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Abstract: Convolutional neural networks (CNNs) have been developed as an effective strategy for
hyperspectral image (HSI) classification. However, the lack of feature extraction by CNN networks is
due to the network failing to effectively extract global features and poor capability in distinguishing
between different feature categories that are similar. In order to solve these problems, this paper
proposes a novel approach to hyperspectral image classification using a multidimensional spectral
transformer with channel-wise correlation. The proposed method consists of two key components:
an input mask and a channel correlation block. The input mask is used to extract relevant spectral
information from hyperspectral images and discard irrelevant information, reducing the dimension-
ality of the input data and improving classification accuracy. The channel correlation block captures
the correlations between different spectral channels and is integrated into the transformer network to
improve the model’s discrimination power. The experimental results demonstrate that the proposed
method achieves great performance with several benchmark hyperspectral image datasets. The
input mask and channel correlation block effectively improve classification accuracy and reduce
computational complexity.

Keywords: hyperspectral image classification; transformer; channel-wise correlation

1. Introduction

Hyperspectral imaging is a technique that acquires data from many narrow and con-
tiguous spectral bands, enabling spectral signatures of various materials to be detected.
Hyperspectral images, HSIs, produce data cubes that consist of a set of two-dimensional im-
ages, where each pixel contains the reflectance or radiance values at different wavelengths
or bands. HSI classification is a process of assigning each pixel in an HSI to one of several
predefined classes, which presents a challenging task due to the high-dimensional nature of
hyperspectral data and the complexity of spectral signatures. HSI classification algorithms
are designed to extract useful information from the hyperspectral data and map this infor-
mation to the predefined classes. This process involves the use of mathematical algorithms
and statistical techniques to analyse the spectral information contained in each pixel.

HSI classification algorithms have a wide range of applications, including mineral
and oil exploration and environmental monitoring [1–5]. In mineral and oil exploration [6],
hyperspectral imaging can be used to identify the presence of specific minerals or hydro-
carbons based on their unique spectral signatures. Environmental monitoring applications
include the detection of pollutants and the mapping of vegetation types [7,8].

Many algorithms have been developed for HSI classification, including supervised,
unsupervised, and hybrid approaches. Supervised algorithms rely on prior knowledge
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about the spectral properties of the target of interest, and use this information to train a
classification model. The most common supervised classification algorithm employed in
hyperspectral imaging is the maximum likelihood classifier [9]. This algorithm assumes
that the spectral response of each target class is normally distributed, and calculates the
probability that each pixel belongs to each class. The pixel is then classified to the class
with the highest probability. Other supervised classification algorithms include support
vector machines [10], decision trees [11], and artificial neural networks [12]. Unsupervised
classification algorithms include clustering algorithms such as k-means [13], hierarchical
clustering [14], and self-organizing maps [15,16]. These algorithms group pixels into
clusters based on their spectral similarity, without any prior knowledge of the target classes.
The resulting clusters can then be labelled and classified based on their spectral properties.
Hybrid algorithms combine the strengths of both supervised and unsupervised approaches.
For example, a hybrid algorithm might use an unsupervised clustering algorithm to group
pixels into clusters, and then use a supervised algorithm to assign labels to the clusters
based on prior knowledge of the target classes.

The traditional algorithms mentioned above mostly focus on classifying different
extracted features [17]. With the development of deep learning research [18], HSI clas-
sification methods have gradually shifted to extracting and classifying high-level deep
features. Convolutional neural network (CNN)-based methods are widely used due to
their end-to-end architecture and good classification properties. These architectures consist
of multiple layers of convolutional and pooling operations, which are used to learn hierar-
chical features from the input data. The classifier in the end learns to classify each pixel
based on the features learned from the input data, and the final output of the algorithm is a
classification map that assigns a label or class to each pixel in the HSI.

The deep belief network (DBN) [19], stacked autoencoder (SAE) [20], and recurrent
neural network (RNN) [21] treat each HSI pixel as independent spectral signatures for
deep learning networks, which cannot extract sufficient information. Chen et al. [22] first
designed a CNN framework extracting simple deep features from HSIs. To extract more
convincing features, researchers developed the backbone for deep learning networks, such
as GoogleNet [23] and Resnet [24], with skip architectures. Zhong et al. [25] proposed the
framework of a 3D CNN with the residual block from Resnet and obtained deeper features
for classification. One recently proposed HSI classification algorithm is the residual atten-
tion network (RAN), proposed by Wang et al. [26]. RAN is a deep-learning-based algorithm
that integrates residual connections and attention mechanisms to improve the classification
performance. The residual connections help to alleviate the vanishing gradient problem
and enable the network to learn more complex features, while the attention mechanism
helps to focus on discriminative features and suppress noisy ones. Experimental results
on several benchmark hyperspectral datasets demonstrated that RAN outperforms many
state-of-the-art methods in terms of classification accuracy. The CNN-based HSI classifica-
tion algorithms have been shown to be effective at achieving high levels of classification
accuracy, particularly when large amounts of labelled training data are available.

