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Abstract: Accurate unmanned aerial vehicle (UAV) trajectory tracking is crucial for the successful
execution of UAV missions. Traditional global positioning system (GPS) methods face limitations
in complex environments, and visual observation becomes challenging with distance and in low-
light conditions. To address this challenge, we propose a comprehensive framework for UAV
trajectory verification, integrating a range-based ultra-wideband (UWB) positioning system and
advanced image processing technologies. Our key contribution is the development of the Spatial
Trajectory Enhanced Attention Mechanism (STEAM), a novel attention module specifically designed
for analyzing and classifying UAV trajectory patterns. This system enables real-time UAV trajectory
tracking and classification, facilitating swift and accurate assessment of adherence to predefined
optimal trajectories. Another major contribution of our work is the integration of a UWB system
for precise UAV location tracking, complemented by our advanced image processing approach
that includes a deep neural network (DNN) for interpolating missing data from images, thereby
significantly enhancing the model’s ability to detect abnormal maneuvers. Our experimental results
demonstrate the effectiveness of the proposed framework in UAV trajectory tracking, showcasing
its robust performance irrespective of raw data quality. Furthermore, we validate the framework’s
performance using a lightweight learning model, emphasizing both its computational efficiency and
exceptional classification accuracy.

Keywords: UAV trajectory; ultra-wideband; Kalman filter; image interpolation; attention mechanism

1. Introduction

Unmanned aerial vehicles (UAVs) can perform a variety of important tasks, replacing
human labor in tasks such as escort, patrol, security, delivery, and search and rescue [1].
The optimal UAV flight trajectory may differ depending on the purpose of the mission
performed by the UAV [2]. Accurately flying the predefined flight trajectory appropriate
for the purpose of the mission are very important in terms of the purpose and efficiency of
UAV operation [3,4]. However, it can be difficult to quickly and accurately check the flight
trajectory [5,6].

The most basic conventional method to determine the location of a UAV is to use Global
Positioning System (GPS), which utilizes satellites. However, GPS has the disadvantage
that reception signals can be weak in complex urban terrain and cannot be used in indoor
environments covered by architectural structures [7]. The way to check UAV flying with the
naked eye is difficult to grasp the overall trajectory if the distance from the UAV increases,
and it can be difficult to recognize UAV in low-light environments. Lastly, the method of
attaching a camera to a UAV to determine the location of a UAV may also be incomplete due
to unstable network connections in disaster situations, which are environments where UAVs
are mainly used [8,9]. As UAVs often have to be operated in environments with incomplete
network connectivity and have high mobility, frequent network communication losses may
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occur during flight. In addition, the flight data recorder (FDR) of flight controllers such as
ArduPilot Mega (APM) and Pixhawk can be used to record flight history by utilizing the
UAV’s own sensors, but accurate reproduction of 3D trajectories is limited by empirical
problems, such as sampling frequency constraints or network delay and loss [10].

The ultra-wideband (UWB) positioning system is a range-based positioning method
with relatively simple infrastructure configuration and high accuracy. The strength of
UWB systems is that they use high frequency bandwidth and have low signal interference.
Additionally, the UWB system has the advantage of enabling high-precision positioning
using high nanosecond time resolution and can be effectively used both indoors and
outdoors over long distances [11].

In addition, image processing technology is one of the core technologies widely used
in the autonomous driving, medical, security, and entertainment industries by configuring
and optimizing nonlinear modeling through a multi-layer neural network structure [12,13].
Recently, practical research is being conducted on unmanned aerial vehicles (UAVs), one of
the many fields where such image processing can be utilized [14–17]. Among the many
ongoing studies, there are increasing attempts to image the flight trajectory of a UAV and
use it for performance verification [18] and failure diagnosis [19].

