
Citation: Zhang, W.; Zhao, Y.; Li, F.;

Zhu, H. A Hierarchical Federated

Learning Algorithm Based on Time

Aggregation in Edge Computing

Environment. Appl. Sci. 2023, 13,

5821. https://doi.org/10.3390/

app13095821

Academic Editor:

Luis Javier Garcia Villalba

Received: 4 April 2023

Revised: 28 April 2023

Accepted: 6 May 2023

Published: 8 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Hierarchical Federated Learning Algorithm Based on Time
Aggregation in Edge Computing Environment
Wenbo Zhang * , Yuchen Zhao , Fangjing Li and Hongbo Zhu

College of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China;
passerby.zhao@gmail.com (Y.Z.); lifangjingacc@hotmail.com (F.L.); hombochu@sina.com (H.Z.)
* Correspondence: zhangwenbo@yeah.net

Abstract: Federated learning is currently a popular distributed machine learning solution that often
experiences cumbersome communication processes and challenging model convergence in practical
edge deployments due to the training nature of its model information interactions. The paper
proposes a hierarchical federated learning algorithm called FedDyn to address these challenges.
FedDyn uses dynamic weighting to limit the negative effects of local model parameters with high
dispersion and speed-up convergence. Additionally, an efficient aggregation-based hierarchical
federated learning algorithm is proposed to improve training efficiency. The waiting time is set at
the edge layer, enabling edge aggregation within a specified time, while the central server waits for
the arrival of all edge aggregation models before integrating them. Dynamic grouping weighted
aggregation is implemented during aggregation based on the average obsolescence of local models
in various batches. The proposed algorithm is tested on the MNIST and CIFAR-10 datasets and
compared with the FedAVG algorithm. The results show that FedDyn can reduce the negative effects
of non-independent and identically distributed (IID) data on the model and shorten the total training
time by 30% under the same accuracy rate compared to FedAVG.

Keywords: federated learning; edge computing; efficient hierarchical aggregation; FedDyn; FedEdge

1. Introduction

Federated learning (FL), a distributed machine learning paradigm proposed by Google [1],
enables data owners to train local models and collaboratively build a global model without
exchanging sample data. FL only requires sending a representative to each location to record
data, reducing privacy concerns and the issue of “qland” [2,3]. FL leverages cloud computing
to access scalable storage and computing resources but faces challenges in meeting low latency,
high reliability, and data security requirements in the Internet of Everything. As the number
of participants and model complexity increases, FL communication overhead becomes a
non-negligible issue, and the unreliable network connection between participants leads to
high network delays during model transmission and aggregation tasks [4–6].

In the context of the heterogeneous edge environment, the development of a hierarchi-
cal centralized FL architecture and aggregation mechanism is essential [7]. A hierarchical
architecture reduces the number of direct communication connections and the burden
on computing centers. An aggregation mechanism balances the model’s accuracy and
training efficiency to speed up model convergence and overall training [8]. These optimiza-
tions address issues such as high model interaction overhead and poor convergence of
heterogeneous data in the training process, promoting the deployment of FL algorithms to
the edge and maximizing the benefits of collaborative training and privacy protection [9].
However, research on FL algorithms in edge scenarios is still in its early stages, and further
optimization of the system architecture and training strategies is needed.

The main contributions of this paper are as follows:
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(1) A hierarchical federated learning algorithm with dynamic weighting is proposed to
optimize the conventional FedAvg algorithm and address the heterogeneity of client
data by adjusting the contribution of each local model to the global model using the
Earth mover’s distance method during edge aggregation.

(2) A time-effective hierarchical federated learning aggregation algorithm is proposed
to address the issue of varying completion times for local training tasks and model
parameter uploads due to heterogeneous devices and data among participating clients,
using a combination of synchronous and semi-asynchronous aggregation methods
based on a dynamic packet-weighted aggregation strategy.

The remainder of this article is organized as follows: Section 2 presents a review
of related work in the field of federated learning. Section 3 describes the hierarchical
federated learning algorithm based on dynamic weighting (FedDyn). Section 4 presents the
hierarchical federated learning algorithm based on time-effective aggregation (FedEdge).
Section 5 analyzes the performance of the proposed method on the MNIST and the CIFAR-
10 datasets. Finally, Section 6 concludes this paper.

2. Related Works

As a decentralized machine learning approach, federated learning allows end devices
to train on their own local datasets without uploading sensitive user data to a centralized
server. However, in contrast to centralized learning, the implementation of federated
learning presents a range of new challenges [10].

The federated stochastic gradient descent (FedSGD) algorithm requires participant
devices to upload local model parameters produced after each batch of stochastic gradient
descent (SGD) to the central server. This process incurs a large communication overhead.
The federated averaging (FedAvg) algorithm reduces communication costs by increasing
the calculation costs, requiring participant devices to perform several rounds of SGD lo-
cally before sending updated model information to the central server. Konečný et al. [1]
combined sparsification and quantization methods to design a structured updating tech-
nique, and proposed that updated complete models should be compressed before being
uploaded to reduce communication costs. Shi et al. [11] proposed a federated learning
algorithm based on flexible gradient sparsification, requiring participants to upload only
some significant gradients in each round. Both methods improve communication costs at
the expense of some sacrifices in model convergence and accuracy. The selection strategy of
participating clients plays a crucial role in the training efficiency, model performance, and
other standards of federated learning. Nishi et al. [12] proposed a federated client selection
(FedCS) algorithm that selects participants based on their cumulative frequency of partici-
pation. However, this method may not work well with complex network model structures
and heterogeneous sample data, and could even result in reduced model training efficiency.