With the development of natural language processing (NLP) technology, the trans-
former architecture shows a strong feature extraction ability, especially when applied to
the vision tasks. Vision transformer [27] has been applied to computer vision (CV) and
shown exciting results. He et al. [28] designed a BERT-like architecture, which flattens
the HSI cube as a sequence of the transformer input. Hong et al. [29] proposed the Spec-
tralFormer network, which learns information from neighbouring bands. However, the
current transformer-based methods for HSI classification introduce feature inconsistencies
generated by a large number of differences between different bands when directly inputting
samples into adjacent bands as a sequence, resulting in insufficient feature-extraction ca-
pabilities. Furthermore, the network fails to consider the correlation between the feature
channels when modelling the input vector.
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We proposed a multidimensional spectral transformer with channel-wise correlation
(MSTCC) to combine neighbouring band features and feed them to vectors used to classify
their differences. The main contributions of this paper are as follows:

• To overcome difficulties that arise when extracting global features with a CNN, we
proposed a transformer-based network architecture to better extract long-range rela-
tionship features of cube bands from HSIs;

• To better combine the related features between bands of different dimensions, we
proposed a channel-related feature extraction method;

• Combining all the above-mentioned points, we proposed a new method for HSI classi-
fication. We also validated the proposed model using several comparison methods,
revealing that it achieved great results on the studied datasets.

2. Materials
2.1. The Dataset

To demonstrate the performance of our proposed network, we evaluated it on three
datasets, Indian Pines (IP), Pavia University (PU), and Pavia centre (PC). We divided
them into training and testing sets and introduce them below. IP was set by the airborne
visible/infrared imaging spectrometer (AVIRIS) sensor over north-western Indiana, USA.
The spatial resolution of the dataset is about 20 m per pixel and the images consist of
145 × 145 pixels with 224 bands ranging from 0.4 to 2.5 µm. In our experiments, the
dataset had 200 spectral bands after removing the water absorption bands, covering 16 land
features, as is shown in Table 1.

Table 1. Number of selected pixels from the IP dataset.

Class No. Class Name Training Testing

1 Corn Notill 50 1384
2 Corn Mintill 50 784
3 Corn 50 184
4 Grass Pasture 50 447
5 Grass Trees 50 697
6 Hay Windrowed 50 439
7 Soybean Notill 50 918
8 Soybean Mintill 50 2418
9 Soybean Clean 50 564
10 Wheat 50 162
11 Woods 50 1244
12 Buildings Grass Trees Drivers 50 330
13 Stone Steel Towers 50 45
14 Alfalfa 15 39
15 Grass Pasture Mowed 15 11
16 Oats 15 5

Total 695 9671

PU was collected by the reflective optics system imaging spectrometer (ROSIS) sensor.
The images consist of 610 × 340 pixels with a 1.3 m spatial resolution and 103 spectral
bands in the wavelength range 0.38 to 0.86 µm. The dataset covers nine classes of ground
objects, as shown in Table 2.
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Table 2. Number of selected pixels from the PU dataset.

Class No. Class Name Training Testing

1 Asphalt 50 6802
2 Meadows 50 18,636
3 Gravel 50 2157
4 Trees 50 3386
5 Metal sheets 50 1328
6 Bare Soil 50 5054
7 Bitumen 50 1306
8 Blocking Bricks 50 3828
9 Shadows 50 976

Total 450 43,473

The PC images were captured by the ROSIS sensor over an urban area surrounding
the centre of Pavia, Italy. The dataset consists of 1096 × 492 pixels with 103 spectral bands,
from which 12 noisy bands were removed. The dataset contained nine classes of ground
objects, as shown in Table 3.

Table 3. Number of selected pixels from the PC dataset.