In general, UAV flight trajectory records are a key element in the UAV mission per-
formance verification process to evaluate the accuracy and efficiency of UAV mission
performance [20–23]. However, if frequent network communication loss occurs, a large
portion of the flight trajectory records used to verify the UAV’s mission performance may
be lost, making accurate evaluation impossible. Therefore, in this study, we design a system
that tracks the position of a UAV in real time by introducing location determination using
this UWB positioning system into the UAV trajectory tracking process. Additionally, we
propose a framework that can interpolate and evaluate UAV flight trajectories without
loss by utilizing a deep interpolation model and spatial trajectory enhancement attention
mechanism (STEAM), even in a limited network infrastructure environment based on UAV
flight trajectory images.

The proposed system involves several key steps. First, we introduce a deep neural
network (DNN) technique to interpolate missing data based on images. This approach is
crucial as data quality can deteriorate due to various external factors, such as noise during
data collection or omissions in data transmission and reception. Making predictions with
low-quality data as input challenges the accuracy of even the most sophisticated DNN
models. Traditional methodologies, based on statistics and probability, often interpolate
data collected from sensors by focusing on numerical data. However, when the degree
of missingness in data is significant, these traditional methods risk distorting the original
data, rendering the interpolation process ineffective. To address this, our system leverages
advanced DNN-based interpolation techniques that use images instead of numerical data,
filling gaps in the data more effectively. This approach not only mitigates the degradation
of data quality but also significantly improves the classification performance of the UAV
abnormal maneuver detection model.

Secondly, we propose the STEAM, a new and efficient attention module optimized
for analyzing trajectory pattern data of UAVs. STEAM adopts a maximum-pooling-based
attention strategy to emphasize prominent trajectory features with high precision. This
strategy effectively minimizes the number of parameters in the model, thereby reducing
model complexity and enhancing interpretability. Our comprehensive experiments demon-
strate superior performance of STEAM over traditional convolutional models, especially in
UAV trajectory classification tasks, where STEAM shows improved accuracy with fewer
computational resources.

Our system, using the above proposed methods, facilitates real-time UAV flight
trajectory tracking and classification, enabling rapid and accurate evaluation of UAVs for
predefined optimal trajectories. The results obtained from this process can pinpoint UAVs
requiring flight trajectory modifications and facilitate efficient monitoring for precise task
execution. Moreover, the ability to classify flight trajectories allows for the identification of
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specific tasks being performed by the UAVs. This feature of the system extends its utility
beyond mere monitoring, making it applicable to a wide range of unmanned vehicles
requiring optimized routing for specific tasks.

Our contributions can be summarized as follows:

• We introduced an effective interpolation technique utilizing partial convolution with
a suitable loss function.

• The proposed attention-based CNN classifier not only achieves outstanding classifica-
tion performance but also features a lightweight learning model.

• We presented a framework for the validation and assessment of UAV trajectories,
integrating a hybrid model selection approach.

The remainder of this paper is organized as follows. We introduce related work in
Section 2. In Section 3, we provide a detailed explanation about our visualization system,
deep interpolation model, and attention mechanism. Section 4 evaluates the performance
of the proposed framework. Finally, Section 5 concludes this paper.

2. Related Work

Since we aim to complement and classify incomplete flight sensor data obtained from
UAV sensors for a more accurate trajectory cognition, we present efforts to enhance the
accuracy of flight pattern recognition or coverage path planning, such as attempts to apply
DNN methods, classification approaches, and filtering algorithms for image interpolation
used in our proposed method.