Heterogeneity in federated learning is one of the main research directions [13,14].
Statistical heterogeneity of data produced and collected by client devices in various net-
work environments, as well as heterogeneity on client devices resulting from differences
in their hardware configuration, power configuration, network configuration, and other
aspects, are two subcategories of heterogeneity [15]. Some current technologies offer bet-
ter solutions and have achieved promising results when addressing client heterogeneity.
Hanzely et al. [16] presented a hybrid federated learning algorithm blending global and
local models and proposed a new gradient descent algorithm named loopless local gradient
descent (L2GD) applicable to this idea. Arivazhagan et al. [17] proposed a two-layer
deep neural network federated learning (FedPer) framework consisting of a basic layer
and a personalization layer. Silva et al. [18] proposed a personalized federated learning
algorithm based on user subgroups and personality embedding to model user preferences.
Wu et al. [19] proposed the federated learning (PerFit) framework for providing personal-
ized services in cloud-edge intelligent IoT (Internet of Things) services. However, these
methods increase model complexity and associated costs, bringing great challenges for
model deployment.
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Liu et al. [20] proposed an edge-computing heuristic federated learning (HierFAVG)
algorithm; they introduced the edge server as the aggregator close to the participant. The
edge server performs edge aggregation immediately as some participating clients upload
the updated local model parameters. Once the number of edge aggregations performed by
the edge reaches a predetermined threshold, the edge server communicates with the central
server to transfer the aggregation model parameters. Although the final model might not
achieve the expected accuracy or even fail to converge when the data are non-independent
and identically distributed (non-IID), this method significantly reduces the communication
frequency between the client and the central server, thereby reducing the communication
overhead. The advantages and disadvantages of the above algorithms are summarized in
Table 1. Although federated learning and edge computing have been extensively studied
in their respective fields, attention is now turning to the possibility of combining the two
and their future development direction.

Table 1. Comparison of federated learning algorithms.

Algorithm Advantages Disadvantages

FedAvg Reduced communication costs. Sacrifices in model
convergence and accuracy.

FedSGD Computationally efficient. Large communication overhead.

FedCS Improves overall convergence speed. Does not work well in complex structures
and with heterogeneous sample data.

L2GD Handles heterogeneous data successfully. Increases model complexity
and associated costs.

FedPer Provides a precise Affects the convergence speed
personalization method. and accuracy of the model.

PerFit Provides personalized services, enabling Increases model complexity
clients to flexibly create models and associated costs.

HierFAVG Reduces communication frequency.
Final model may not achieve expected

accuracy or even fail to
converge when the q is non-IID.

3. Dynamic Weighted Hierarchical Federated Learning Algorithm
3.1. Federated Average Algorithm

The conventional federated learning framework typically consists of a two-tier client-
server structure, comprising a group of client devices and a centralized server. Assuming that
the client deviceN = {i|i = 1, 2, . . . , N} uses its own dataset {Di|i = 1, 2, . . . , N} to train
locally, and produces a group of machine learning models Modellocal = {Mi|i = 1, 2, . . . , N}
with different emphases, the central server integrates all of the Modellocal parameters or
gradients of the joint training, and finally produces a global model Modelglobal that integrates
the data characteristics of all parties. The global model obtained through federated learning
can provide local users with higher-accuracy services because it contains model information
that each participating client lacks or has under-trained. In contrast to the previous training
mode of data integration, federated learning does not require user data to be uploaded
centrally. Instead, it is trained locally, and the objective function is optimized through
multiple interactions between local model parameters and the global model. Ultimately, a
joint model that performs nearly as well as the centralized training benchmark model is
obtained. The optimization objective function is expressed as:

min
ω

F(ω) =
N

∑
i=1

piFi(ω), (1)
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where N is the number of clients participating in training, pi is the probability that client i
is chosen to participate in the global model training, pi ≥ 0 and ∑N

i=1 pi = 1. Generally, all
client devices have an equal chance of being randomly selected to participate in training.
Specifically, pi is usually uniformly distributed. Fi(ω) is the predicted loss of the model
parameter error on ω of the i-th client device on its local datasets Di = {

(
xj, yj

)
}|Di |

j=1 ,
where xj denotes the j-th input sample of the device, and the corresponding labeled
output is yj. Fi(ω) usually depends on the predefined specific loss function `(·), namely
Fi(ω) = 1

|Di | ∑j∈Di
`
(

xj, yj, ω
)

, where |Di| is the size of the dataset Di. During the federated
learning training process, a global maximum number of iterations T is set. The training
will end and the final optimized global model will be output when the model converges or
reaches the maximum number of iterations.

The most classic and widely recognized algorithm for federated learning is the fed-
erated average (FedAvg) algorithm. It is based on the conventional two-tier federated
learning architecture and is used as the benchmark comparison algorithm in current studies
on federated learning. Assuming that the data from all client devices in the system are
uniformly distributed, the objective function of Equation (1) can be rewritten as:

F(ω) =
N

∑
i=1

|Di|
|D| Fi(ω). (2)

Before the t-th round of global training, the central server sends the current global
model parameter ωt to the participating client device i as the local model parameter ωt

i
for local training. The client optimizes this parameter through E rounds of local iterations
using the SGD method as the local optimizer. The participating client device i then cal-
culates the local model parameter ωl

i in the l-th local iteration and updates it using the
following equation:

ωl
i = ω

(l−1)
i − η∇Fi

(
ω
(l−1)
i

)
, (3)

where η is the preset learning rate, and ∇ is the gradient calculation symbol of the model
parameter ω. After local training, the central server performs average weighted aggregation
of all the collected local models to produce the global model update:

ωt+1 =
N

∑
i=1

|Di|
|D| ω

t+1
i = ωt − η∇

N

∑
i=1

|Di|
|D| Fi

(
ωt

i
)
. (4)

After multiple rounds of global and local iterations, a joint training model with
precision θ is obtained, and the global model is extended to all participating clients, where∥∥∇F(ωt)

∥∥ ≤ θ ≤
∥∥∇F(ωt−1)

∥∥.
The efficiency of federated learning is affected by the duration of local training and

model transmission. Communication involves uploading the local model and downloading
the global model. In this study, only the uplink time is considered because the uplink
bandwidth is significantly lower than the downlink bandwidth. Additionally, the network
bandwidth of the central server is limited, which means that the number of parallel client
connections it can accept is also restricted. When the transmission model dimension is high
or the number of connected client devices is large, the communication process can consume
significant resources [21].

3.2. Data Heterogeneity

Data heterogeneity in federated learning is characterized by differences in data distri-
bution and quantity, which can vary significantly due to environmental preferences and
usage patterns [22,23]. However, current research mainly focuses on the non-IID problem
in single-mode datasets, where each participant’s dataset only contains one type of data
mode, such as pictures, text, audio, or video [24]. This paper aims to address the non-IID
distribution of image data for a classification task, focusing on label distribution offsets,
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where the sample labels in each participant’s local dataset are unevenly distributed. The
impact of non-IID data on the training effectiveness of the federated learning architecture
is examined to provide insights into its performance in such scenarios.

In this section, the FedAvg algorithm is contrasted with the centralized training
method to illustrate the impact of non-IID data on federated learning. Suppose that the
problem is defined as a K-classification task with a feature space X = {x|1, 2, . . . , X},
label space Y = {y|1, 2, . . . , K}, and the sample data {x, y} that obey the data distribu-
tion P. The classification task can be described as obtaining the probability distribution
Q = {qk|k = 1, 2, . . . , K, qk ≥ 0, ∑K

k=0 qk = 1} of the classification results corresponding to
sample feature x through function f , where ω is the weight of the neural network. The cross-
entropy function is typically used as the loss function `(ω). Therefore, the classification
problem becomes a minimization problem as follows:

min
ω

K

∑
k=1

P(y = k)[− log fk(x, ω)], (5)

where P(y = k) is the true probability of the k-th classification and fk(x, ω) is the predicted
probability value of the k-th class. To optimize the parameter ω, SGD is used for iterative
solutions. Under the centralized training method of the t-th round, the parameter ωt

cen is
updated as follows:

ω
(t)
cen = ω

(t−1)
cen − η∇`

(
ω
(t−1)
cen

)
= ω

(t−1)
cen − η∇

K

∑
k=1

P(k) ·
[
− log fk

(
x, ω

(t−1)
cen,k

)]
. (6)

Assuming that N clients are participating in coordinated training, the local training of
each participating client n can be regarded as concentrated training locally. Furthermore,
if the model parameter ω

(t)
n can be obtained after t local iterations, the local SGD update

given in Equation (3) for federated learning can be rewritten as:

ω
(t)
n = ω

(t−1)
n − η∇`

(
ω
(t−1)
n

)
= ω

(t−1)
n − η∇

K

∑
k=1

Pn(k) ·
[
− log fk

(
x, ω

(t−1)
n,k

)]
, (7)

where Pn represents the data distribution of client n. After T rounds of global aggregation
as shown in Equation (4), the federated learning global model ω

(T)
f edavg can be obtained.

There are differences between the model parameter results obtained after updating the
same initialized model parameters by FedAvg and centralized training methods, respec-
tively. This discrepancy is also known as the model weight divergence and is defined as∥∥∥ω f edavg −ωcen

∥∥∥/‖ωcen‖. As the non-IID degree of data increases, the weight divergence
will cumulatively increase during the training process. When the client’s data are inde-
pendent and identically distributed (IID), the divergence between ω

(t)
f edavg and ω

(t)
cen will be

small, and the two will be comparable. When the q is non-IID, the divergence between
omega f edavg(t) and ω

(t)
cen will be significant. Figure 1 illustrates the cumulative process of

divergence between ω
(T)
f edavg and ω

(T)
cen . It can be clearly observed that when the data are

non-IID, the gap between the global model obtained by the FedAvg algorithm and the
model obtained by centralized training will increase with an increase in training rounds.

To address the problem of model divergence caused by data heterogeneity, a federated
learning optimization method that shares partial q is proposed in [25]. The study shows
that the Wasserstein distance between data distributions is positively correlated with the
weight divergence of the model. Conversely, the Earth mover’s distance (EMD) value is
smaller when two distributions are similar, and larger when they are different. Therefore, to
improve the accuracy of the global model, the distance between the local data distribution
of clients with a high non-IID degree and the shared data distribution is reduced, thereby
decreasing the weight divergence of the model.
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Figure 1. Schematic diagram of model dispersion change.

3.3. Hierarchical Federated Learning Algorithm
3.3.1. Hierarchical Federated Learning Architecture

With the introduction of edge servers, the “cloud-edge-end” hierarchical federated
learning architecture consists of three layers: device, edge, and service layers. The device
layer comprises multiple user terminal devices, which are usually heterogeneous, and each
client device gathers and stores a large amount of user data. The edge layer comprises
multiple edge servers, which serve as intermediaries for communication between client
devices and the central server. Their main function is to transfer model information and
aggregate the local model parameters produced in this area one step ahead. As the top layer
of the entire hierarchical architecture, the service layer is mainly responsible for distributing
and updating the global model. The overall architecture of hierarchical federated learning
is illustrated in Figure 2.

