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Abstract: Bearing failures often result from compound faults, where the characteristics of these
compound faults span across multiple domains. To tackle the challenge of extracting features
from compound faults, this paper proposes a novel fault detection method based on the Legendre
multiwavelet transform (LMWT) combined with envelope spectrum analysis. Additionally, to
address the issue of identifying suitable wavelet decomposition coefficients, this paper introduces the
concept of relative energy ratio. This ratio assists in identifying the most sensitive wavelet coefficients
associated with fault frequency bands. To assess the performance of the proposed method, the results
obtained from the LMWT method are compared with those derived from the empirical wavelet
transform (EWT) method using different datasets. Experimental findings demonstrate that the
proposed method exhibits more effective frequency spectrum segmentation and superior detection
performance across various experimental conditions.

Keywords: rolling bearings; fault diagnosis; Legendre multiwavelet decomposition; envelope
spectrum analysis; spectral segmentation

1. Introduction

In industrial environments, rotating machinery has special importance due to its wide
applications. Rolling bearings constitute one of the most widely used yet vulnerable com-
ponents in rotating machinery, and their health deteriorates gradually over time. Bearing
faults can lead to sudden system failure, resulting in incalculable economic losses and
posing personal safety hazards [1,2]. Moreover, owing to the complexity of equipment and
the interrelation of its structure, compound faults often occur simultaneously, coupling the
features of individual faults to form what are known as compound faults [3,4]. To mitigate
the issues arising from bearing faults such as equipment downtime and maintenance costs
and to enhance equipment operating efficiency and safety, fault detection holds paramount
importance. Developing a method with a simple model design, robust noise resistance
(especially under strong noise interference), and high fault recognition accuracy bears
engineering significance [5,6].

Time-frequency analysis methods are widely employed in processing bearing signals
due to their ability to provide signal analysis across both time and frequency domains.
This effectively enhances the accuracy and reliability of fault diagnosis [7–15]. A common
approach to fault diagnosis involves extracting fault features using time-frequency analysis
methods, followed by the utilization of various classifiers. For instance, Attoui et al. [7]
combined wavelet packet decomposition with maximum impact frequency band-based
feature extraction technology to propose a new time-frequency method for bearing fault
diagnosis. Jiang et al. [8] addressed the non-stationary and non-Gaussian issues in bearing
signals by combining empirical wavelet transform with fuzzy correlation classification for
fault diagnosis. Glovacz et al. [9] proposed an approach that combines multiple classifiers,
including the nearest mean classifier, nearest neighbor classifier, and Gaussian mixture
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model, to analyze and diagnose rolling bearing faults. Zhao et al. [10] addressed the com-
plexities associated with weak and noise-prone compound fault features in rolling bearings.
Their method involved utilizing adaptive local iterative filtering decomposition and the
Teager–Kaiser energy operator to effectively extract diverse frequency components from vi-
bration signals related to bearing faults, thereby enhancing the diagnosis of rolling bearing
issues. Despite their ability to extract various frequency components from bearing fault vi-
bration signals, time-frequency analysis methods often encounter challenges in adaptively
extracting signal features across different environmental and operational conditions.

Lately, researchers have increasingly adopted a trend of combining wavelet analysis
and deep neural networks for fault diagnosis [16–22]. Shao et al. [16] proposed a bearing
fault diagnosis method that combines the advantages of dual-tree complex wavelet pack-
ets and deep belief networks. Xu et al. [17] combined fast empirical wavelet transform
(FEWT) with negative entropy spectrum decomposition (NSD) to construct an information
graph. FEWT cyclically extracted vibration signals, obtaining envelope spectra for each
component to diagnose compound bearing faults. Liang et al. [18] applied conventional
convolutional neural networks to perform multi-label classification on vibration signals that
underwent wavelet analysis transformation. Their approach aimed at enabling compound
fault diagnosis specifically for gearboxes. Experimental findings suggest that amalgamat-
ing traditional time-frequency analysis methods with deep learning can yield enhanced
diagnostic accuracy and stability.

