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Abstract: An effective way to improve the performance of deep neural networks in most computer
vision tasks is to improve the quantity of labeled data and the quality of labels. However, in the
analysis and processing of medical images, high-quality annotation depends on the experience
and professional knowledge of experts, which makes it very difficult to obtain a large number of
high-quality annotations. Therefore, we propose a new semi-supervised framework for medical
image classification. It combines semi-supervised classification with unsupervised deep clustering.
Spreading label information to unlabeled data by alternately running two tasks helps the model to
extract semantic information from unlabeled data, and prevents the model from overfitting to a small
amount of labeled data. Compared with current methods, our framework enhances the robustness
of the model and reduces the influence of outliers. We conducted a comparative experiment on
the public benchmark medical image dataset to verify our method. On the ISIC 2018 Dataset, our
method surpasses other methods by more than 0.85% on AUC and 1.08% on Sensitivity. On the
ICIAR BACH 2018 dataset, our method achieved 94.12% AUC, 77.92% F1-score, 77.69% Recall, and
78.16% Precision. The error rate is at least 1.76% lower than that of other methods. The result shows
the effectiveness of our method in medical image classification.

Keywords: medical image classification; semi-supervised learning; unsupervised learning; deep
clustering; overclustering

1. Introduction

With the development of deep learning technology, deep neural networks have become
widely used in medical image analysis and processing. However, due to the need for
professional knowledge, it is difficult to manually label medical images on a large scale. At
the same time, there are constantly unlabeled data being generated in the clinical medical
process, which results in a small number of labeled images and a large number of unlabeled
images being generated. In this case, semi-supervised learning [1,2], which can use both
labeled data and unlabeled data, has certain advantages. In this paper, we propose a
semi-supervised learning framework combined with unsupervised learning [3–5], which
can enhance the model’s ability to extract information from unlabeled data, reduce the risk
of overfitting, and effectively reduce the impact of outlier data.

Slight disturbances in an image do not affect a human’s basic judgment of the image’s
semantics. Based on this feature, people apply the consistency regularization method [6–8]
to semi-supervised learning, and generate different samples by adding different distur-
bances (such as Gaussian noise, flipping, cropping, etc.) to the input samples, and then
encourage the model to generate similar predictions for the different disturbed versions
of the same input. Theoretically, a good model can eliminate the influence of disturbance
and make self-consistent predictions. For example, in the π-model [6], for any input xi, the
model generates two different disturbances and inputs them into the feature extraction
network to obtain two predictions. The differences between these predictions are then
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used as the objective function to optimize the model. The TE model [6] takes the EMA
(exponential moving average) predictions in different epochs as the comparison target. The
MT (mean teacher) model [7] has two parallel feature extraction networks, and different
disturbance samples are input into different networks, in which the teacher network uses
the EMA weight of the student network, and the output results of the two networks are
regarded as the consistency target. However, the current semi-supervised method also has
some limitations. For example, the unsupervised phase of the model depends on the label
information of supervised learning, and it is difficult to avoid over-fitting when the scale
of labeled data is small. For example, most semi-supervised methods assume that labeled
data and unlabeled data obey the same distribution and have the same label space, which
makes the occasional outlier in medical images (including instrument failure, improper
operation, diseases that are not within the prediction range, etc.) often have negative effects
on the quality of prediction.

In this paper, we introduce an unsupervised learning process that is completely
independent of semi-supervised learning, which ensures that this part of the training is not
affected by supervised learning, so we can produce pseudo-labels [9] that are not affected
by label information. As shown in Figure 1, we represent the model as two phases: a semi-
supervised phase and an unsupervised phase, which share the feature extraction network.
Among them, the semi-supervised phase is the main task to perform the image classification
task, and the unsupervised phase is the secondary task to cluster the data [10–13]. Our
semi-supervised network architecture is based on the basic architecture of FixMatch [14].
Our work focuses on the unsupervised clustering phase.
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Figure 1. Overview of our two-phase framework for medical image classification. A semi-supervised
phase and an unsupervised phase run alternately, and the feature extraction networks of the two
phases share weights. In the semi-supervised phase, all data information is used to calculate the
semi-supervised loss (LSS), and in the unsupervised phase, all data without label information is used
to calculate the unsupervised loss (LUS).