Figure 2. Hierarchical federated learning architecture.

Compared with the conventional federated learning training process, the edge-oriented
federated learning training process adds an edge aggregation step, which increases the
computational time. However, by introducing the edge layer, the number of model trans-
missions has been reduced. The introduction of the edge layer also enables partial model
aggregation to be performed at the edge layer. Furthermore, because the communication
overhead in FL is much higher than the computing overhead, and because the edge server
has higher computing power, the “cloud-edge-end” hierarchical federated learning architec-
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ture still improves the overall performance. The training process of hierarchical federated
learning can be summarized as follows:

1. Model initialization: The central server initializes the global model parameters.
2. Global model distribution: The central server communicates the global model param-

eters to each edge server.
3. Global model forwarding: Each edge server receives the global model parameters,

selects participating client devices, and sends them the global model parameters for
the current round.

4. Local update: Participating clients use local data, along with the received global
model parameters, to locally train and optimize the local model.

5. Local model parameters upload: Participating clients upload their trained local model
parameters to the corresponding edge server.

6. Edge aggregation: The edge server receives local model parameters from various
clients and aggregates them to obtain the edge aggregation model.

7. Global aggregation: After all edge servers have completed edge aggregation, the
central server receives all edge aggregation model parameters for the final integration.

8. Global model update: The central server updates the global model parameters accord-
ing to the aggregated model parameters for the next round of global training.

Steps 2–8 are repeated until the maximum number of global iterations is reached.
In this study, we assume that the hierarchical federated learning architecture consists

of N client devices, M edge servers, and a central server. The model’s training process can
be summarized into three parts: local training, edge aggregation, and global aggregation.

3.3.2. Hierarchical Federated Learning Training Process Based on Dynamic Weighting

The edge-oriented hierarchical federated learning algorithm optimizes the conven-
tional FedAvg algorithm by designing a hierarchical algorithm process with an added
edge aggregation step. To address the heterogeneity of client data, a dynamic weighting
method is used to adjust the contribution of each local model to the global model. The
shared dataset is selected under each branch, and the Earth mover’s distance (EMD) is
used to represent the difference between the local data distribution and the shared data
distribution. The weight of each local model parameter is adjusted based on the EMD value
during edge aggregation. The next section will detail the hierarchical federated learning
algorithm based on dynamic weighting.

(1) Local training.

Assume that there is a set of client devices N = {n|n = 1, 2, . . . , N}, and each client
device n has a local data collection {Dn|n = 1, 2, . . . , N}. When the t-th round of global
training begins, the central server distributes the global model parameters to each edge
server M = {m|m = 1, 2, . . . , M}. The edge server m then randomly selects the client
devices C = {i|i = 1, 2, . . . , C; C ≤ N} that participate in this round of global training. Let
Pi denote the local data distribution of participating client i, and let Pm denote the shared
data distribution of edge server m.

The learning task of a participating client device i is to iteratively optimize its parame-
ter through E rounds of random gradient descent. The optimization process is the same as
FedAvg’s local calculation process. The iterative loss function is selected as cross-entropy,
and the loss value of a single node in each round can be expressed as Fi(ωi, Pi). The local
model parameter ω

(l)
i of the l-th local iteration is then computed as follows:

ω
(l)
i = ω

(l−1)
i − η∇Fi

(
ω
(l−1)
i , Pi

)
. (8)

Accordingly, the time consumed by a client device for local training is affected by the
device’s computing power (determined by the CPU) and the size of the training dataset.



Appl. Sci. 2023, 13, 5821 8 of 21

The total time delay generated by device i through E rounds of iterative local computations
is defined as follows:

T(cmp,i) =
ci|Di|

fi
· E, (9)

where ci is the number of CPU cycles required for device i to process a data sample. Since
each data sample

(
xj, yj

)
has the same size, the total number of CPU cycles for a local

iteration can be expressed as ci|Di|. fi denotes the CPU frequency allocated by the client
device i.

For a K-classification training task, the differences between the local data distribution
Pi and shared data distribution Pm can be measured by calculating the EMD, expressed as:

EMD(i,m) = EMD(Pi.Pm) =

∥∥∥∥∥ K

∑
k=1

Pi(y = k)− Pm(y = k)

∥∥∥∥∥ (10)

According to the analysis in Section 3.2, a larger value of EMD(i,m) indicates a greater
gap between the local data distribution of the client and the shared data distribution of the
edge server, leading to greater divergence of the trained local model. Therefore, to limit
this deviation to some extent, it is necessary to reduce the weight assignment of the model
during the aggregation process.

(2) Edge aggregation.

After completing local training, each participating client device i uploads its local
model parameter ωt

i and data distribution deviation EMD(i,m) to the corresponding edge
server m, which generates a communication delay Tcom. The transmission delay for device
i is defined as follows:

T(com,i,m) =
|ωt

i |
ri

, (11)

where |ωt
i | is the size of the local model parameter ωt

i for client device i, and ri represents
the transmission rate in the channel, which is defined based on the orthogonal frequency
division multiple access (OFDMA) protocol:

ri = βi:mWm ln
(

1 +
hiPi:m

N0

)
, (12)

where Wm is the total bandwidth provided by edge server m, βi:m is the bandwidth alloca-
tion ratio for client device i, Pi:m indicates the transmission power of client device i, hi is
the channel gain of client device i, and N0 is the Gaussian noise.

