponding

values of induction value x1, x2, . . . , xn sorted from large to small. The sizes of wi and xi
are independent of their positions but are related to their positions.

The SMOTE process based on the IOWA operator is as follows:
1© Fisher scores of each feature variable in dataset X were calculated to obtain the weight

matrix w for all features by Equation (4):

w =

C
∑

i=1

ni
n

(
µ
(m)
i − µ(m)

)2

1
n

C
∑

i=1
∑

x∈wi

(
x(m) − µ

(m)
i

)2
(4)

where the total of N samples in the dataset belongs to C categories, and each category
contains ni samples. x(m) represents the value of sample x on the m-th feature, µ

(m)
i

represents the mean value of class i samples on the m-th feature and µ(m) represents the
mean value of all classes of samples on the m-th feature.

2© The minority samples in the training set were taken out. The variant form of
Minkowski distance weighted by the IOWA was considered to define the neigh-
borhood using Equation (5):

DIOWA =

(
n

∑
i=1

wibi
p

)1/p

(5)

where the well-known options for this parameter are p ∈ {1, 2, ∞, p ≥ 1,}, it is the tradi-
tional Euclidean norm when p = 2. Similar to the IOWA operator, bi is the value of the i-th

larger input vector sampled from X. In addition, it satisfies
n
∑

i=1
wi = 1 and wj ∈ [0, 1]. The

nearest neighbor DIOWA of each minority sample in the minority sample was calculated.

3© According to the preset sampling ratio, several samples are randomly selected from
DIOWA, then the new samples are inserted into these samples.

4© Repeat steps two and three until the dataset has the appropriate number of samples.

2.3. Data Enhancement

In this experiment, data amplification techniques were used to solve the problem of the
lack of original data. We added a random disturbance matrix to the original training matrix
to amplify the original data to form an amplification matrix, as shown in Equation (6):

E = X + D (6)
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where E is the amplified matrix, X is the original training matrix, and D is the random
disturbance matrix. The element value of the random disturbance matrix D should be
much smaller than that of the original training matrix X, and the scale should be the same
as that of the original training matrix.

We also studied the effect of data quantification on model performance in the experi-
ment. We quantify the physiological parameters that test negative using a smaller value
near zero instead of zero.

2.4. 1D-Convolutional Neural Network

The 1D-convolutional neural network (1D-CNN) is the core of feature extraction for
data synthesis based on weight and extension algorithms. We use it to effectively process
text data with certain regularity. The schematic diagram of the 1D-CNN algorithm is shown
in Figure 2.
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Figure 2. Schematic diagram of one-dimensional convolution algorithm.

Filter uses the method of shared weight to learn the input characteristics. When the
trained filter detects that a particular feature is present in the data, the corresponding filter
is activated. The principle is shown in Equation (7):

Ok = σ

(
bias +

N

∑
m=1

wm Ix+m−1

)
(7)

where O is the output of the k neuron in the feature graph, σ is the ReLu activation function,
bias is the shared bias, wm is the m weight in the weight matrix, Ix+m−1 is the input of the
x + m− 1 neuron and N is the filter length.

A kind of filter can extract one of the characteristics of the input data. The 1D-CNN
can effectively extract the characteristics of biomedical data.

2.5. Long Short-Term Memory Networks

The cell structure of the LSTM is shown in Figure 3. Three gates are placed in a
unit including the input gate, the oblivion gate and the output gate. The gate determines
whether the entered information is useful. Only the information that meets the algorithm
authentication is left. We use LSTM to dig deep into long-term dependencies and trends in
a limited sample of data.
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The updated recursive Equation of LSTM is Equations (8)–(12):
Input gate:

It = σ(WxiXt + Whi Ht−1 + bi) (8)

Forget gate:
Ft = σ

(
Wx f Xt + Wh f ht−1 + b f

)
(9)

Output gate:
Ot = σ(WxoXt + Who Ht−1 + bo) (10)

Memory unit structure:

Ct = Ft · Ct−1 + It · tanh(WxcXt + Whc Ht−1 + bc) (11)

Ht = Ot · tanh(Ct) (12)

in Equations (8)–(12), It, Ft and Ot represent the gating information of the input, forgetting
and output gates, respectively. “·” represents dot product operation, W is the weight matrix,
b is the bias weight vector and σ stands for sigmoid activation function. Ht gives t moment
output values and the result by tanh nonlinear function gives a value between −1 to 1; Ct is
the long-term state of the cell, namely, the long-term memory of the LSTM neural network.