In order to prevent cluster degradation in the iterative process, we design a network
structure similar to a Siamese Network and update the weights by momentum [15]. At the
same time, the auxiliary overclustering method [16] is adopted to make the outliers less
likely to affect the clustering results. Our main contributions are as follows:

1. We proposed a new semi-supervised learning framework to improve the classification
performance of the semi-supervised model by introducing an unsupervised deep
clustering algorithm.

2. Based on consistency regularization, a new objective function was designed to cross-
verify different augmentations of the same image, and use an auxiliary overclustering
method in the clustering process to reduce the influence of outliers on model training
and ensure intra-class consistency in feature space.
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3. We conducted experiments on two medical datasets, and the results show that our
method is effective. Compared with the current semi-supervised medical image
classification methods, our method has better performance.

2. Related Work

In this section, we review some basic methods related to our work and the recent
developments in these fields. This includes semi-supervised learning in the field of medical
image analysis, data augmentation methods, and deep clustering [17,18].

2.1. Semi-Supervised Learning in Medical Image Analysis

The characteristics of semi-supervised learning make it particularly advantageous
for medical image analysis. In fact, the research on semi-supervised learning in this
field [19–22] has been carried out for a long time. The tasks of semi-supervised learning in
the field of medical image analysis can be divided into image classification [23,24] and se-
mantic segmentation [25–28]. Methodologically, the field of medical image analysis mainly
includes methods based on confrontation and methods based on consistency regularization.

In the field of medical image segmentation, Zhao et al. proposed a pseudo supervi-
sion method based on consistency regularization and uncertainty evaluation [29], which
reduced the influence of the potential noise of pseudo-labels on segmentation results in
semi-supervised learning. Dong et al. [30] proposed an unsupervised domain adaptive
framework based on an antagonistic network, and applied it to semi-supervised learning
on the JSRT (Japanese Society of Radiological Technology) datasets.

In the field of medical image classification, Liu et al. [31] put forward sample relation
consistency on the basis of consistency regularization, so that the semi-supervised model
can obtain more semantic information from unlabeled data. Pang et al. [32] proposed a
data augmentation method based on a GAN (generative adversarial network) for semi-
supervised learning.

2.2. Data Augmentation Methods

At present, there are many semi-supervised works based on consistency regularization,
which improve the performance of the model by adding different disturbances to the same
target and encouraging the model to generate consistent prediction. Although good results
have been achieved, their methods of adding disturbances are still relatively primary, and
most of them are based on Gaussian noise, dropout noise, or adversarial noise. Obviously,
there are reasons for the complexity of data and training cost, but the effect of data augmen-
tation is obviously not fully exerted. Some targeted data augmentation strategies have been
proved to be effective in supervised learning. At present, data augmentation is also one of
the keys to improving the model’s performance in the field of semi-supervised learning.
The data augmentation strategy of Mixup proposed by Berthelot et al. in [1] significantly
enhances the robustness and generalization ability of the model and improves the model’s
performance. The AutoAugment strategy proposed by Cubuk et al. in [33] “Learning Aug-
mentation Policies from Data,” improves the data augmentation method through automatic
search, and achieves better results in the same semi-supervised framework in multiple
datasets. Subsequently, on the basis of AutoAugment, RandAugment [34] changed the
search strategy and reduced the parameter space of data augmentation, and achieved better
results while the complexity and training cost were significantly reduced.

2.3. Deep Clustering

Clustering is a widely used unsupervised algorithm, which divides a group of data
into different clusters according to certain standards, so that the data in the same cluster are
as similar as possible and the data in different clusters are as dissimilar as possible. Different
clustering algorithms are based on different assumptions and data distribution, and the
same group of data can also use different clustering methods, such as partition-based
clustering methods such as k-means, density-based clustering methods such as DBSCAN
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(Density-Based Spatial Clustering of Applications with Noise) [35], and distribution-based
clustering methods such as Gaussian Mixture [36]. With the increase in data complexity,
the effect of these traditional clustering algorithms is gradually declining. To solve this
problem, Caron et al. put forward the concept of deep clustering in [17], that is, combining
deep learning with clustering, and its basic framework is shown in Figure 2.
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Figure 2. Overall process of deep clustering.