Traditional wavelet analysis is simple and easy to implement, and it can analyze
signals locally and extract features of different frequencies [22–26]. However, the frequency
resolution and time resolution of wavelet analysis are mutually contradictory, and it is
sensitive to noise and interference, making it vulnerable to the influence of signal noise
and nonlinear interference [23]. Compared with traditional wavelet analysis, multiwavelet
analysis has better adaptability and resolution, which can effectively capture the nonlinear
and non-stationary characteristics of rolling bearings, and thus more accurately identify
and locate bearing faults, improving the efficiency and accuracy of bearing fault diagnosis.
Hong et al. [24] developed a method for compound bearing fault diagnosis by utilizing
customized balanced multiwavelets to extract fault information from signals and incorpo-
rating adaptive maximum correlation kurtosis deconvolution. Yuan et al. [25] established
an intelligent indicator-driven approach to construct suitable multiwavelet basis functions
for accurate inner-product matching, resulting in a multiwavelet feature extraction method
for mechanical fault diagnosis. Multiwavelets, as a promising basis function, have im-
portant signal processing properties such as orthogonality, symmetry, compact support,
and high-order vanishing moments [27]. However, the existence of orthogonality and the
scarcity of wavelet basis functions of specific expressions will lead to the omission of some
useful information when constructing multi-wavelet decomposition signals.

Legendre multiwavelets offer numerous advantages, including rich regularities, com-
pact support, orthogonality, and vanishing moments [28,29]. These properties not only
enable the identification of essential features across various fault categories in rolling
bearings but also significantly reduce the complexity involved in extracting optimal fea-
tures [30]. Based on this idea, we propose a new fault detection method for the bearing,
LMWT, which can effectively extract the characteristic information of the fault signal and
achieve rapid and accurate diagnosis of rolling bearing faults. The method for fault detec-
tion involves specific steps: initially, the vibration signal undergoes decomposition into
various signal components using Legendre multiwavelets. Subsequently, relative energy
ratios are computed for these components, and the most responsive component within the
fault frequency band is identified. Experimental findings indicate that, when compared
to the EWT method, the proposed approach demonstrates superior diagnostic accuracy
in addressing rolling bearing fault diagnosis. Notably, its simpler model structure and
reduced training parameters in contrast to deep learning models render it significantly
valuable in the realm of fault detection.
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The upcoming sections of this paper follow this outline. Section 2 provides an in-depth
exploration of the implementation of Legendre multiwavelets decomposition. Moving
forward, Section 3 introduces three distinct experimental settings, accompanied by their
respective experimental results and analyses. Finally, Section 4 encapsulates the conclusions
derived from this study.

2. Legendre Multiwavelet Transform
2.1. Legendre Multiwavelet

Legendre multiwavelet is constructed by Legendre polynomials witch can described as

L0(x) = 1,

L1(x) = x,

Lk+2(x) =
2k + 3
k + 2

xLk+1(x)− k + 1
k + 2

Lk(x)

(1)

where k = 0, 1, · · ·, p − 1 and p represent the number of adopted Legendre polynomials,
respectively. The Legendre scale basis function ϕk(x) is described by [31] as the following:

ϕk(x) =

{√
2k + 1Lk(2x − 1), x ∈ [0, 1]

0, x /∈ [0, 1]
(2)

In general, a subspace Vp,n comprising piecewise polynomials is defined as

Vp,n ={ f : f |Inl is a polynomial of degree

strictly less than p; f vanishes elsewhere}
(3)

the arrangement of which constitutes a linear space. Here, the variables n = 0, 1, . . . , N
denote the resolution level, while l = 0, 1, . . . , 2n − 1 represents the translation parame-
ter. The corresponding interval Inl is defined as Inl = [2−nl, 2−n(l + 1)]. It is apparent
that the set ϕk

p−1k = 0 establishes an orthonormal basis for the subspace Vp, 0. Subse-
quently, the construction of the subspace Vp,n is also achieved utilizing ϕk through dilation
and translation.