Class No. Class Name Training Testing

1 Water 50 65,228
2 Trees 50 6457
3 Meadows 50 2841
4 Blocking Bricks 50 2102
5 Bare Soil 50 6499
6 Asphalt 50 7475
7 Bitumen 50 7507
8 Tiles 50 3072
9 Shadows 50 2115

Total 450 103,296

2.2. Evaluation

To evaluate our proposed method with others and demonstrate its classification per-
formance, we selected the overall accuracy (OA) and Kappa coefficient as the classification
indexes. The OA computes the percentage of test pixels which are correctly classified.
The Kappa coefficient collects pixels correctly classified by the number of pure expected
agreements by change and shows the percentage of them. The performance of these two
methods is positively correlated with the index value.

2.3. Experiment Implementation

Our proposed network is based on Pytorch backend and performed on a desktop
computer with a NVIDIA GTX3090 GPU.We selected three typical CNN-based methods,
including CNN-2D, CNN-3D, and FCN-ELM [30], and one transformer-based method,
SpectralFormer [29], to compare with our work. For the fairness of the comparison, our
proposed MSTCC method and the comparison methods adopted the same image pre-
processing and hyperparameter network settings. We set the spatial size of input image
cube as 27 × 27 and the batch size of training as 32.

3. Our Methods

Our MSTCC is based on the transformer architecture with a well-designed CCB
(channel correlation block) module. We did not manually set the fixed region, instead the
network searches pixels via an attention-based method which preserves the feature stability
of the region. The overall framework of the MSTCC is shown in Figure 1.
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Figure 1. Architecture of our proposed MSTCC.

Our architecture is based on the transformer methods, which contain patch embedding
modules and convolutional modules for feature extraction. The patch embedding module
consists of depth-wise convolution layers, point-wise convolution, batch normalization
layers and activation layers. The depth-wise convolution layers and the point-wise convo-
lution layers are used to increase feature latitudes and reduce computational complexity.
The activation layers in our method is the ReLU activation, which achieved great results in
classification tasks.

3.1. Input Mask for Training

The relationship between adjacent pixels is different, so the length of the image cube
as the input should change accordingly to improve the effectiveness of feature extraction.
We suppose that the input dataset is X = {x1, x2, . . . , xn}, n = H ×W, xi ∈ RC×1.

For each xi (ith pixel in the image), we calculated the correlation distance between
it and surrounding pixels, taking a minimum of eight adjacent pixels as the threshold Ti,
recording all correlation distances as D = {dis1, dis2, . . . dis8}. We calculated the correlation
between each point and the centre pixel extending from the centre along the horizontal and
vertical directions, and added the distance to D until its value was less than Ti.

All similar distances in D were normalized as coefficients of the corresponding pixel
points, where the coefficient for pixel i was computed via the following equation:

Si,j =
edisi,j

∑N
k=1 edisi,k

, (1)

where i and j indicate the indices of the centre pixel and its correlated pixel for j ∈ [1, N].
We extracted the feature vectors by two 1× 1 convolutional layers, Wθ and Wη, which
were used to transform the multidimensional features to one dimension with the coefficient
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Si,j for each pixel. In our experiments, the parameters of these two layers were learnt
from training. The correlation between the two pixels was computed using the Gaussian
distance. This attention-based method is shown in Figure 2.

Figure 2. Input mask to extract features. Each pixel generated its own mask with normalized
corrections.

3.2. Channel Correlation Block

In view of the poor ability of network classifiers to identify similar features, we
proposed a channel-wise method to extract the features by designing a channel correlation
module. The module architecture is shown in Figure 3. When extracting features into the
classifier during training, the channel correlation matrix converts the feature information
as a learnable parameter and adds it to the self-attention module of the fourth stage.

Figure 3. Channel correlation block-computed matrix when training, supporting the matrix dur-
ing testing.

4. Results
4.1. Ablation Study

To verify the effectiveness of our proposed network structure components, we con-
ducted ablation experiments on three datasets. We chose the ViT-based HSI classification
method as the baseline, and only compared the input mask modules of the methods, the
CCB module, and two modules at the same time in Table 4. The accuracy of the method
with the input mask was slightly improved on the two datasets, IP and PC. However, its
accuracy decreased by about 0.7% on the PU dataset. The accuracy of the method with
the CCB module improved significantly when using the two datasets, IP and PU, and
slightly improved on the PC dataset. The combination of the two modules improved when
compared with the baseline and the two modules alone, indicating that the two modules
were not coupled to each other and can jointly improve the feature extraction ability of the
model at different levels, thus improving the classification accuracy.
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Table 4. Classification accuracy (%) of the two proposed components for the ablation study with the
OA on the IP dataset.