Assuming that the local model parameters received by the edge server m are from
the participating client devices Sm = {s|s = 1, . . . , S; S ≤ C}, the edge server must
perform edge aggregation on these local model parameters ωt

s, and the dynamic weighted
aggregation method is used to obtain the edge-aggregated model parameters ωt

m:

ωt
m =

S

∑
s=1

αsωt−1
s , (13)

where the weight αs of the local model parameters of participating client s is based on
its EMD(s,m). According to the above analysis, αs and EMD(s,m) are negatively correlated.
In other words, the larger the EMD(s,m) is, the greater the divergence of the local model
of client s, and the smaller aggregate weight values need to be allocated. The aggregate
weight value must be normalized to the sum of all values. The specific calculation formula
is given by Equation (14).

αs =

(
1− EMD(s,m)

)
/
(

1 + EMD(s,m)

)
∑S

s=1

[(
1− EMD(s,m)

)
/
(

1 + EMD(s,m)

)] (14)
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When each client’s local q is IID, the value of EMD(s,m) is 0, and αs is equal to 1
S , which

can be considered the average weighted aggregation. When the local data of a client s are
non-IID, the higher the degree of non-independent and non-identical distribution of the
local data, the greater the EMD(s,m) value, and the smaller the corresponding αs value, i.e.,
the smaller the aggregation weight.

(3) Global aggregation.

After all edge aggregation model parameters ωt
m are received, the central server

initiates the global aggregation. The average weighted aggregation method is used to
obtain the global model parameters ωt:

ωt =
M

∑
m=1

|Dm|
|D| ωt

m, (15)

where |D| represents the total amount of local data from all participating clients, and |Dm|
indicates the amount of local data from the clients participating in the aggregation of edge
server m. In the global aggregation, the algorithm is the same as FedAvg, which aggregates
the local model parameters of participating clients using a weighted average. However, in
contrast to FedAvg, the central server in the hierarchical federated learning architecture
aggregates the edge aggregation model parameters. The hierarchical federated learning
algorithm based on dynamic weighting is presented in Algorithm 1:

Algorithm 1 The hierarchical federated learning algorithm based on dynamic weighting
(FedDyn)

Require: Global epochs T, Local epochs E, learning rates η, all clients N, training minibatch
size B, participating clients S;

Ensure: Global model parameters ω;
1: Central server:
2: for each global epoch t = 1, 2, . . . , T do
3: for each edge server m = 1, 2, . . . , M do
4: Send global model parameters ωt to edge server m in parallel;
5: Receive the aggregated model ωt

m from edge server m;
6: end for
7: Global aggregation: ω(t+1) ← ∑m∈M |Dm |ωt

m
|D| ;

8: end for
9: Edge server:

10: for each edge server m = 1, 2, . . . , M do
11: for each client s ∈ S do
12: ωt+1

s ← ClientUpdate(s, ωt
m, Pm);

13: end for
14: Calculate weights: αs =

(1−EMD(s,m))/(1+EMD(s,m))
∑S

s=1[(1−EMD(s,m))/(1+EMD(s,m))]
;

15: Edge aggregation: ωt+1
m = ∑S

s=1 αsωt+1
s ;

16: end for
17: Client devices: ClientUpdate(s, ωt

m, Pm)

18: Calculate EMD(s,m): EMD(s,m) = ‖∑K
k=1 Ps(y = k)− Pm(y = k)‖;

19: for each local iteration l ∈ {1, 2, . . . , E} do
20: for each batch b ∈ B do
21: Local Updates: ωl

s ← ωl−1
s − η∇Fs(ωl−1

s );
22: end for
23: end for
24: return Local model parameters ωt

s, EMD(s,m) to the central server.

The concept behind the hierarchical federated learning algorithm, which is based
on dynamic weighting in local training and aggregation, is a modified version of the
conventional federated learning algorithm. By introducing the one edge aggregation step,
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the hierarchical federated learning algorithm based on dynamic weighting reduces the need
for direct communication with the central server and significantly lowers communication
costs during training. The addition of an aggregation process in the hierarchical federated
learning algorithm presents a challenge for improving training efficiency. The specific
efficient aggregation strategy will be explained in Section 4.

4. Hierarchical Federated Learning Algorithm Based on Time-Effective Aggregation

This paper proposes a time-effective hierarchical federated learning aggregation al-
gorithm to address the issue of varying completion times for local training tasks and
model parameter uploads due to heterogeneous devices and data among participating
clients. With synchronous aggregation, fast devices are idle while waiting for slower ones,
but the proposed algorithm only aggregates local model parameters that have finished
training and uploaded within an effective time. Slow clients can participate in subsequent
model aggregations.

In the edge layer, the paper adopts a semi-asynchronous packet aggregation method,
where the central server only receives local model parameters that arrive within the waiting
time. Dynamic packet-weighted aggregation is necessary because the received parameters
may be from different global model training rounds, rendering simple average-weighted
aggregation inapplicable.

In the service layer, synchronous model parameter aggregation is used. The central
server waits for all edge servers to complete their edge aggregation and upload the edge
aggregation model parameters before conducting global aggregation and updating the
global model parameters for the next round. This method can control the server’s waiting
time and reduce the impact on the global training efficiency of slow or failing participants.

The aggregation strategy based on time effectiveness proposed in this paper is illus-
trated in Figure 3.

Figure 3. Schematic diagram of the time-based aggregation strategy.