Vp,n = span
{

ϕk,nl(x) = 2
n
2 ϕk,n(2

nx − l)
}

(4)

which forms an orthonormal basis in the subspace Vp,n.
If the analysis of vibration signals related to various bearing faults is confined exclu-

sively within the subspace Vp,n, it efficiently captures the low-frequency components at
resolution level n. However, numerous characteristic features of bearing faults prominently
manifest within the high-frequency components. Therefore, it becomes imperative to define
the orthogonal complement of the subspace Vp,n within Vp,n+1, termed as the multiwavelet
subspace Wp,n. This necessity arises from the equation as

Vp,n ⊕ Wp,n = Vp,n+1, Vp,n ⊥ Wp,n (5)

Alpert et al. [31] developed the multiwavelet subspace to facilitate the efficient computation
of integral and differential operators. The implications of this construction can be elucidated
through the two scale relations expressed as

ϕk(x) =
√

2
p−1

∑
k′=0

(h(0)kk′ ϕk′(2x) + h(1)kk′ ϕk′(2x − 1)) (6)

ψk(x) =
√

2
p−1

∑
k′=0

(g(0)kk′ ϕk′(2x) + g(1)kk′ ϕk′(2x − 1)) (7)
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where ψk is the multiwavelet basis. In this paper, the coefficient matrices mentioned above,
H = (h(0)ij , h(1)ij )p×2p and G = (g(0)ij , g(1)ij )p×2p, are utilized for convolving the raw bearing
data. This convolution process is convenient and facilitates the comprehensive extraction
of various characteristics associated with faults present in the bearing.

Specifically, diverse regularities are better suited for adaptively discerning complex
fault characteristics and offering alternative methods for extracting features. These methods
require less expertise compared to traditional wavelet transform techniques.

2.2. Envelope Spectrum

For non-stationary vibration signals, it is necessary to obtain the envelope of the signal
and extract the envelope frequency. Envelope detection can be achieved using the Hilbert
transform. The Hilbert transform is a special type of Fourier transform that can convert
signals with non-zero real parts into pure imaginary signals. The formula for the Hilbert
transform is as follows:

H[ f (t)] =
1

πt
P.V.

∫ ∞

−∞

f (τ)
t − τ

dτ (8)

where f (t) is the input signal, P.V. denotes the Cauchy principal value, and H[ f (t)] is
the Hilbert transform of f (t). The Hilbert transform can be applied to the raw signal to
obtain the corresponding analytic signal, which contains both the raw signal and its Hilbert
transform. The envelope of the signal can then be obtained from the absolute value of the
analytic signal.

2.3. The Proposed Method

There is a rare number of wavelet functions that have rich regularities and orthogonal-
ity at the same time, which may lead to the loss of useful information for fault detection
frequencies after multiwavelet decomposition. To overcome this drawback, this paper
employs Legendre multiwavelets for decomposing the signals related to bearing faults.
Figure 1 illustrates the signal decomposition process using three wavelets in the Legendre
multiwavelet transform. In this figure, we first replicate the original signal into three copies
(assuming a total of three Legendre multiwavelets), each utilized for the decomposition of
the Legendre multiwavelets. After each level of decomposition, we obtain two components:
the low-frequency and high-frequency signals. We retain the high-frequency part and use
the low-frequency signal for the next level of decomposition, continuing this process until
we reach the specified number of levels. In order to obtain enough fault frequency features
from the wavelet decomposition coefficients, there is no post-processing in the traditional
wavelet transform. Additionally, to accurately locate signal components sensitive to fault
frequencies, the relative energy ratio [32] is introduced, with the specific formula as follows:

r =
max [A( fch)]

2

∑
fi
f [A( f )]2

, fch ∈ ( fch − δ, fch + δ) (9)

where fch represents the characteristic frequency, A is the amplitude of the multiwavelet
coefficients’s envelope spectrum, δ is the frequency interval, and 0 − fi refers to the range
of the frequency band.
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Figure 1. The decomposition stages of the Legendre multiwavelet transform with three base functions.
G and H are, respectively, matrix high-pass and low-pass filters.

3. Validation Experiment

In this study, the LMWT method proposed in this paper is used to test vibration signals
under three conditions. These conditions include vibration signals under a simulated high
noise interference environment, single fault signals in the Case Western Reserve University
(CWRU) bearing dataset, and compound fault signals in the Paderborn University bearing
dataset. In these experiments, the proposed method is used to process the vibration signals
and compare them with the EWT method regarding their performance in fault detection,
specifically comparing the LMWT method with the EWT method under different signal
conditions to evaluate the practicality and effectiveness of the proposed method in bearing
fault detection.

3.1. Case 1: Simulated Signal

In this section, the simulated signal is used to evaluate the performance and robustness
of the LMWT method in high-noise environments. Using the following mathematical
models [15] to generate the simulated signal, and process and analyze these signals to
evaluate the effectiveness of the LMWT method.