IP PU PC

Baseline 89.3 92.5 95.8
Input Mask 89.9 91.8 96.5

CCB Module 91.7 94.6 96.0
Input Mask + CCB Module 91.9 94.9 96.7

4.2. Comparison with Other Methods

To demonstrate the performance of our proposed MSTCC, we selected four methods
for qualitative comparison on three datasets and quantitative comparison on two datasets.
The hyperparameter settings were the same as those previously used. The learning rate
was initialized at 1× 10−4 and decayed by a factor of 0.9 after every 100 epochs. The total
epoch on the datasets was 500.

The first experiment was reported on the IP dataset. We roughly set 50 labelled pixels
in each land-cover category for training and the rest for testing. The OA and Kappa
coefficient are shown in Table 5. Our proposed method achieved the best performance
compared to the other four methods. In particular, the MSTCC demonstrated a 5.2%
increase in OA and a 5.6% increase in the Kappa coefficient compared with CNN-3D, which
performed better than CNN-2D. Furthermore, the performance of the MSTCC was also
better than that of the FCN-ELM, which performed well on the IP dataset as a CNN-based
method. For the transformer-based methods, SpectralFormer and our proposed method
achieved better accuracy than the CNN methods, where the former improved by 1.8% OA
and 0.8% Kappa coefficient.

Table 5. Classification accuracy (%) of different methods with their OA and Kappa coefficients on the
IP dataset.

Class CNN-2D CNN-3D FCN-ELM SpectralFormer MSTCC (Ours)

1 83.1 81.7 60.1 70.5 84.2
2 74.7 86.5 88.4 82.1 80.7
3 94.2 93.6 76.9 90.2 88.6
4 81.4 80.6 89.1 95.6 97.1
5 89.5 83.4 90.2 85.1 96.5
6 88.2 97.3 93.2 96.9 95.7
7 81.9 88.6 75.7 82.3 89.1
8 87.8 86.9 97.7 74.7 97.8
9 79.3 83.2 63.2 73.6 90.2
10 98.6 94.1 85.7 99.2 99.7
11 95.9 94.9 84.3 91.5 93.4
12 91.8 89.7 89.5 79.8 90.4
13 59.7 72.6 96.1 99.6 96.5
14 78.1 44.8 95.8 79.2 97.8
15 46.4 26.7 59.3 59.2 68.3
16 65.1 23.8 96.5 63.7 97.6

OA 85.6 86.7 87.9 90.1 91.9
Kappa 84.1 84.6 87.7 89.4 90.2

The second experiment evaluated the performance of the compared methods on the
PU dataset, shown in Table 6. Our MSTCC method performed better than all the state-of-
the-art methods. It was 1.5% higher for OA with a 0.9% higher Kappa coefficient than the
SpectralFormer, and much higher than the other CNN-based methods. Therefore, it can be
inferred that our method more effectively identified all the land-cover categories compared
to the CNN-based methods. The proposed components can thus increase the accuracy of
the base transformer classifier.
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Table 6. Classification accuracy(%) of different methods with their OA and Kappa coefficients on the
PU dataset.

Class CNN-2D CNN-3D FCN-ELM SpectralFormer MSTCC (Ours)

1 89.6 93.1 90.4 91.6 87.6
2 93.2 96.4 97.1 93.8 98.5
3 78.1 83.9 78.9 89.7 91.3
4 83.7 83.5 89.2 88.9 89.7
5 86.2 90.1 93.7 94.7 93.5
6 85.2 93.7 86.8 94.1 95.6
7 81.9 86.8 77.9 88.2 83.2
8 88.6 90.4 93.4 79.8 96.4
9 84.4 67.2 92.6 86.3 93.2

OA 89.3 93.1 93.2 93.4 94.9
Kappa 85.6 90.5 91.3 91.2 92.1

The third experiment’s results are shown in Table 7. Similar to the above two datasets,
our method achieved the best performance on the PC dataset. Both the OA and Kappa coef-
ficient were higher than 95%. Each class of the dataset was more accurately classified than
the other CNN-based methods. The OA result was 0.6% higher than the SpectralFormer,
while the Kappa coefficient was 0.9%.

Table 7. Classification accuracy(%) of different methods with their OA and Kappa coefficients on the
PC dataset.