The deep clustering model firstly clusters the features, then generates pseudo-labels
based on the clustering results, updating the parameters of the network, and making
the network predict these pseudo-labels. These two processes are alternately carried out.
Many excellent works have been improved on this basis. Joint Unsupervised Learning [37]
proposes a cyclic framework of joint unsupervised learning for depth representation and
image clustering, which updates network parameters in a hierarchical way. The learning
presentation for clustering via prototype patterning and positive sampling [38] firstly
maximizes the distance between different prototypes, and then closes the distance of
samples in the same clustering center to improve the clustering effect. Its model takes into
account both Contrastive Learning and non-Contrastive Learning, and trains in an end-to-
end manner. Invariant information clustering (IIC) [16] maximizes the mutual information
between two different augmentations of the same image and generates clustering of the
data based on mutual information loss.

3. Method

In this paper, we propose a semi-supervised classification framework that combines
unsupervised learning. As shown in Figure 1, our method includes two tasks: unsupervised
clustering and semi-supervised classification. These tasks are carried out alternately in
the training process. The semi-supervised learning phase uses all data containing label
information, while the unsupervised phase uses all data without label information. When
the number of labels is small, this method can effectively prevent the model from overfitting
and improve its generalization ability.

This paper focuses on unsupervised clustering. We design an unsupervised clustering
framework based on the basic framework of deep clustering and propose an objective
function that is more conducive to clustering. This allows the unsupervised part to reduce
the influence of outliers on the model and enhance its ability to extract semantic information
from unlabeled data.

3.1. Semi-Supervised Phase

In the semi-supervised phase, we adopt the FixMatch semi-supervised framework,
which is based on consistency regularization and pseudo-labeling. It combines and simplifies
advanced ideas and methods used in models such as UDA (unsupervised data augmenta-
tion) [39] and ReMixMatch [40], and has achieved good results on massive datasets.
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3.1.1. Data Augmentation Method

We use weak augmentation for labeled data and strong augmentation for unlabeled
data. Weak augmentation is a standard flip-and-shift augmentation strategy that flips with a
50% probability and shifts with a 12.5% probability in both horizontal and vertical directions.
Strong augmentation mainly applies two strategies: RandAugment and CTAugment,
followed by Cutout [41].

3.1.2. Semi-Supervised Loss Function and Details

In the semi-supervised phase, we adopt different augmentation methods for labeled
and unlabeled data (as shown in Figure 3).
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Figure 3. The type of input data divided into two categories according to whether they are labeled
or not.

Specifically, labeled images are represented as x = {x1, . . . , xn}, and their labels are
represented as y = {y1, . . . , yn}. The unlabeled images are represented as u =

{
u1, . . . , uµn

}
,

and the network is represented as fθ . A(·) represents a strong augmentation function and a(·)
represents a weak augmentation function. The loss of annotation data can be expressed as:

Ls =
1
n

n

∑
i=1

H( fθ(a(xi)), yi) (1)

The Pseudo-labels of unlabeled data can be expressed as:

y′i = argmax( fθ(A(ui)) (2)

The loss of unlabeled data can be expressed as:

Lu =
1

µn

µn

∑
i=1

1(max( fθ(A(ui)) ≥ τ)H( fθ(A(ui)), y′i) (3)

where µ represents the ratio of unlabeled data to labeled data; H(·, ·) represents cross
entropy loss; τ is a scalar hyperparameter denouncing the threshold, and when the confi-
dence exceeds the threshold, the pseudo-label is retained. Therefore, the final loss in the
semi-supervised phase can be expressed as:

Lss = Ls + λuLu (4)

Among them, the hyperparameter λu is the relative weight of unsupervised loss, which
is used to balance supervised loss and unsupervised loss (use the same hyperparameter
settings as FixMatch did in most datasets).

3.2. Unsupervised Phase

In this paper, we use a clustering method for unsupervised learning. There are many
kinds of clustering algorithms, and their results vary when used alone. However, considering
that different clustering algorithms are similar within the framework of deep clustering, we
adopt the standard k-means clustering algorithm to reduce computational complexity and
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shorten iteration time. In this section, we describe the unsupervised algorithm framework
used in this paper and introduce the total loss function in the unsupervised phase.