X(t) =
M

∑
i=1

Aie−αit′ sin(2π fit) + 0.2 sin(2π frt) + 0.1 sin(2π(2 fr)t)

n(t) = N(0, 0.65)

t′ = mod(t,
1
fch

)

Xn(t) = X(t) + n(t)

(10)

where X(t) denotes the original signal, n(t) represents the noise signal generated by a Gaus-
sian distribution, and Xn(t) stands for the resulting noisy signal. The resonant frequencies,
denoted by fi, are set to 500, 2500, and 4000, while the corresponding parameters αi are set
to 100, 500, and 300, respectively. Additionally, fr represents the rotation frequency set at
20, with 2 × fr denoting the first harmonic of the rotation frequency. In this simulation,
the sampling frequency is set to 20,480 Hz, with a simulated time duration of 4 s, resulting
in 81,920 sample points. Furthermore, fch is set to 120, representing the characteristic
frequency of the fault. To provide a comprehensive illustration of the relevant signals, we
plot the simulated signal containing fault pulses, the noise, the simulated signal with added
noise, and the signal envelope spectrum obtained after processing through the LMWT
method. These plots are displayed separately in Figure 2 to enhance clarity.
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Figure 2. (a) Simulated signal with fault impulses, (b) added noise, (c) simulated signal with added
noise, (d) envelope spectrum of the noisy signal.

Typically, a signal with noise can affect its frequency domain characteristics and
structure, which in turn affects subsequent signal analysis and processing. Based on
sampling theory [33], needing enough sampling points can effectively represent the feature
of the signal, but more sampling points lead to high computational cost. Consequently,
the 4000 sample points of the noisy signal are applied to LMWT. To better understand the
characteristics and structure of signal with noise, the proposed method in this paper and the
traditional classic method EWT are applied to the noisy signal. The signal is decomposed
into multiple scales and frequency signal components. The signal components obtained
by applying a one decomposition level of the signal using the LMWT method are shown
in Figure 3, and the empirical modes obtained using EWT applied to the simulated noise
described above are shown in Figure 4.
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Figure 3. The multiwavelet coefficients corresponding to the 4000 sample points of the noisy signal
obtained via LMWT.

Figure 4. The empirical modes of the 4000 sample points of the noisy signal obtained by EWT.

According to the relative energy ratio, the signal component that is most sensitive
to the fault characteristic is selected from the results processed by the LMWT and EWT
methods. The envelope spectrum of the selected signal component is shown in Figure 5. It
can be observed that although the fault characteristic frequency fch exists in the envelope
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spectrum of the most sensitive component obtained by EWT, the corresponding harmonics
of the fault frequency cannot be observed. However, within the envelope spectrum of the
most sensitive component acquired through LMWT, distinct fault characteristic frequency
fch and its harmonics prominently emerge, serving as clear indicators of bearing damage.
As shown in Figure 6, by calculating the relative energy ratio of all signal components, it
can be observed that the relative energy ratio of the components obtained by using EWT
decomposition is significantly smaller than that obtained by using LMWT, indicating that
signal components obtained by the LMWT method can more accurately detect bearing
faults than those obtained by EWT.

Figure 5. Envelope spectrum obtained by LMWT (a) and EWT (b).

Figure 6. Relative energy ratio obtained by LMWT and EWT.

3.2. Case 2: Single Fault Signal

In this subsection, this paper evaluates the ability of the proposed method to identify
different faults of bearings by using single-fault bearing vibration signals obtained from the
CRWU Bearing Data Center [34]. The experimental setup schematic is shown in Figure 7.
This experimental setup comprises a bearing and accelerometer(located on the left side of
the figure), a torque transducer/dencoder (connected in the middle of the figure), and a
dynamometer (positioned on the right side of the figure). Additionally, the experimental
setup is driven by a 1.5 kW (2 horsepower) electric motor (not depicted in the figure). The
vibration signal used in this work is from a 6205-2RS JEM SKF bearing, and the geometric
parameters of the bearing are shown in Table 1. In this study, the vibration signal used
corresponds to faults in the rolling elements, inner race, and outer race. In each case,
the vertical acceleration on the drive end bearing housing was measured, and sampling
rate of 12 kHz was used for these cases.
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Figure 7. The schematic of the CRWU bearing dataset. From left to right include accelerometer (1),
bearing (2), torque transducer and encoder (3) and dynamometer (4).