Assume that there are six participating clients taking part in the federated learning
training process, and there are differences in the data distribution and computing capacity
of each client. This round of local iterative training starts after receiving the global model



Appl. Sci. 2023, 13, 5821 11 of 21

parameters. Since the communication between the participants and the server is parallel
and the downlink time of the model is short, it is assumed that all six participating clients
start training simultaneously. The bar structure in Figure 3 represents the total time for
each client to complete local training. It is clear that the total time consumed by Client 4
and Client 6 is significantly higher than the other participating clients. When the server
uses the synchronous update method, it must wait for the slowest client, Client 6, to
upload successfully. This process is time-consuming for Client 5, which trains the fastest.
Assuming that the waiting time for each round of training is fixed, the server only receives
the model parameters that arrive during this time using the time-effective aggregation
method proposed in this paper.

Taking the first round of global training (Round 1) as an example, Client 1, Client 2,
Client 3, and Client 5 complete the local model upload within the specified time, so only
these four participating clients’ local model parameters are aggregated. The second round
(Round 2) of training starts once the server updates the global model. In Round 2, Client 4
and Client 6 do not need to use the new global model for training in this round since they
did not complete the update in the previous round. When Round 2’s validity arrives, all
clients except Client 2 upload local model parameters to the server. Client 1, Client 3, and
Client 5 take part in the current round of training, while Client 4 and Client 6 take part
in the previous round, which is relatively older. As can be seen, every global aggregation
can separate the received local model parameters into two categories: new (local models
participating in the current round of training) and old (local models participating in the
previous round of training).

The following is an overview of the federated learning and training process based on
the time-effective aggregation mechanism.

(1) Determine waiting time τ.

Before each round of global iteration starts, every edge server must determine the
waiting time τ for the current round. τ indicates the waiting period that starts after the
edge server distributes the global model to individual clients. During the waiting period,
the participating clients’ local model parameters can be received by the edge server. Once
the allotted waiting time has passed, the edge server ceases receiving and starts the edge
aggregation. Since the global model is sent down in a very short time, the global model
sending time is disregarded in this study. Namely, the waiting time τ can be determined by
the total time from the start of local training to the completion of uploading local model
parameters for the last round of participating clients. The local training time T(cmp,i) and
the model upload time T(com,i) are shown in Equations (10) and (12), respectively. For
participating client i, the time consumed from the start of local training to the end of the
local model upload is given by:

Ti = T(cmp,i) + T(com,i). (16)

Assuming the client device’s basic background conditions, such as geographical
location, user population, and computing power, remain constant, there is no significant
difference in the time required for the device to complete the training round using the same
global parameter setting each time. Therefore, the time consumed in the current round can
be estimated based on the total time spent in the previous round. The edge server m selects
the median of the total time consumed by participating clients in the previous round as
the waiting time τ for the current round. On the one hand, this ensures that each round
has local model parameters that will participate in the global aggregation after passing this
round of training. On the other hand, it prevents clients with fast training from waiting
too long, which improves the overall training efficiency. This time-effective aggregation
method enables fast-training clients to train more frequently within the same amount of
time, while also incorporating the local models contributed by slow-training clients into
global convergence.

(2) Local model receiving.
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Assuming that the edge server m receives local model parameters from participating
client devices Sm = {s|s = 1, . . . , S} during the waiting time τ, these clients can be classified
into two groups according to the training round: the client devices S ′m = {k′|k′ = 1, . . . , S′}
participating in the current round of training and client devices S ′′m = {k′′|k′′ = 1, . . . , S′′}
participating in previous rounds, and satisfying S ′m ∪S ′′m = Sm. The local model parameters
of participating client k′ are denoted ωk′ , which are obtained through training according to
the latest global model parameters issued in this round, and their values must be retained
during aggregation. Similarly, the relatively old local model parameters ωk′′ also possess
value, and they could be more valuable in improving the accuracy of the global model than
the models that are trained quickly. Therefore, they should not be ignored. However, if
the old model is overemphasized, it may have a negative impact on the convergence of the
global model.

To summarize, this algorithm needs to weigh the proportion of local model parameters
of two subgroups in the global model. For each group of local model parameters, the edge
group aggregation model is produced using the dynamic local model weighted aggregation
algorithm in Section 3.3.2. The details are as follows:

ωt
(m,S′) =

S′

∑
k′=1

αk′ω
t−1
k′ (17)

ωt
(m,S′′) =

S′′

∑
k′′=1

αk′′ω
t−1
k′′ , (18)

where ωt
(m,S′) is the model parameter obtained by dynamic weighted aggregation of the

client devices participating in the t-th round of training on edge server m, and ωt
(m,S′′) refers

to the aggregation of obsolete local model parameters for the t-th round of edge server m.
These local model parameters are obtained by the client devices through training on the
obsolete global model, where αk′ and αk′′ are defined as in Equation (14).

(3) Group weighted edge aggregation.

After obtaining the two sets of grouping aggregation results, ωt
(m,S′) and ωt

(m,S′′), these
sets must be weighted and combined. A relatively small weight needs to be given to
the relatively stale model to reduce the effect of obsolescence on convergence. The edge
aggregation model ωt

m for the t-th round of the edge server m is defined as follows:

ωt
m =

(
1− λt)ωt

(m,S′) + λtωt
(m,S′′), (19)

where λt is the dynamic weighting factor determined using the average obsolescence εt of
the local models of S ′′m. λt is defined as:

λt =
|S′′|

|S′|+ |S′′| exp(εt). (20)

(4) Global synchronization aggregation

The time difference for edge servers to complete edge aggregation is insignificant,
as the edge waiting time is set at the edge. This enables the central server to use the
synchronous aggregation method. Once all of the edge model parameters ωt

m have arrived
at the central server, the global aggregation is performed using the average weighted
algorithm to update the global model parameters. The calculation process for the global
model parameters is as follows:

ωt =
∑m∈M |Dm|ωt

m
|D| . (21)



Appl. Sci. 2023, 13, 5821 13 of 21

The overall training time of federated learning can be significantly shortened, and
model training efficiency can be improved using this hierarchical grouping and time-effective
aggregation method. At the same time, the dual-weighting method is used to ensure the
accuracy of the global model. Figure 4 vividly illustrates the above aggregation ideas.