Ü. Çelik et al. applied two-dimensional manifold learning to obtain individual flight
patterns from UAV sensor data to classify flight fingerprinting [24]. B. Wang et al. proposed
a solution distinguishing four flight modes—ascent, descent, horizontal flight, and rotation—
using a hybrid approach of UAV flight mode recognition and Gaussian Process-Unscented
filter [25]. Several studies delved deep into flight trajectory patterns. M. Aksoy et al. pro-
posed predicting flight categories using long short-term memory (LSTM) autoencoder for
flight trajectory patterns and generating trajectory samples through a generative adver-
sarial network (GAN) for flight trajectory generalization [26]. W. Dong et al. proposed an
interpolation technique using optimal curvature smoothing and trajectory generation [27].
G. Ramos et al. applied extended Kalman filter to enhance trajectory tracking precision for
UAVs in the maritime industry and attempted sensor fusion [28]. However, most of these
studies are limited by their focus on traditional aircraft trajectories, lacking specificity for
UAVs’ dynamic and diverse operational patterns. For instance, W. Zeng et al. used deep
autoencoder and Gaussian mixture model for aircraft trajectory clustering [29]. G. Vladimir
et al. classified Aeroballistic Flying Vehicle paths using artificial neural networks [30].
However, to address the huge demand in air traffic in the future, more specific aircraft
trajectory classification beyond standardized normal trajectory categories has recently
emerged. A. Mcfadyen et al. attempted aircraft trajectory clustering using a circular
statistic approach [31]. C. Gingrass et al. proposed classifying flight patterns into nine
categories using a deep sequential neural network from flight path data based on auto-
matic dependent surveillance broadcast (ADS-B) [32]. There have been similar attempts
targeting ships rather than aircraft; Q. Dong et al. introduced the Mathematical–Data
Integrated Prediction (MDIP) model for predicting ship maneuvers, blending mathemat-
ical forecasting using an extended Kalman filter with data-driven predictions via least
squares support vector machines, showcasing improved generalization in various maneu-
vering tests [33]. N. Wang et al. presented SeaBil, a deep-learning-based system using
a self-attention-weighted Bi-LSTM and Conv-1D network for ultrashort-term prediction
of ship maneuvering, demonstrating higher accuracy in predicting various ship motion
states compared to other methods [34]. These approaches, while effective for conventional
aircraft, do not adequately address the unique challenges presented by UAVs, particularly
in cluttered or unstructured environments.

On the other hand, the issue of limited sensor data sampling for distinguishing flight
trajectory categories leads to problems with padding or inpainting [35–38]. G. Liu et al.
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showed consistent effective performance of partial convolution binary masks in various
tasks related to inpainting and padding [39]. D. Xing et al. effectively applied partial
convolution for complementing missing geographic information of spatial data obscured
by clouds [40]. However, these methods often fail to address the severe data loss scenarios
typical in UAV operations, where data accuracy is paramount. Therefore, we attempt
interpolation for trajectories with high data loss to fully utilize the advantages of partial
convolution previously mentioned.

Attention mechanisms provide the model with the ability to selectively focus on the
parts of the input that are most relevant during the learning process in deep learning
architectures. Initially inspired by human cognitive attention, this mechanism has been
applied to a broad array of applications, from natural language processing to computer
vision [41]. In the realm of image analysis, attention mechanisms are typically explored
to enhance expressive power by amplifying the importance of different spatial regions or
feature channels [42].

The evolution of attention mechanisms in the field of deep learning aims to improve
model interpretability and performance. Universal early forms of attention mechanisms
are designed to enhance the performance of neural networks for tasks such as machine
translation by focusing on relevant segments of the input sequence [43]. This concept
expanded into the spatial domain of computer vision, evolving into sophisticated forms
like the squeeze-and-excitation network (SE) and the convolutional block attention module
(CBAM), which combine spatial and channel-specific attention [44,45]. Additionally, the
advent of vision transformers (ViT) marked a significant shift in attention-based models.
ViT applies the self-attention mechanism, originally successful in natural language pro-
cessing, to computer vision. It segments images into patches, processes them as sequences,
and learns by focusing on interactions between arbitrary image parts. Separated from
traditional attention mechanisms, this approach replaces the CNN structure as a whole
with transformers to handle the embedding sequence [46]. Models like CBAM and ViT
have shown high performance in various fields through extensive experimentation and
validation [47]. However, conventional models have not been studied for data representing
UAV trajectory and movements and are not ideal for capturing subtle differences between
static and dynamic elements within such images. We therefore emphasize the need for
specialized attention mechanisms for UAV trajectories. To bridge this gap, our study
introduces the Spatial Trajectory Enhanced Attention Mechanism (STEAM), specifically
designed for UAV trajectory analysis. This approach addresses the shortcomings of existing
models in handling the unique challenges of UAV flight pattern data.