Table 1. Geometric characteristics of the 6205-2RS JEM SKF bearing.

Parameter Value Parameter Value

Bore diameter 25 mm Outside diameter 52 mm
Overall width 15 mm Pitch diameter 39 mm
Ball diameter 8 mm Rolling element number 9 pc.
Contact angle 0 rad

According to the physical characteristics shown in Table 1, the characteristic frequen-
cies related to outer race fault can be calculated using the following formula:

BPFO =
nb
2

Fr(1 −
d
D

cos(α)) (11)

To calculate the fault frequency associated with the inner race fault, the following
formula can be used:

BPFI =
nb
2

Fr(1 +
d
D

cos(α)) (12)

To calculate the fault frequency associated with the rolling element fault, the following
formula can be used:

BSF =
D
2d

(1 − (
d cos(α)

D
)2) (13)

where nb is the number of rolling elements, D is the pitch diameter of the bearing in mm, d
is the diameter of the rolling element in mm, and Fr is the bearing’s rotating frequency in
Hz. Table 2 presents the fault frequencies of different faults for the bearing 6205-2RS JEM
SKF at 1730 rpm in the CRWU bearing dataset.

Table 2. The fault characteristic frequency of 6205-2RS JEM SKF bearing.

RPM (r/min)
Characteristic Frequency of Bearing Fault

BFPO (Hz) BFPI (Hz) BSF (Hz) Fr (Hz)

1730 103.3675 156.1325 135.9203 28.8333

Figure 8 shows the vibration signals corresponding to three types of faults, i.e., the
rolling element fault Figure 8a, the inner race fault Figure 8b, and the outer race fault
Figure 8c, at a speed of 1730 RPM. Figure 9 shows the corresponding spectra and direct
envelope spectra of these signals. In the envelope spectrum of the rolling element fault,
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it is difficult to find frequency information corresponding to the fault frequency band.
Compared with the rolling element fault, the fault frequency bands of the inner race
and outer race are more easily found in the envelope spectra, and the corresponding
peak frequencies are 156.1325 Hz and 103.3675 Hz, respectively. This indicates that for
inner race and outer race faults, the characteristic frequencies are more obvious in the
low-frequency region and are easier to extract and analyze. For rolling element faults,
the characteristic frequencies are not easily extracted and analyzed accurately due to the
influence of background noise.

Figure 8. The vibration signals of bearing with different fault in CWRU bearing dataset.

Figure 9. Frequency spectrum and Envelope spectrum of Vibration Signals in Various Faults of
CWRU Bearing Dataset: (a,b) Ball Faults, (c,d) Inner Race Faults, (e,f) Outer Race Faults

In order to comprehensively capture the fault feature information in the vibration
signals of bearings, the LMWT method proposed in this paper is applied to analyze the
vibration signals of bearings with different faults shown in Figure 8. First, the vibration
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signals are decomposed into six wavelet coefficients by one-level multiwavelet decomposi-
tion. Then, the relative energy ratios of the correlation coefficients in three characteristic
frequency bands were calculated to select the decomposition coefficients that are sensitive
to the fault frequency band. Finally, the coefficients with the highest relative energy ratio
are further verified. Figures 10 and 11 show the most sensitive decomposition coefficients
for the three different fault frequency bands by LMWT and EWT. Based on the decompo-
sition coefficients, the corresponding relative energy ratios can be calculated which are
shown in Figures 12 and 13. Figure 12 shows the relative energy ratios of the wavelet
coefficients of the LMWT method under different bearing faults. It can be found that all
wavelet coefficients can effectively decompose relevant fault features, especially outer ring
faults. As shown in Figure 13, the relative energy ratios obtained by different decomposi-
tion coefficients are not stable. Moreover, the relative energy ratios are close to 0 at some
coefficients. The details of relative energy ratios and average values for the two methods
are shown in Table 3.

As shown in Figure 10, the corresponding fault feature frequency peaks can be
clearly observed from the decomposition coefficients obtained from LMWT. In contrast,
although the characteristic frequencies of inner and outer ring faults can be observed in the
decomposition coefficients obtained from EWT, the fault frequency corresponding to the
rolling element cannot be observed. Specifically, distinct fault frequency characteristics are
evident in the LMWT method within the envelope spectrum of the three faults, and average
relative energy ratio is much higher than EWT’s, respectively. However, in the case of
ball faults, both methods fail to isolate the fault frequency characteristics of the ball. This
suggests that for rolling element faults, the LMWT method proposed in this paper can
more accurately extract and analyze its characteristic frequency, which can improve the
accuracy and reliability of bearing fault diagnosis.