We use LSTM for feature classification to overcome the gradient disappearance and
gradient explosion in the training process, and by introducing the attention mechanism
of neurons with memory function to learn the joint features of data separated by a long
distance, the memory ability of the long-term series is better realized.

3. Experiments
3.1. Dataset and Preprocessing

The biological data of diabetic cardiovascular disease used in this experiment are
from the metabolic disease hospital of Tianjin Medical University, and the data collection
time is from 15 December 2017 to 20 January 2018. All samples in the experiment came
from patients who went to the hospital for health checks. Before analyzing the data, we
anonymized the names and other basic information of the patients and obtained the pa-
tients’ knowledge and also obtained the patients’ written informed consent. The clinical
samples in the experiment excluded the data of pregnant women, lactating women and
patients suffering from cardiovascular diseases. Data on 698 pieces of patient physiolog-
ical information were initially obtained from different patients. Each piece of data was
composed of patient physiological information and physician diagnosis results, and all
hematological parameters were obtained by professionally trained clinical examiners ac-
cording to the gold standard. All diagnoses were made by a metabolic pathologist with
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6–10 years of clinical experience. We use the doctor’s diagnosis to make the label. The
heat map shows the correlation coefficient distribution of variables of data by means of
a contingency table. The heat map (Figure 4) can intuitively show the correlation of the
49 indicators, which results from blood routine, urine routine, biochemical examination
and glycosylated hemoglobin.
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The dataset of diabetic cardiovascular disease after data collation contains 524 data
samples, of which 98 are diabetic cardiovascular disease patients and 426 are not diabetic
cardiovascular disease patients. The proportion of minority samples to majority samples is
0.23, which belongs to the unbalanced dataset (Figure 5).
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We adopt one-hot encoding technology in the process of data preprocessing. N states
of discrete data are represented by n-dimensional vectors that different elements in the
vector represent different health conditions. Each state has an independent vector, that
is, only the corresponding elements in the vector are 1, and the rest are 0. As shown in
Table 1, the discrete data are converted to 001, 010, 100 and other data that can be read
by the computer which solves the problem that the classifier cannot process the discrete
attribute data. It can improve the generalization ability and the recognition accuracy of



Appl. Sci. 2023, 13, 5449 9 of 14

the model. Through the above methods, we code the diagnosis of health as 10, and the
diagnosis of diabetic cardiovascular disease as 01.

Table 1. Discrete data thermal coding table.

Discrete Index Coding Standard

Gender Male = 01, Female = 10

LEU

“−” = 001,
“+/−” = 010,

“+” = 100

ERY
NIT
PRO
GLC
KET
URO
BR

Urine color

Light yellow = 0001,
Amber = 0010,
Brown = 0100,

Red = 1000
Abbreviation: LEU = Urinary leukocyte; ERY = Urine erythrocyte; NIT = Urinary nitrite; PRO = Urine protein;
GLC = Urinary glucose; KET = Ketone body; URO = Urobilinogen; BR = Bilirubin.

3.2. Results

In order to observe the change of data quantity more directly, we choose to use a
two-dimensional coordinate graph to display the change of data quantity. Glycosylated
hemoglobin (HbA1C) is a common indicator for patients and is often used as a monitoring
indicator for diabetes control in clinical practice. In addition, the age of patients is also
one of the statistical variables in this paper. Therefore, we selected HbA1c and age from
49 indicators as the x-coordinate and y-coordinate, respectively, to plot the effects of
oversampled data based on the IOWA operator SMOTE algorithm (Figure 6). There were
846 pieces of over-sampled data, including 420 pieces of diseased samples and 426 pieces of
non-diseased data. The degree of imbalance was 0.986, close to 1, proving that the dataset
was relatively balanced. We only randomly selected 140 pieces of data from the original
data to test the effect of model training. The remaining 706 pieces of data, including raw
data and amplified data, were used to train the extension model. The test data and training
data are completely independent and do not cross each other.
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Figure 7 shows the result of different classification algorithms of original data and
oversampled data. M1 is data synthesis based on weight and extension algorithms, M2
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is the FCNN model, M3 is the SVM algorithm, and M4 is the LSTM network model. The
effects of data quantification on model performance were also included in the experiment
instead of using zero. Physiological parameters are quantified with a small value close to
zero. The data in the figure is the result of data extension and correction.
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Table 2 shows the experimental results of all oversampling methods, including the
random oversampling algorithm, the ADASYN algorithm, the classic SMOTE algorithm
and oversampling methods that improved on SMOTE. A0 does not use any oversampling
algorithm, A1 is a random oversampling algorithm, A2 is a classic SMOTE algorithm, A3 is
a Borderline SMOTE algorithm, A4 is a K-Means SMOTE algorithm, A5 is an SVM SMOTE
algorithm, A6 is an ADASYN algorithm, A7 is a SMOTE-NC algorithm and A8 is based
on the IOWA operator SMOTE algorithm. The influence of data quantization on model
performance is also included in the experiment. The data in the table are the result of data
extension and correction. By comparing the experimental results, the SMOTE algorithm
based on the IOWA operator SMOTE algorithm is the most effective in classifying the data.