The section that follows presents new solutions that provide an efficient and highly
analytical UAV trajectory analysis model and compares performance with existing methods
through experiments.

3. System Design

In this paper, we propose an integrated UAV maneuver detection system that visual-
izes and interpolates the UAV’s trajectory calculated from UWB sensor data and detects the
UAV’s flight pattern using an attention mechanism. Our approach is structured to ensure
the high accuracy and reliability of UAV flight pattern detection, which is paramount for
the successful execution of UAV missions in complex environments. Our ultimate goal
is to accurately detect the flight pattern of a UAV, and, for this, the quality of input data
and the performance of the trained classification model are critically important. Figure 1
shows the process of the proposed overall system, which comprises three main stages:
preprocessing, image-based interpolation, and UAV flight pattern detection using STEAM.
First, a preprocessing stage generates a UAV trajectory based on data collected from UWB
sensors and converts numerical data into images. This stage converts the numerical data
into images, forming the foundation for subsequent analysis. The effectiveness of our
system starts here, ensuring that the raw data are accurately transformed into a format
suitable for deep learning applications.
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Figure 1. This is the proposed interpolation scheme using DNN.

Second, an image-based interpolation stage performs interpolation of severe missing
trajectory images with DNN. This approach effectively mitigates issues related to data
quality degradation from external factors, like noise and data omissions. By using image
data for interpolation rather than numerical data, we enhance both the data quality and the
performance of the UAV abnormal maneuver detection model.

Third is a STEAM stage that detects UAV flight patterns using a DNN classification
model with an attention mechanism. STEAM uses a maximum-pooling-based attention
strategy to precisely highlight key trajectory features, reducing model complexity and
improving interpretability. Our experiments validate that STEAM surpasses traditional
convolutional models in accuracy, particularly in UAV trajectory classification, and does
so with less computational demand. In this section, we list the core technologies of the
proposed system according to the process flow and provide specific explanations of how
each technology is applied.

3.1. Data Visualization

In the proposed system, the UWB technology plays an important role in recognizing
the trajectory by accurately determining the location of the UAV. The 2D localization system,
which utilizes UWB sensors, comprises at least three anchors and one tag. Anchors are
fixed in known locations, and tags are attached to UAVs. The localization process initiates
with the TWR (Two-Way Ranging) protocol, marked by the exchange of signals between the
anchor and the tag. The TWR protocol consists of multi-message exchange, starting with
the sending of a poll message from the tag to the anchor. After that, a response message
is transmitted from the anchor, and, finally, a final message is transmitted from the tag to
the anchor. The time interval between the transmission and reception of these messages
is accurately measured, and it is used with the speed of light to accurately measure the
distance between the tag and the anchor. This process is depicted in Figure 2. The following
is an equation for calculating the distance between one anchor and one tag using Time of
Flight (ToF) and the speed of light.

Ttof =
tround1 × tround2 − treply1 × treply2

tround1 + tround2 + treply1 + treply2
,

d = c× Ttof.
(1)

In the provided formula, the calculation of distance d between two devices uses Time
of Flight (ToF), denoted as Ttof. ToF represents the time taken by a signal to travel from the
sender to the receiver and back. This time is crucial for determining the distance between
devices using the speed of light c. The formula involves four key time measurements:

• tround1: Time for the signal to travel from tag to anchor and back to tag.
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• tround2: Time for the signal to travel from anchor to tag and back to anchor.
• treply1: Time taken by anchor to process and reply to the signal from tag.
• treply2: Time taken by tag to process and reply to the signal from device anchor.

Figure 2. Two-way ranging with time-of-flight calculation diagram.