Figure 10. Envelope spectrum obtained by the proposed method of bearing at different faults in
CWRU bearing dataset.
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Figure 11. Envelope spectrum obtained by the EWT method of bearing at different faults in CWRU
bearing dataset.

Figure 12. Relative energy ratios obtained by the proposed method of bearing at different faults in
CWRU bearing dataset.

Figure 13. Relative energy ratios obtained by the EWT method of bearing at different faults in CWRU
bearing dataset.
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Table 3. Relative energy ratios of LMWT and EWT in different fault.

1 2 3 4 5 6 Average

LMWT
Ball 0.063 0.072 0.049 0.024 0.037 0.053 0.049

Inner race 0.143 0.156 0.197 0.150 0.211 0.203 0.176
Outer race 0.485 0.503 0.557 0.489 0.572 0564 0.528

EWT
Ball 0.001 0.000 0.002 0.000 0.001 0.000 0.000

Inner race 0.114 0.001 0.181 0.178 0.023 0.002 0.083
Outer race 0.583 0.044 0.243 0.768 0.006 0.009 0.275

3.3. Case 3: Compound Fault Signal

In this section, the proposed method is applied to identify compound faults. The
experimental object is a vibration signal generated by a motor from the University of Pader-
born in Germany [35]. The experimental setup is shown in Figure 14. This experimental
setup consists of a bearing housing and an electric motor. The motor powers the shafts of
6203-type test bearings installed within the bearing housing, and these test bearings rotate
under a radial load applied by a spring-screw mechanism. The vibration signal used in
this paper is generated by a 6203 bearing, which is one of the components that experienced
faults during the experiment, the physical and geometric parameters of the bearing are
shown in Table 4. Figure 15 shows the corresponding spectra and direct envelope spectra
of these signals. In the envelope spectrum of the compound fault, it is difficult to find
frequency information corresponding to the frequency band of the inner and outer race.
By applying the LMWT method, this paper aims to detect and identify different types and
locations of bearing faults to verify the feasibility and effectiveness of the proposed method.

Figure 14. The schematic of the Paderborn bearing dataset, which includes a drive motor (1),
housing (2), adjusting nut (3), and spring packge (4).

Table 4. Geometric characteristics of 6203 bearing.

Parameter Value Parameter Value

Diameter of inner race 24 mm Diameter of outer race 33.1 mm
Pitch circle diameter 28.55 mm Number of rolling elements 8 pc.

Rolling element diameter 6.75 mm Length of rolling element 6.75 mm
Nominal pressure angle 0 rad
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Figure 15. (a) The vibration signals of compound fault signal in Paderborn bearing dataset and its
(b) spectrum, (c) envelope spectrum.

On the experimental test bench shown in Figure 14, a 6203 bearing numbered KB23
bearing with inner and outer race compound fault was tested; the specific fault information
of this signal is given in Table 5. And the frequencies of different faults for the 6203 bearing
have been shown in Table 6. The vibration signal was measured at a sampling rate of
64 kHz and a constant speed of 900 RPM. Based on its physical and geometric parameters,
the rotation frequency Fr = 15 Hz can be calculated using the formula. The BPFO of the
outer race fault is 46.585 Hz, and the BPFI of the inner race fault is 73.9415 Hz, as shown
in Table 6. These calculated characteristic frequencies are based on the kinematic and
dynamic knowledge of the bearing and can help to identify and locate different types
and locations of bearing faults, providing a foundation and basis for subsequent signal
processing and analysis.

Table 5. The fault information of 6203 bearing.

Bearing Code Damage Bearing Element

KB23 fatigue:pitting IR + OR

Table 6. The fault characteristic frequency of 6203 bearing.