Class CNN-2D CNN-3D FCN-ELM SpectralFormer MSTCC (Ours)

1 99.9 99.9 99.6 99.9 99.9
2 63.1 87.3 89.3 89.6 89.6
3 52.9 56.1 57.8 59.2 56.7
4 57.2 42.7 49.2 58.3 67.2
5 73.8 86.2 88.1 89.5 79.1
6 78.9 81.3 80.6 79.2 86.4
7 89.1 90.3 93.5 94.2 94.7
8 96.7 98.7 99.3 98.6 99.7
9 67.2 81.9 79.5 83.5 86.9

OA 91.8 94.8 95.4 96.1 96.7
Kappa 88.9 92.5 93.6 94.3 95.2

For the qualitative evaluation, we selected all the methods and visualised them on
the IP dataset and PU dataset, as shown in Figures 4 and 5. The results of our MSTCC
methods are smooth and clear, performing better than other methods, especially the CNN-
based methods. Thus, we can deduce that CCB’s proficient capacity to capture distinctive
attention features contributes to the successful classification of mixed pixels located near
class borders. The visualization results of the CCB module and input mask have a finer
appearance than the others, especially on the pixel boundary.

(a) (b) (c) (d) (e) (f)

Figure 4. Classification maps of different classification methods on the IP dataset. (a) CNN-2D.
(b) CNN-3D. (c) FCN-ELM. (d) Spectral Former. (e) Ours. (f) GroundTruth.
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(a) (b) (c) (d) (e) (f)

Figure 5. Classification maps of different classification methods on the PU dataset. (a) CNN-2D.
(b) CNN-3D. (c) FCN-ELM. (d) Spectral Former. (e) Ours. (f) GroundTruth.

5. Discussion

In this work, we proposed two aspects for HSI classification:

1. To extract HSI image features, and strengthen the connection between adjacent pixels,
we proposed a transformer-based architecture with a mask input. This improved
network performance in training.

2. To enhance the classifier’s ability to discriminate between the input features, we pro-
posed the channel correlation block (CCB) module to enhance its ability to distinguish
between similar features.

Our proposed method shows that the transformer-based model can better extract
global features than the CNN model, rather than just localized features. The correlation
between different channels can better help the model distinguish HSI categories. We set
up three CNN-based methods and one transformer-based method to conduct comparative
experiments with our transformer-based method. The OA and Kappa coefficients of
the latter two groups were higher than the former on the three datasets, proving the
effectiveness of global feature classification.

For the two modules proposed, ablation experiments were set up to analyse their
effectiveness. It can be seen from the OA and Kappa indicators that the CCB module
performed better than the input mask . This shows that the correlation of deep features can
more effectively distinguish features and improve the discriminative ability of the classifiers.
The input mask, being a priori information for feature extraction, can reduce invalid
information extraction in model training and improve the classification accuracy. These
two methods improve the feature extraction ability of the model at different levels. The
two components can be added to the model at the same time, and they achieved the
best accuracy on three datasets, outperforming in the other individual settings in the
ablation experiment.

For the input mask component, we found that the pixel correlation of each pixel in its
various directions decreased significantly with distance. The correlation between features
exceeding a certain distance threshold and the features of the point pixel was low, so the
mask input aided the model to focus on the feature information of each pixel to improve
feature discrimination.

Regarding the channel correlation block component, we found that in the last stage of
the transformer architecture, the self-attention module was used to strengthen the mutual
discrimination between pixel features. The similarity between features can be computed,
together with the self-attention module, to provide high-quality features for the classifier.

As a method of processing at the beginning, the input mask received low-level features
with spatial sparsity, resulting in instability in the different inputs. For example, compared
with the baseline on the PU dataset, the classification accuracy decreased slightly for
the model with the input mask. However, in general, adding the mask to an image
effectively focussed in on high-value feature information and improved the accuracy of
model classification. In contrast, the CCB module with deep features and dense information
increased the similar feature extraction ability of the classifier.
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6. Conclusions

We proposed a new transformer-based HSI classification method, improving the fea-
ture extraction ability of the model for HSI by adding an input mask and a correlation
coefficient to the attention module. The proposed new method was evaluated against
other reference methods on three experimental datasets, outperforming all studied com-
petitors. Furthermore, from the ablation experiment, the two proposed modules effectively
improved the feature extraction ability of the model, obtaining a better classification perfor-
mance. In the future, the proposed model needs to be improved in terms of computational
efficiency and optimization of its processing speed.
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