The product and sum of these times are used in the formula to calculate the ToF, which
is then multiplied by the speed of light c to find the distance d between the devices. In
the system described, each anchor transmits distance data to the server using the TWR
protocol. The server then estimates the exact location of the tag by employing a trilateration
formula. The formula is as follows:

(x− xa)
2 + (y− ya)

2 = d2
a,

(x− xb)
2 + (y− yb)

2 = d2
b,

(x− xc)
2 + (y− yc)

2 = d2
c ,

(2)

where x and y represent the target position coordinates. The coordinates of the three
anchors are denoted as (xa, ya), (xb, yb), and (xc, yc), and da, db, and dc are the distances
from each respective anchor to the target. By combining these expressions, we derive the
following equations:

A = −2xa + 2xb, B = −2ya + 2yb, C = d2
a − d2

b,

D = −2xb + 2xc, E = −2yb + 2yc, F = d2
b − d2

c ,

Ax + By = C, Dx + Ey = F.

(3)

Solving these equations for x and y yields

x =
CE− BF
AE− BD

, y =
AF− CD
AE− BD

. (4)

Therefore, with known anchor coordinates and distances, the unknown coordinates x
and y can be accurately determined.

The location data of the UAV obtained from the UWB sensors is essential in construct-
ing the UAV trajectory. However, since the data are time series data, additional processing
is required to effectively track the trajectory. In the proposed system, location data are
smoothed through a Kalman filter to reduce noise and improve the quality of the data.
After that, the data are converted into an image and processed so that the trajectory can be
effectively checked.

Widely used to minimize uncertainty, a Kalman filter analyzes data by recursively
estimating the current state of the system based on measurement data mixed with noise.
Therefore, by applying the Kalman filter to the location data estimated from the previous
process, the effect of smoothing the data is obtained by reducing the noise of the data. This
reduces the volatility of the location data, thereby obtaining a more accurate trajectory. This
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process of data smoothing is based on a mathematical model of the Kalman filter, which
describes the dynamic behavior of the system and takes into account measurement noise
and process noise. Kalman filters are defined as follows:

x̂k|k−1 = Ax̂k−1|k−1 + Buk,
Pk|k−1 = APk−1|k−1 AT + Q,
Kk = Pk|k−1HT(HPk|k−1HT + R)−1,
x̂k|k = x̂k|k−1 + Kk(zk − Hx̂k|k−1),
Pk|k = (I − Kk H)Pk|k−1.

(5)

In the first equation, x̂k|k−1 represents the predicted state vector at time k based on
information available up to time k− 1. Matrix A is the state transition model that is applied
to the previous state x̂k−1|k−1, while B is the control input model that operates on the control
vector uk. The second equation predicts the covariance of the predicted state, where Pk|k−1
is the estimate of the covariance of the state vector at time k. Matrix Q is the process noise
covariance matrix, reflecting the uncertainty in the model. The third equation calculates
Kalman gain Kk, which weighs the importance of the measurements versus the current state
estimate. Here, H is the observation model that maps the true state space into the observed
space. R is the measurement noise covariance matrix, quantifying the uncertainty in sensor
measurements. Through the next equation, the state estimate is updated by incorporating
the new measurement zk. The term zk − Hx̂k|k−1 represents the measurement residual, or
the difference between the actual measurement and what the model predicted. Finally, the
estimate of the covariance of the state vector is updated through the last equation. This
step reflects the reduction in uncertainty as a result of the measurement update. In our
application, matrices Q and R are empirically set to 0.0001 and 0.1, respectively. These
values are chosen to balance the model’s sensitivity to the process noise and measurement
noise. Through the iterative application of these equations, the Kalman filter provides
refined estimates of the system state xk, continually updating the state and measurement
covariance matrices Pk and Pk−1. This results in a more accurate and less volatile trajectory
estimation for the UAVs, even in the presence of noisy and uncertain measurements.

It converts the location data that have been applied to the Kalman filter into an image,
making it possible to effectively check the trajectory of the UAV. This process corresponds
to each location dataset as a pixel value between 0 and 255 to generate an image having a
size of 159× 158 pixels. By going through this process, it is possible to effectively check the
UAV’s trajectory, which was difficult to confirm with numerical data, and make the CNN
model’s learning process more efficient and accurate, contributing to the improvement in
UAV trajectory classification performance.