3.2.1. Unsupervised Clustering Framework

Figure 4 describes our basic process in the unsupervised learning phase. Different
augmentations of the same image are input into the network, and then the output results
are clustered separately. The clustering results are used as pseudo-labels to update the
network parameters. Our framework regularizes the centroid distribution of different
clusters to improve the clustering effect and make better use of unlabeled data.
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Figure 4. Overview of our unsupervised deep clustering framework. A1(x) and A2(x) are the outputs
of x after augmentation. p(y1|x1 ) and p(y2|x2 ) are the results of clustering. p(z1|x1 ) and p(z1|x1 )

are the results of overclustering. The online network (above) and the target network (below) update
the parameters in momentum. Image feature representation is clustered by the k-means method to
get the pseudo-label. The over-clustering head is used to assist the training process, and only the
output head is used in the test.

We denote unlabeled data as x = {x1, . . . , xN}, yi(i = 1, 2, . . . N) represents the corre-
sponding pseudo-label, fθ represents the parameterized model, A′(·) represents the augmen-
tation function, and η represents the clustering center. We adopt the RandAugment [34]
augmentation method in the unsupervised phase (parameters settings are the same as the
experiment on cifar10). The optimization goal can be expressed as:

min
θ

∑
i
L( fθ(A(xi)), yi, η)

L( fθ(xi), yi, η) = − log

(
e−d( fθ (xi),ηyi )

∑j e−d( fθ (xi),ηj)

)
(5)

Here d(·, ·) represents cosine distance.
We design a parallel network structure consisting of an online network and a target

network. Two different augmentations of the same image are input into the online network
and target network. The obtained vectors are then clustered, and a clustering center
is assigned to each image xi. This process does not depend on labels at all. Usually,
unsupervised models eventually collapse into prone mode and output invalid solutions
without any constraints. To prevent this situation, the usual practice is to add reconstruction
loss [42,43], or explicitly constrain the uniform distribution of samples of all kinds [17].
Inspired by Contrastive Learning [15,44], we make the online network and target network
not share weights but update their parameters by momentum. This keeps differences
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between them at all times, providing motivation for continuous updating. Specifically, the
parameters of the two networks are recorded as θp and θq, and we update θq by:

θq ← mθq + (1−m)θp (6)

where m is a hyperparameter representing momentum. The greater the value of m, the
slower the updating speed. In our experiment, m = 0.99.

3.2.2. Loss Function in Unsupervised Phase

Formally, for any picture xi, the model generates two feature vectors v(1)i and v(2)i :

v(1)i = fθ p(A′(xi))

v(2)i = fθq(A′(xi))
(7)

By clustering these two feature vectors, respectively, we can get two groups of pseudo-
labels and centroids:

y(1), η(1) = argmin
y,η

∑i ‖ v(1)i − ηyi ‖2

y(2), η(2) = argmin
y,η

∑i ‖ v(2)i − ηyi ‖2
(8)

We hope that the clustering label is consistent with its corresponding input, so we first
calculate the internal loss of the same picture:

Linward = ∑
i
L(v(1)i , y(1)i , η(1)) + L(v(2)i , y(2)i , η(2)) (9)

At the same time, according to the principle of semantic consistency of the same
picture, different augmentations will not change the semantic information, so we can also
match the pseudo-label and centroid with different views:

Lcross = ∑
i
L(v(1)i , y(2)i , η(2)) + L(v(2)i , y(1)i , η(1)) (10)

The final loss of clustering process LC can be simply expressed as:

LC =
1
N
(Linward + Lcross) (11)

To improve the generalization ability of the network and reduce the influence of outliers,
we add an overclustering head to the network. We use k clustering centroids in the output
head and k + [k/2] clustering centers in the overclustering head. Some data or outliers with
low confidence will be divided into additional clustering centers during overclustering. The
output head still maintains the same number of predictions as the actual category, improving
the model’s utilization efficiency for unlabeled data and increasing expressiveness in the
learned feature representation. Similar to the previous clustering process, we obtain two
groups of pseudo-labels and clustering centroids

(
z(1), ρ(1)

)
,
(

z(2), ρ(2)
)

in the overclustering
process. The loss can be calculated in the same way:

L′inward = ∑
i
L(v(1)i , z(1)i , ρ(1)) + L(v(2)i , z(2)i , ρ(2)) (12)

L′cross = ∑
i
L(v(1)i , z(2)i , ρ(2)) + L(v(2)i , z(1)i , ρ(1)) (13)

The final loss of the over-clustering process LOC is expressed as:

LOC =
1
N
(
L′ inward + L′cross

)
(14)
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Finally, we express the loss function of the unsupervised phase as:

LUS = LC + LOC (15)

3.3. Semi-Supervised Classification Method Combined with Unsupervised Learning

In both the unsupervised and semi-supervised phases, we use the same feature extraction
network. The model alternates between semi-supervised classification and unsupervised
clustering. In the semi-supervised learning phase, unsupervised clustering becomes easier by
spreading label information. In the unsupervised phase, by ignoring label information, the
model can obtain stronger generalization performance and avoid overfitting a small amount of
labeled data. At the same time, using an overclustering method reduces the influence of low-
confidence targets or outliers on network parameters. After trying different hyperparameters
and based on final experimental results, we set the model to perform semi-supervised training
four times first and then unsupervised training once.

4. Experiments

In this section, we evaluate our method on two large public datasets (the ISIC 2018
Dataset and the ICIAR BACH 2018 dataset) and compare it with state-of-the-art methods.

4.1. Datasets
4.1.1. ISIC 2018

The ISIC 2018 dataset [45] contains 10,015 skin lesion detection images marked as 7
common skin lesion types. The images in the ISIC 2018 dataset are dermoscopy images
taken with a dermatoscope. Dermoscopy images provide more details and features of
skin lesions than conventional photography, such as colors, patterns, and structures. The
images in the dataset come from different sources and have varying resolutions, formats,
and quality. We resize the image to 224× 224 and normalize them using statistical data
based on the ImageNet dataset. We divide the dataset into training, validation, and test sets
in a 7:1:2 ratio. The number of clustering centers k is 7, and the number of overclustering
centers is 10.

4.1.2. ICIAR BACH 2018

The ICIAR BACH 2018 [46] dataset contains hematoxylin and eosin-stained images of
breast tissue commonly used for histopathological diagnosis of breast cancer. The images are
divided into two types: microscopy images and whole-slide images. Microscopy images are
2048 × 1536 pixels in size and are extracted from different regions of interest within whole-
slide images. Whole-slide images are very large (typically over 100,000 × 100,000 pixels)
and contain multiple tissue samples. The images are annotated with four classes: normal,
benign, in situ, and invasive. To eliminate overfitting, we augment the original dataset
and adopt a nucleus-based patch extraction approach to extract 21,705 non-overlapping
nucleus patches (a total of 22,105 non-overlapping nucleus patches are extracted), including
13,026 cancerous nucleus patches and 8679 non-cancerous nucleus patches. We divide the
dataset into training, validation, and test sets in a 7:1:2 ratio. The number of clustering centers
k is 4, and the number of overclustering centers is 6.

4.2. Metrics

For the ISIC 2018 dataset, our evaluation indicators include AUC (Area Under Curve),
accuracy, sensitivity, and specificity.

For the ICIAR BACH 2018 dataset, our evaluation indicators include AUC, Error rate,
Precision, Recall, and F1-score.

4.3. Implementation Details

We use Wide-ResNet-28-2 pre-trained on ImageNET as the backbone network of all
experiments and use the same parameter settings as FixMatch in the semi-supervised
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phase. In the unsupervised clustering phase, we use the SGD (stochastic gradient descent)
optimizer with a batch size of 64. The learning rate and weight decay are set to 0.01 and
0.0002, respectively. All methods train for 100 epochs on the ISIC 2018 dataset (our method
trains for 80 epochs in the semi-supervised phase and 20 epochs in the unsupervised phase)
and 20 epochs on the ICIAR BACH 2018 dataset (our method trains for 16 epochs in the
semi-supervised phase and 4 epochs in the unsupervised phase).

4.4. Results

We compare our method with current semi-supervised methods, including TCSE
(transformation consistent self-ensembling) [47] (based on Pi-Model), Temporal Ensem-
bling [6], MT [7], UDA [39], and the original FixMatch [14] framework to evaluate
its effectiveness.