Table 2. Comparison of results of different oversampling methods.

Accuracy Specificity F1-Score G-Mean AUC

A0 50 0 66.67 0 50
A1 59.35 49.15 63.77 58.13 60.03
A2 88 91.3 87.5 87.9 94.72
A3 66.94 58.62 65.81 68.22 70.7
A4 72.22 65.03 71.77 72.87 74.12
A5 60.75 57.66 58.87 61.11 61.55
A6 76 68 77.78 75.58 77.6
A7 93.57 94.37 93.33 93.5 94.37

A0 is not use any oversampling algorithm, A1 is random oversampling algorithm, A2 is classic SMOTE algorithm,
A3 is Borderline SMOTE algorithm, A4 is K-Means SMOTE algorithm, A5 is SVM SMOTE algorithm, A6 is
ADASYN algorithm, A7 is based on IOWA operator SMOTE algorithm.

Train the extension model using both raw and composite data. The recognition
rate of different algorithms on the same verification set was used to evaluate the model
performance. We compare the performance of the extension model, FCNN, SVM and LSTM
with original data and oversampled data, respectively, in the non-extended, oversampled
and oversampled categories. The results of accuracy, specificity and F1-score of different
models were shown in Tables 3–5, respectively. M1 is data synthesis based on weight and
extension algorithms, M2 is the FCNN model, M3 is the SVM algorithm and M4 is the
LSTM network model.
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Table 3. Accuracy of trained models (%).

M1 M2 M3 M4

Original data
Unextended and Uncorrected 52.29 52.86 55.71 55

Extended Uncorrected 50 52.14 52.14 50
Extension and Correction 50 50 55 50.71

Oversampled data
Unextended and Uncorrected 80 78.51 91.43 87.85

Extended Uncorrected 92.14 78.51 91.43 91.43
Extension and Correction 93.57 78.51 92.85 75.71

M1 is data synthesis based on weight and extension algorithms, M2 is FCNN model, M3 is SVM algorithm, M4 is
LSTM network model.

Table 4. Specificity of trained models (%).

M1 M2 M3 M4

Original data
Unextended and Uncorrected 11.43 5.71 12.85 10

Extended Uncorrected 0 5.71 5.71 2.86
Extension and Correction 0 0 10 4.29

Oversampled data
Unextended and Uncorrected 95.71 81.43 95.71 95.71

Extended Uncorrected 71.43 80 95.71 71.43
Extension and Correction 94.37 80 88.57 80

M1 is data synthesis based on weight and extension algorithms, M2 is FCNN model, M3 is SVM algorithm, M4 is
LSTM network model.

Table 5. F1-score of trained models (%).

M1 M2 M3 M4

Original data
Unextended and Uncorrected 68 67.96 69 68.97

Extended Uncorrected 0.66 67.31 67.32 66.02
Extension and Correction 0.66 66.67 68.97 66.34

Oversampled data
Unextended and Uncorrected 91.85 78.52 91.33 91.33

Extended Uncorrected 79.54 78.56 91.33 75.6
Extension and Correction 93.33 78.56 92.76 87.5

M1 is data synthesis based on weight and extension algorithms, M2 is FCNN model, M3 is SVM algorithm, M4 is
LSTM network model.

Data synthesis based on weight and extension algorithm accuracy and the loss of the
training set are shown in Figure 8. The best performance of the model on the training set
is about 93% accuracy and about 4% loss value. The model can judge the health status of
unknown samples well. The ROC curve was also used to evaluate the ability of the model
to diagnose diseases, as shown in Figure 9. The area under the curve (AUC) was 94.37%.
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4. Discussion

As shown in Figure 7, the data model is better trained by the oversampled data than
the oversampled data without data composition. Due to the small amount of diabetic
cardiovascular disease data in the original data, the weight of the model training will be
biased towards the most samples, and the diseased samples in the test data will be divided
into non-diseased ones. Compared with the original dataset, the accuracy, specificity,
F1-score, G-mean and AUC of the sampled dataset were significantly increased. It shows
that the classification effect of the balanced data based on the IOWA operator SMOTE
algorithm is better than that of the unbalanced data. It shows high sample recognition
ability by using data synthesis based on weight and extension algorithms. In the aspect
of analyzing text medical data especially unbalanced data are synthesized by a few class
samples which shows great advantages. From the data level, the results in Table 2 show
that the synthesized data based on the IOWA operator SMOTE algorithm is more consistent
with the characteristics of the original data than the SMOTE algorithm and the ADASYN
algorithm, which may improve the performance of data classification.