3.2. Deep Interpolation Model

This section delves into the process of enhancing the DNN model’s accuracy by
refining the quality of the input dataset. This work includes the process of gathering UWB
sensor data collected from edge devices to a central server, calculating the location data for
each UAV from the central server, and visualizing the movement flight path. However, this
process makes it difficult to collect data reliably for environmental reasons, and, in some
cases, it can cause a large amount of missing values. This can ultimately lead to a decrease
in the performance of the classification model. To solve this, we propose an advanced
technique to interpolate these missing values.

The Kalman filter stands out as a prominent interpolation technique, but its restoration
capabilities are constrained by the extent of missing location data. Figure 3 shows the
performance of the Kalman filter that varies depending on the missing rate of the location
data that make up the trajectory. The trajectory depicted in Figure 3 is derived using the
method outlined in Section 3.1. For this purpose, a Raspberry Pi equipped with a UWB
sensor was utilized to simulate a UAV flying with the same sensor. When the distribution
density of the original location data is high or the missing data are more than 50% of
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the original datasets, the restored trajectory gradually loses the original meaning. These
distorted datasets can result in completely different predicted values from the classification
model, which can have a negative impact on our research to precisely monitor flight
patterns and detect anomalies.

(a) Triangle (b) Original S

(c) Mirror C (d) Mirror S
Figure 3. This is the Kalman filter’s prediction for more than 30% missing trajectory.

We propose a new interpolation methodology that can respond to complex and diverse
interpolation problems with consistent performance and without distortion of the original
data. Our proposal enables complex and sophisticated calculations through DNN, and
operates so that the restored data are very similar to the original data even if serious
data loss occurs. Figure 1 emphasizes the architecture of the proposed interpolation
methodology with a red square. First, our suggestion performs interpolation for missing
values based on images rather than numerical data. This image refers to data expressed
in the form of an image by visualizing the trajectory composed of the location data of the
UAVs calculated from the UWB sensor data covered in Section 3.1. Interpolation is not
performed for all images, and the first criterion for judging interpolation for a single image
is expressed as follows:

N =
ntotal − n

ntotal
, (6)

where ntotal denotes the total number of location data before data are lost, and n denotes
the total number of location data after data are lost. The missing rate N is expressed as
the number of missing coordinates divided by the total number of location data. For more
precise control, we calculate the scaling constant M and it is expressed as

ntotal = µt, (7)

M = log(µ), (8)

where µ denotes the number of UWB sensor data transmitted per second from the anchor
to the server and M refers to the value expressed in the logarithmic scale of lambda. Even
if the N is the same, when the location coordinate generation rate is high, the degree of loss
can be considered more serious because the amount of lost data is greater. For this reason,
we define the interpolation value K as follows:

K = N ∗M. (9)

Our proposal is designed to perform interpolation only if the value of K is greater
than the specified interpolation threshold Kth. This is to reduce resource allocation and
computing load resulting from unnecessary interpolation because deep neural networks for
image processing require computationally intensive operations. In summary, we determine
the necessity for interpolation through Equation (9) for each of the visualized trajectories
and apply the DNN model described next only to cases where interpolation is necessary.
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We use a DNN model that shows excellent performance in the problem of filling empty
spaces called a hole in the image as an interpolation method. Our proposal begins with the
idea that, when arranging the location data calculated based on the information collected
from the UWB sensor in chronological order, missing values, which may occur for various
reasons, are ultimately represented as holes in the images derived during the trajectory
visualization process, and we can use an appropriate DNN to fill these holes through a
rational process based on surrounding information. We can generally use convolution
for image processing, but we consider a few more considerations. Since our data are not
a continuous image, we do not have enough information to describe the context, and
basically we need as much information as possible around the damaged pixels to fill the
holes in the image, but our image sets do not have enough information to describe the UWB
trajectory. It contains very little information and the information available is limited. For
this reason, the use of standard convolutions can cause various artifacts such as blurriness
and color discrepancy in the results. However, through research, we determined that
partial convolutions, an advanced technique for image inpainting, would have excellent
performance in our case, and the application results are shown in Figure 4.