4.4.1. Comparison on ISIC 2018 Dataset

To clarify the actual effect of semi-supervised learning, we use a fully supervised model
trained with 10% labeled data as a comparison baseline. We test the performance of these
semi-supervised methods with 10% labeled data. As shown in Table 1, the performance of
all models is significantly better than the reference baseline. The performance of the TE
model is slightly better than that of the TCSE model because it integrates predictions from
different periods and uses them as consistency targets, significantly reducing the model’s
calculation cost. Compared with the TE and TCSE models, the performance of the MT
model is further improved thanks to its network structure and consistent target design.
The good performance of the UDA model and FixMatch model proves that the advanced
data augmentation method has obvious effects on improving the performance of the model.
In addition, our method is better than FixMatch in all indicators, which shows that our
proposed method can make better use of unlabeled data.

Table 1. Comparison with different semi-supervised learning methods on ISIC 2018 Dataset.

Method
Metrics

AUC Accuracy Sensitivity Specificity

Baseline 85.17 89.42 63.11 87.25

TCSE 87.15 89.91 65.56 90.05

TE 87.23 90.05 65.69 90.14

MT 89.56 91.36 67.35 91.22

UDA 91.04 91.45 68.89 92.56

FixMatch 91.56 91.87 68.36 92.36

ours 92.41 92.16 69.44 92.45

At the same time, we also tested the actual performance of various methods with less
labeled data. As shown in Table 2, under the condition of using 2% and 4% labeled data,
our method shows more obvious advantages, and the indexes drop less than other methods,
which further proves that our method can still perform well with less labeled data.

4.4.2. Comparison on ICIAR BACH 2018 Dataset

We trained a fully supervised model with all labeled data as the upper benchmark and
a fully supervised model with 10% labeled data as the lower benchmark. Table 3 shows
the comparison of various methods under different percentages of labeled data, and it
can be observed that the model with more advanced data augmentation strategies (Auto
Augment, CT Augment, Rand Augment, etc.) can perform better. At the same time, it can
be noted that with the decrease in labeled data, the performance attenuation of our method
is the least obvious, which reflects that our method has better generalization performance
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than the pure semi-supervised method and is more robust in the face of the fluctuation of
labeled data.

Table 2. Performance comparison of different methods under different scale labeled data.

Method Labeled
Metrics

AUC Accuracy Sensitivity Specificity

TCSE 2% 84.12 84.36 63.14 85.21

4% 85.25 86.12 64.21 86.31

TE 2% 84.32 86.14 63.07 85.16

4% 85.36 87.12 64.22 86.33

MT 2% 87.23 89.75 63.89 89.24

4% 88.45 90.11 65.14 90.13

UDA 2% 89.36 91.07 66.19 91.14

4% 90.71 91.34 67.33 91.79

FixMatch 2% 90.13 91.03 66.24 91.45

4% 90.69 91.25 67.39 92.07

ours 2% 92.04 91.89 68.86 92.14

4% 92.27 92.11 69.13 92.30

Table 3. Comparison of different semi-supervised methods under different scale labeled data.

Method Labeled
Metrics

Error Rate Precision Recall F1-Score

supervised 100% 21.23 81.25 81.69 81.46
10% 36.24 59.41 56.36 57.84

TCSE
10% 32.51 64.17 63.21 63.69
20% 30.09 68.45 66.31 67.36
40% 28.72 71.84 68.34 70.05

TE
10% 31.21 68.19 67.23 67.71
20% 28.74 70.13 68.14 69.12
40% 27.55 72.54 70.04 71.27

MT
10% 30.11 70.88 68.91 69.88
20% 27.52 72.18 70.21 71.18
40% 26.25 74.89 72.14 73.49

UDA
10% 27.51 75.14 74.10 74.62
20% 26.24 76.14 76.33 76.23
40% 26.03 77.23 76.89 77.06

FixMatch
10% 28.72 73.16 72.89 73.02
20% 26.27 75.21 74.01 74.61
40% 25.06 77.14 77.07 77.10

ours
10% 26.11 76.13 76.22 76.17
20% 25.08 77.89 77.24 77.56
40% 23.39 78.16 77.69 77.92

We also compare the specific performance of different methods in terms of AUC. As
shown in Table 4, with 40% labeled data, the average AUC of our method reaches 94.12%,
ahead of all four categories. This proves the effectiveness of our method. At the same time,
we notice that the performance of each model shows a gap in different categories. This may
be because labeling noise in datasets reduces the effect of consistency regularization and our
unsupervised clustering shows better classification ability in this case. The training method



Appl. Sci. 2023, 13, 5520 11 of 14

of temporarily ignoring label information in the unsupervised training phase makes it less
likely to overfit a small amount of training data.