The way that the data are quantified can also affect the performance of the model. In
the experiment, we quantified the data in different forms. As shown in Table 3, data modi-
fication can improve the accuracy of the model in the verification set. The corrected data
may make more inputs valid. Further analysis of Tables 3–5 shows that the performance of
data synthesis based on weight and extension algorithms has been improved when trained
using the same extended dataset, so the proposed algorithm has the powerful ability to
improve model robustness. Even when there is less raw data, the proposed algorithm also
has a better performance in the identification of text-like medical data and has a strong
ability to effectively diagnose.

Meanwhile, the accuracy and loss of data synthesis based on weight and extension
algorithms are shown in Figure 8. As shown in Figure 9, the best performance achieved
by the model on the training set is the accuracy of about 93%, the loss value of about 4%
and the area under the curve (AUC) is 94.37%. It has proved that the proposed model
has good learning ability and generalization ability and can judge the health status of
unknown samples well. Although extended learning allows higher recognition accuracy
with less relevant original data, its performance is still inferior to the model trained with
very large data training. However, when a new convolutional neural network is trained
with large amounts of data, it takes a lot of time to achieve good performance. In this case,
it is difficult to verify the performance of each modified algorithm in time, which will take
a lot of time. Although the amount of data in the extended dataset has increased compared
with the original dataset, the total amount is still relatively small, so the training time of the
model is correspondingly less. Therefore, the extended learning algorithm can also be more
efficient in training time than the large-scale dataset. When the original data are small, data
synthesis based on weight and extension algorithms is a better choice. Meanwhile, it is a
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very difficult task to collect enough raw medical data to train a blank convolutional neural
network. Therefore, data synthesis based on weight and extension algorithms is applied
to the pre-training of neural networks to achieve better results in less time before using a
large amount of other medical data.

5. Conclusions

Using medical text data to construct an accurate and robust auxiliary diagnosis system
is the premise of realizing medical intelligent diagnosis. The goal of this smart medical
diagnosis is to reduce the clinician’s workload. Data synthesis based on weight and
extension algorithms was evaluated on the actual medical dataset and obtained an accuracy
of 93.53% and specificity of 94.37%, which confirms that it is an improved solution compared
to other algorithms. It not only saves social resources and medical resources but also
shortens the medical treatment cycle.

It has been proved that the quantization method of non-digital medical data will also
affect the performance of the model. In addition, the data balance is also related to the
attributes of the dataset itself, and there may be deviations between the distribution of
samples in the training dataset and the distribution of overall samples. Therefore, we
strive to achieve higher generalization ability by exploring more quantization methods
of non-digital medical data in future. We will focus on the auxiliary diagnosis of various
human diseases in future. Besides blood and urine parameters, there is other physiological
information that can be used to diagnose different diseases. To identify more types of
diseases, we plan to collect more types of medical text data to extend the existing dataset
and study the model’s performance in diagnosing different diseases.

Author Contributions: Conceptualization, W.Y. and Y.L.; methodology, W.Y. and Y.G.; software, W.Y.
and Y.G.; validation, W.Y., Y.G. and Y.L.; formal analysis, W.Y., Y.G. and Y.L.; investigation, W.Y.
and Y.L.; writing—original draft preparation, W.Y. and Y.G.; writing—review and editing, W.Y. and
Y.G.; visualization, W.Y. and Y.L.; supervision, W.Y. and Y.L.; project administration, W.Y.; funding
acquisition, W.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Program of Tianjin, grant num-
ber 21YDTPJC00500.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the patients to publish this paper.

Data Availability Statement: Data are unavailable due to privacy or ethical restrictions.