The trajectory shown in Figure 4 is derived from simulation data, which include
the coordinates of the UAV’s location, following the methodology outlined in Section 3.1.
Figure 4c shows that interpolation close to the original image is achieved even though the
loss rate is almost 70–80%, and, when compared to the results using the Kalman filter in
Figure 3, interpolation using partial convolutions shows better performance.

The base network of the interpolation neural network we consider has a U-net-based
architecture, as shown in Figure 5, which can be seen as the most general network structure
for image inpainting. The main difference in our network from a traditional U-net lies in
the adoption of partial convolution across all layers instead of standard convolution. Partial
convolution operates with a mechanism that gradually fills in holes within the original
image by referencing a mask containing information about these holes [48]. As the input
image traverses successive partial convolutional layers structured in a U-net architecture,
the vacant areas progressively become filled starting from the periphery, and the value
of each hole is computed based on surrounding pixel information. The first layer of our
network receives as input a visualized UWB trajectory and a mask that covers the holes due
to missing values and part of the surrounding area. After this, when performing partial
convolution while sliding, convolution is applied only to the masked features of the image,
and the renormalized image is passed as the input image of the next layer. At the same
time, the effective region of the inpainted mask is updated and this is also passed on to the
next layer. Afterwards, as it goes through stacked partial convolution layers, the previous
operations are repeated identically, and, as a result, holes in the image corresponding to
missing values are gradually filled. Our loss function is expressed as follows:

Ltotal = Lvalid + 10Lhole + 0.05Lperceptual + 60(Lstyleout + Lstylecomp) + 0.8Ltv. (10)

Due to the nature of the data, it was necessary to focus on hole restoration accuracy
and hole boundary information, and the weights of related loss terms were set through
empirical search.
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(a) Zigzag (b) Winding

(c) Square (d) Circle

(e) Rhombus (f) Triangle

(g) Sharp Curve (h) Curve

Figure 4. These are the results of image-based DNN interpolation.

Figure 5. This is the network structure of the proposed interpolation methodology.

3.3. Attention Mechanism

Attention mechanisms enhance the performance of neural network models by focusing
on the features of important data during the learning process. The STEAM for trajectory
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patterns such as UAV surveillance integrates an approach that effectively captures both the
features of trajectories and contextual backgrounds and then dynamically weights them to
perform spatial attention mapping.

The STEAM process can be expressed as follows:

T = ftrajectory(X), (11)

C = fcontext(X), (12)

F = concatenate(T, C), (13)

D = fdynamic(F), (14)

A = fspatial(D), (15)

X′ = X⊙ A. (16)

where X is the input feature map, T and C are, respectively, trajectory and context features
extracted using convolutional layers, F is their combination, D represents dynamically
weighted features, A is the attention map using convolutional layer, and X′ is the final
attended feature map.

As shown in Equations (11) and (12), two separate convolutional layers are used
to extract detailed features of the trajectory and to capture the surrounding context. We
then dynamically weigh them to produce a balanced representation of both trajectory and
context, as shown in Equation (14). Finally, we generate a spatial attention map through the
convolutional layer that highlights the areas of the images most relevant to understanding
the trajectory of UAVs, as shown in Equation (15). As a result, the attached feature map
generated by Equation (16) allows the model to focus on the most important aspects of the
trajectory, improving the interpretability and performance of the neural network model for
the trajectory pattern.