Table 4. Evaluation of different methods on the ICIAR BACH 2018 dataset with AUC metric.

Method Labeled Normal
Tissue

Benign
Tissue

Ductal
Carcinoma

in Situ

Invasive
Carcinoma

Average
AUC

supervised 100% 95.61 94.69 93.16 94.36 94.46

TCSE 40% 89.36 88.12 88.07 88.71 88.57

TE 40% 89.44 87.91 88.26 88.64 88.56

MT 40% 91.12 90.08 89.68 90.11 90.25

UDA 40% 93.11 92.14 90.74 92.07 92.02

FixMatch 40% 94.69 93.25 91.45 93.25 93.16

ours 40% 95.44 94.36 92.89 93.77 94.12

5. Discussion

We designed a semi-supervised classification model with unsupervised learning and
compared it with current semi-supervised learning methods on the ISIC 2018 and ICIAR
BACH 2018 datasets. On the ISIC 2018 dataset, we achieved significant improvement in
AUC and sensitivity. On the ICIAR BACH 2018 dataset, our method performed better on
all metrics, especially in AUC and error rate. The results show that our method has stronger
classification ability and can distinguish between positive and negative samples more
clearly. We believe that this is the result of the combined action of semi-supervised and
unsupervised classification mechanisms. When the proportion of labeled data decreases, the
advantage of our method becomes more obvious. This shows that intermittently ignoring
label information during neural network training can effectively avoid overfitting of the
model. We improve the effect of unsupervised clustering by cross-comparison and auxiliary
overclustering during unsupervised learning, ultimately improving the performance of
the entire model. Considering the high initialization requirement of clustering algorithms,
we use a network pre-trained on ImageNet as the feature extraction network. The results
of random initialization in our experiments are not ideal, which is a problem that the
deep clustering framework needs to address. In future studies, we will try to improve
the performance of the model under random initialization and make it have stronger
generalization ability.

Semi-supervised learning has great potential in medical image classification. Labeling
medical images is often time-consuming and expensive, so semi-supervised learning can
leverage large amounts of unlabeled data to improve model accuracy. In reality, a large
number of unlabeled medical images are generated every day, making it practical to learn
from these data in an unsupervised way. However, current semi-supervised learning
methods still have some limitations, such as not adequately addressing the problem of
class imbalance or being prone to overfitting when there is insufficient labeled data. We
have shown that unsupervised clustering can be combined with semi-supervised learning
to improve overall performance. Our work focuses on extracting meaningful semantic
information from a large number of unlabeled data and dividing the same category into
the same cluster to help the semi-supervised model classify better. In general, our method
can be considered a supplementary means of semi-supervised learning, and we hope to
reduce the model’s dependence on manually labeled data.

6. Conclusions

In this paper, we study the problem of semi-supervised medical image classifica-
tion with the aim of better utilizing medical images without labels. We propose a new
learning framework that combines semi-supervised learning with unsupervised clustering.
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The model alternates between semi-supervised and unsupervised learning. During the
semi-supervised learning phase, the model propagates label information to accelerate the
convergence speed of unsupervised clustering. In the unsupervised learning phase, the
model ignores label information to reduce the risk of overfitting. Our experiments on two
datasets have achieved better metrics, with a significant lead in AUC, indicating that our
proposed method has stronger classification ability. When reducing the ratio of labeled
data, our method has more obvious advantages in all metrics, indicating that it can still
perform well with less labeled data. We have tried training the model without pre-training,
but the overall effect was not satisfactory. Additionally, the unsupervised phase takes quite
a long time, which lead to an increase in training costs. In future studies, we will continue
to improve our methods so that they can still perform well under random initialization and
lower training costs.
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