RPM (r/min)
Characteristic Frequency of Bearing Fault

BFPO (Hz) BFPI (Hz) Fr (Hz)

900 46.0585 73.9415 15

In order to fully capture the fault feature information in the bearing vibration sig-
nal, the proposed LMWT method is applied to analyze the vibration signal shown in
Figures 16 and 17. Firstly, a one-level decomposition is performed on the vibration signal
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to obtain six multiwavelet decomposition coefficients. Then, the relative energy ratio of
the correlation coefficient in two characteristic frequency bands was calculated to select
the decomposition coefficients sensitive to the fault frequency band. Finally, the coefficient
with the maximum relative energy ratio is selected for further verification. Figure 17 shows
the results obtained by using the LMWT method, which are the decomposition coefficients
most sensitive to the outer race fault and the decomposition coefficients most sensitive to
the inner race fault, as well as the relative energy ratios of all coefficients relative to the two
fault frequency bands. The results of using the EWT method to process the compound fault
vibration signal are shown in Figures 18 and 19. The exact values of the two methods are
given in Table 7.

Figure 16. Relative energy ratio on the six multiwavelet coefficients corresponding to the different
parts of the compound fault signal in the Paderborn bearing dataset.

Figure 17. The envelope spectrums of (a) BPFI and (b) BPFO on the six multiwavelet coefficients
corresponding to the different parts of the compound fault signal in the Paderborn bearing dataset.

Figure 18. Relative energy ratio on the empirical modes to the different parts of the compound fault
signal in the Paderborn bearing dataset.
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Figure 19. The envelope spectrums of (a) BPFI, (b) BPFO on the empirical modes to the different
parts of the compound fault signal in the Paderborn bearing dataset.

Table 7. Relative energy ratios of LMWT and EWT in different fault.

1 2 3 4 5 6 Average

LMWT Inner race 0.042 0.108 0.121 0.023 0.083 0.017 0.065
Outer race 0.386 0.332 0.189 0.392 0.127 0.232 0.276

EWT Inner race 0.000 0.000 0.000 0.000 0.000 0.002 0.000
Outer race 0.008 0.001 0.000 0.001 0.006 0.016 0.004

In Table 7, the relative energy ratios extracted by EWT are almost close to 0 for inner
race faults, and the maximum relative energy ratio for outer loop faults is only 0.016.
And the average relative energy ratios of the inner race fault obtained by LMWT is 0.068,
and the average relative energy ratio corresponding to the outer race fault is 0.278, which
is significantly higher than the EWT method. Furthermore, the characteristic frequency
band corresponding to the outer race fault features can be clearly observed in Figure 17,
while the inner race fault and the characteristic frequency band are relatively less obvious.
By contrast, in the results obtained by EWT shown as Figures 18 and 19, the characteristic
frequency band corresponding to the outer race fault can be observed, but the inner race
fault cannot be observed, and the relative energy ratio corresponding to the inner race fault
is almost zero, indicating that the EWT method cannot extract all fault frequency bands in
one step for the compound fault vibration signal.

4. Conclusions

This paper proposes a novel bearing fault detection method based on LMWT, which
calculates the relative energy ratio to select the most sensitive components for fault features.
The LMWT method is applied to three different cases, and the results show that it can
more effectively extract various component fault frequencies compared to the EWT method.
Specifically, in simulated environments, the LMWT method outperforms the EWT method
in high-noise conditions. In the single fault experiment, the LMWT method yielded relative
energy ratios of 0.528, 0.176, and 0.049 for three different faults, while the EWT method
only achieved values of 0.275, 0.083, and 0.000, respectively. This indicates that the LMWT
method exhibits a 92% increase in sensitivity for outer race faults and a 112% increase in
sensitivity for inner race faults compared to EWT. However, for ball faults, although the
LMWT method significantly outperformed the EWT method in relative energy ratios, its
fault feature frequencies still remained mixed with background noise. In the compound
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fault experiment, due to the rich regularity and orthogonality of the LMWT method, it
achieved relative energy ratios of 0.276 and 0.065 for outer and inner race faults, respectively,
while the corresponding ratios in the EWT method were 0.004 and 0.000. Clearly, the LMWT
method holds a considerable advantage over the EWT method. However, in the spectrum
of the inner race fault, the fault feature frequencies are not distinct and are still entangled
with background noise, lacking complete separation. Therefore, the LMWT method can
effectively improve the accuracy and reliability of bearing fault diagnosis, and has excellent
compound fault detection ability. In the future, combining deep learning methods with the
Legendre multiwavelet theory will be developed.
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