Figure 4. Schematic diagram of group-weighted aggregation.

The proposed hierarchical federated learning algorithm, based on an efficient aggrega-
tion mechanism, is presented in Algorithm 2. It is noteworthy that, in contrast to the direct
aggregation method used by the central server in Algorithm 1, the edge server process in
Algorithm 2 first performs semi-asynchronous edge aggregation of the local model. This
hierarchical aggregation method can effectively reduce the number of model parameters
that the central server process needs to receive. To improve training efficiency, the edge
server process has a waiting time set, enabling edge aggregation to be performed without
waiting for all participating client devices to complete local training. This reduces idle
waiting time on both the edge and central servers, allowing as many training rounds as
possible to be conducted concurrently, and speeding up the global model’s convergence. To
ensure the model’s training effect, the local model parameters arriving at the edge server in
each round are grouped, and the two groups of model parameters are weighted to balance
the local model’s contribution to the global model.
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Algorithm 2 The hierarchical federated learning algorithm based on efficient aggregation
mechanism (FedEdge)

Require: Initialize global model parameters ω0, global epochs T, local epochs E, learning
rates η, waiting time τ,

Ensure: Global model ω;
1: Central server:
2: for t = 1, 2, . . . , T do
3: for each edge server m = 1, 2, . . . , M do
4: Send global model parameters ωt to edge server m in parallel;
5: Receive aggregation model ωt

m from edge server m;
6: end for
7: Global aggregation: ω(t+1) ← ∑m∈M |Dm |ωt

m
|D| ;

8: end for
9: Edge server:

10: for each edge server m = 1, 2, . . . , M do
11: Select participating client i = 1, 2, . . . , C;
12: for each local client i do
13: Send global model ωt to client i;
14: Set the version number version = t;
15: end for
16: Edge aggregation: receive the local model parameters ωt

i from the participating
client i within the waiting time τ;

17: if version = t then
18: Aggregation ωt

(m,S′) participating in the t-th round of training;
19: else
20: Aggregation ωt

(m,S′′) participating in the previous round of training;
21: end if
22: Weighted aggregation of ωt

(m,S′) and ωt
(m,S′′);

23: end for

5. Simulation and Analysis

The parameters of the FedEdge algorithm used in this simulation are reported in
Table 2. We varied the distribution of data across clients to include IID, non-IID(2), and
non-IID(5) distributions. We set the total number of clients, N, to 100, with a subset of
5 clients participating in each round of training. We also employed M edge servers. We
conducted separate experiments using the MNIST and CIFAR-10 datasets, respectively,
with a total of 20 and 200 global training iterations, T. At each training iteration, each
participating client performed E local training iterations with a batch size of 64 and a
learning rate of η set to 0.01. For non-IID datasets, we use a completely random method to
partition the dataset.

Table 2. Simulation parameters.

Parameters Value

Total clients N 100
Number of participating clients C 5

Number of edge servers M 1
Global training iterations T 20 (MNIST)/200 (CIFAR-10)
Local training iterations E 5

Batch_size 64
Learning rate η 0.01

Distribution IID, non-IID(2), non-IID(5)

Figures 5 and 6 show the experimental comparison results of the dynamic and average
weighted aggregation methods using the MNIST and CIFAR-10 datasets, respectively. The
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x-axis represents the global training round, and the y-axis represents the global model’s
classification accuracy after each global aggregation.

Figure 5 compares the effects of two algorithms on the MNIST dataset after 20 rounds
of training. The model’s accuracy is highest when the q is IID, and it fluctuates more
when the client’s data distribution differs greatly. For non-IID data with two classifications,
the model accuracy obtained with the dynamic weighting algorithm is higher than that
obtained with the FedAvg algorithm. For non-IID data with five classifications, the accuracy
of the model trained with the dynamic weighting algorithm is similar to that trained with
the FedAvg algorithm, but with less fluctuation. In summary, the proposed federated
learning algorithm based on dynamic weighted aggregation can achieve excellent results
for both IID and non-IID cases in the MNIST dataset.

Figure 5. Effect of dynamic weighting and average weighting algorithms on MNIST.

Figure 6. Effect of dynamic weighting and average weighting algorithms on CIFAR-10.

Figure 6 compares two federated learning algorithm model effects after 200 training
rounds on the CIFAR-10 dataset. The complexity of CIFAR-10 leads to longer convergence
times and more model fluctuation between rounds than MNIST. Under IID conditions, the
best classification accuracy is 65%. The training model effect is unsatisfactory under non-
IID conditions. Nevertheless, dynamic weighted aggregation of local model parameters
outperforms direct average weighted aggregation overall, irrespective of whether the
non-IID case has two or five classifications.
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The efficient hierarchical federated learning algorithm is evaluated on the MNIST
dataset using confusion matrices for IID and non-IID(5) data distributions. The CNN model
performs well on both distributions, with a slightly higher classification deviation observed
in the non-IID case. Figures 7 and 8 show the classification results.

Figure 7. Classification results in MNIST (IID).

Figure 8. Classification results in MNIST (non-IID).