Acknowledgments: The authors thank the editors and anonymous reviewers for their construc-
tive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ogurtsova, K.; Da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.;

Makaroff, L.E. IDF diabetes atlas global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017,
128, 40–50. [CrossRef] [PubMed]

2. Padmalayam, I. Targeting mitochondrial oxidative stress through lipoic acid synthase: A novel strategy to manage diabetic
cardiovascular disease. Cardiovasc. Hemato.l Agents Med. Chem. 2012, 10, 223–233. [CrossRef] [PubMed]

3. Liu, Y.; Zhang, Q.; Zhao, G.; Liu, G.; Liu, Z. Deep learning-based method of diagnosing hyperlipidemia and providing diagnostic
markers automatically. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 679–691. [CrossRef] [PubMed]

4. National Research Council. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of
Disease; National Academies Press: New York, NY, USA, 2011.

5. Zhang, Z.; Tang, M.A. Domain-based, adaptive, multi-scale, inter-subject sleep stage classification network. Appl. Sci. 2023,
13, 3474. [CrossRef]

6. Kolachalama, V.B.; Garg, P.S. Machine learning and medical education. NPJ Digital. Med. 2018, 1, 54. [CrossRef]
7. Rajendra, A.U.; Faust, O.; Adib, K.N.; Suri, J.S.; Yu, W. Automated identification of normal and diabetes heart rate signals using

nonlinear measures. Comput. Biol. Med. 2013, 43, 1523–1529. [CrossRef]

https://doi.org/10.1016/j.diabres.2017.03.024
https://www.ncbi.nlm.nih.gov/pubmed/28437734
https://doi.org/10.2174/187152512802651060
https://www.ncbi.nlm.nih.gov/pubmed/22632266
https://doi.org/10.2147/DMSO.S242585
https://www.ncbi.nlm.nih.gov/pubmed/32210601
https://doi.org/10.3390/app13063474
https://doi.org/10.1038/s41746-018-0061-1
https://doi.org/10.1016/j.compbiomed.2013.05.024


Appl. Sci. 2023, 13, 5449 14 of 14

8. Gu, P.; Yang, Y. Oversampling algorithm oriented to subdivision of minority class in imbalanced data set. Comput. Eng. 2017,
43, 241–247.

9. Liu, X.Y.; Wu, J.; Zhou, Z.H. Exploratory under-sampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B
(Cybern.) 2008, 39, 539–550.

10. Sun, J.; Knoop, S.; Shabo, A.; Carmeli, B.; Sow, D.; Syed-Mahmood, T.; Rapp, W.; Kohn, M.S. IBM’s health analytics and clinical
decision support. Yearb. Med. Inform. 2014, 23, 154–162. [CrossRef]

11. Sun, Y.; Wong, A.K.; Kamel, M.S. Classification of imbalanced data: A review. Int. J. Pattern Recognit. Artif. Intell. 2009, 23, 687–719.
[CrossRef]

12. Douzas, G.; Bacao, F.; Last, F. Improving imbalanced learning through a heuristic oversampling method based on k-means and
SMOTE. Inf. Sci. 2018, 465, 1–20. [CrossRef]

13. Jedrzejowicz, J.; Jedrzejowicz, P. GEP-based classifier for mining imbalanced data. Expert Syst. Appl. 2021, 164, 114058. [CrossRef]
14. Liu, X.; Zhou, H.; Wang, Z.; Liu, X.; Li, X.; Nie, C.; Li, Y. Fully convolutional neural network deep learning model fully in patients

with type 2 diabetes complicated with peripheral neuropathy by high-frequency ultrasound image. Comput. Math. Methods Med.
2022, 2022, 5466173. [CrossRef]

15. Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzel, R. Learning to diagnose with LSTM recurrent neural networks. arXiv 2015,
arXiv:1511.03677.

16. Yi, Z.; Li, S.; Yu, J.; Tan, Y.; Wu, Q.; Yuan, H.; Wang, T. Drug-drug Interaction extraction via recurrent neural network with
multiple attention layers. In Advanced Data Mining and Applications: 13th International Conference, ADMA 2017, Singapore, 5–6
November 2017; Springer: Berlin/Heidelberg, Germany, 2017.

17. Antoniou, A.; Storkey, A.; Edwards, H. Data Augmentation Generative Adversarial Networks; The University of Edinburgh:
Edinburgh, UK, 2018.

18. Merigó, J.M.; Casanovas, M. A new Minkowski distance based on induced aggregation operators. Int. J. Comput. Intell. Syst. 2011,
4, 123–133. [CrossRef]

19. Yang, W.; Zhao, M.; Huang, Y.; Zheng, Y. Adaptive online learning based robust visual tracking. IEEE Access 2018, 6, 14790–14798.
[CrossRef]

20. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2014, 12, 2451–2471.
[CrossRef]
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