Figures 9 and 10 compare the classification accuracy of the FedAvg and FedEdge
algorithms on the MNIST dataset after 60 rounds of global training, under IID and non-IID
conditions. The FedEdge algorithm achieves the same accuracy in less time than the FedAvg
algorithm, as it performs edge aggregation in each iteration without waiting for all clients
to finish training. The proposed algorithm reduces training time by 37.3% and achieves
good accuracy when classifying handwritten datasets, improving training efficiency by
about 30–40%. In the non-IID case, the accuracy of the model fluctuates greatly due to
the different distributions of training data used in each round of aggregation. Overall, the
results demonstrate the effectiveness and efficiency of the hierarchical federated learning
algorithm based on efficient aggregation.
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Figure 9. Accuracy during training on the MNIST dataset (IID).

Figure 10. Accuracy during training on the MNIST dataset (non-IID).

The efficient hierarchical federated learning algorithm was evaluated on the CIFAR-10
dataset under IID and non-IID settings. The confusion matrices of the model’s classification
results are shown in Figures 11 and 12. The model performed well in the IID case, achieving
a high number of correct classifications for each class. However, in the non-IID case, the
model’s performance was less than ideal, likely due to the deviation of the client’s training
data samples leading to insufficient training for individual classes. This negatively affected
the model’s recognition performance on the classified samples.

Figure 11. Classification results in CIFAR-10 (IID).
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Figure 12. Classification results in CIFAR-10 (non-IID).

Next, the classification performance of the efficient hierarchical federated learning
algorithm on the CIFAR-10 dataset is analyzed. As shown in Figures 13 and 14, the model’s
classification results are represented using confusion matrices in both IID and non-IID
settings. In the IID case, the model achieved high accuracy, but in the non-IID case, the
classification results were less than ideal due to deviations in client training data samples.
The FedAvg and FedEdge algorithms are compared after 200 rounds of global training on
the test set. The proposed algorithm achieves higher accuracy in a shorter amount of time
compared to FedAvg, due to reduced waiting time for edge aggregation. The hierarchical
federated learning based on an efficient aggregation mechanism proposed in this study
can be applied to a variety of datasets and models and can achieve the desired effect.
Compared with conventional federated learning, the proposed algorithm reduces direct
communication and improves training efficiency by about 30%. Table 3 shows the time
difference between the FedAvg algorithm and the FedEdge algorithm achieving the same
accuracy on different datasets.

Figure 13. Accuracy during training on the CIFAR-10 dataset (IID).

Figure 14. Accuracy during training on the CIFAR-10 dataset (non-IID).
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Table 3. Comparison of FedAvg and FedEdge performances.

Dataset Algorithm Accuracy (%) Time to Reach (s)

MNIST (IID) FedAvg 98.75 1480
FedEdge 900

MNIST (non-IID) FedAvg 92 1500
FedEdge 518

CIFAR-10 (IID) FedAvg 98.75 5670
FedEdge 3396

CIFAR-10 (non-IID) FedAvg 92 5230
FedEdge 3457

The number of participating clients in each round of training can impact the accuracy
of a model in addition to the distribution of local data. This study evaluated the impact of
the number of participating clients on the accuracy of a model trained using the efficient
hierarchical federated learning algorithm on non-IID(2) MNIST and CIFAR-10 datasets.
The results shown in Figures 15 and 16 indicate that a larger number of participating clients
led to better training effects with smaller fluctuations in the non-IID setting. For MNIST,
the model accuracy increased from 82.05% to 89.29% when the number of participating
clients increased from 10 to 30 after 20 rounds of training. Similarly, the model accuracy
increased from 39.54% to 44.39% when the number of participating clients increased from
10 to 30 after 60 rounds of training on CIFAR-10. This is due to the fact that a larger
number of clients provides a more balanced global model, as the data categories are more
comprehensive. Conversely, a smaller number of clients can result in a significant deviation
between classification learning with fewer occurrences and classification learning with
more occurrences. The study shows that the proposed algorithm can improve training
efficiency and achieve the desired effect on a variety of datasets and models.

Figure 15. Training on the MNIST dataset with a different number of clients.

Figure 16. Training on the CIFAR-10 dataset with a different number of clients.
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6. Conclusions

In this paper, a novel approach has been proposed to address the problem of high
communication overhead in the two-layer federated learning architecture. By incorporating
edge computing into federated learning, the frequency of direct interaction between the
client and the central server is reduced, which leads to a decrease in communication costs
and delays in the federated learning training process. Furthermore, to enhance the training
efficiency of the hierarchical federated learning architecture, a time-effective hierarchical
aggregation algorithm has been designed, which utilizes a semi-asynchronous aggregation
strategy at the edge layer and synchronous aggregation at the service layer. The simulation
results validate the effectiveness and reliability of the proposed algorithm. The FedEdge
algorithm proposed in this paper is suitable for edge computing scenarios, such as the IoT,
and has high application value in data domains organized in a hierarchical structure, such
as healthcare and transportation.

However, it is worth noting that the current study only conducted stand-alone simula-
tion experiments on MNIST and CIFAR-10 image datasets without exploring the algorithm’s
effectiveness in other application domains. Moreover, the heterogeneity of data and devices
simulated in the experimental environment is not representative of actual edge nodes. Thus,
the feasibility and efficiency of the algorithm have only been theoretically proven. Hence,
future research should focus on modeling complex scenarios in practical applications and
addressing communication issues in mobile networks, such as channel interference or con-
gestion, poor network conditions, and limited client resources. Additionally, investigating
the applicability of the hierarchical federated learning architecture to real networks should
be considered in further studies.
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