Methods such as SE and CBAM focus on channel relationships or provide sequential
spatial and channel-specific attention. These are methods of focusing throughout the
channel level or emphasizing important spatial areas in the feature map. In contrast,
STEAM specifically targets dual aspects: it not only emphasizes the trajectory features of
UAV movements but also pays particular attention to the contextual backgrounds. This
dual focus is crucial, especially in cases where UAV trajectories are overlaid onto diverse
or complex backgrounds. Unlike CBAM, which applies channel and spatial attention in
a sequential manner and focuses on either trajectory or contextual information at a time,
STEAM employs a more integrated approach. It simultaneously processes both trajectory
and contextual information, ensuring a more comprehensive analysis of UAV trajectory
images. This distinction allows STEAM to effectively handle the nuances and complexities
inherent in UAV surveillance imagery, where both the path of the UAV and its interaction
with the surrounding environment are critical for accurate interpretation.

Existing methods can be widely applied to many architectures for various image
analysis tasks. On the other hand, visible trajectories or movement patterns may be
insufficient to effectively capture subtle nuances. Although there are research results
such as transformer-based ViT in terms of performance, it is unclear whether it will be
appropriate for detecting UAV trajectories that require a real-time agile response in that
prior learning is required. We demonstrate how STEAM operates, as shown in Algorithm 1,
and how suitable STEAM is for UAV trajectories compared to conventional methods by
performance evaluation in the following sections.
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Algorithm 1 Spatial Trajectory Enhanced Attention Mechanism (STEAM)
Input: Input feature map X
Output: Attended feature map X′

Initialize: Trajectory Convolutional Layer: Conv2Dtrajectory; Context Convolutional Layer:
Conv2Dcontext; Dynamic Weights Layer: Densedynamic; Spatial Attention Convolutional
Layer: Conv2Dspatial;

for each training iteration do
T ← Conv2Dtrajectory(X); /* Extract Trajectory Features */
C ← Conv2Dcontext(X); /* Extract Contextual Background Features */
F ← concatenate(T, C); /* Concatenate Trajectory and Context Features */
D ← Densedynamic(F); /* Compute Dynamically Weighted Features */
A← Conv2Dspatial(D); /* Generate Spatial Attention Map */
X′ ← X⊙ A /* Apply Spatial Attention to the Input Feature Map */

end
return X′

4. Evaluation
4.1. Experiment Setup

In this section, we evaluate our proposed method using several metrics to observe the
benefits of each technique in detail and to measure the overall performance of the model. All
evaluations are conducted using data from a simulation, which are based on measurements
from Qorvo’s DWM1000 UWB sensor rather than in real time. In this simulation, virtual
UAVs were programmed to move along a trajectory, replicating the behavior of actual UAVs
equipped with UWB sensors. This approach is chosen to accurately assess the performance
of our proposals, eliminating performance degradation due to external factors and focusing
specifically on flight trajectory prediction performance.

4.2. Performance Evaluation of STEAM

As described in Section 3, we demonstrate through experiments how suitable STEAM
is for UAV trajectory data compared to conventional methods. To represent the performance
of STEAM only, we implement a simple neural network model using STEAM as shown
in Figure 6c. Then, we represent the utility of STEAM using CNN models that are the
same as Figure 6c but without STEAM as a comparator. In addition, for the comparison
group, the model with CBAM applied as shown in Figure 6a is implemented under similar
conditions, and the ViT model is implemented as shown in Figure 6b. Since CBAM is a
performance-like model with SE, comparison with SE is omitted [49].

We quantitatively evaluate the performance for each model shown as Table 1, and
each metric is as follows [50]:

• Loss: This metric represents the error between the predicted and actual values of the
data set. A smaller loss value means that the prediction value of the model is closer to
the actual data.

• Accuracy: Accuracy measures the percentage of correct predictions made by the model
among all predictions. High accuracy means that the model can correctly identify or
classify data points.

• Precision: Precision evaluates the model’s ability to accurately identify only the data
points involved. High precision indicates that the model is likely to be accurate when
predicting a class or outcome.

• Recall: Recall, also known as sensitivity, is the percentage at which the model predicted
the correct answer among those that are actually correct. We propose that it can be
an important indicator when it should not be mispredicted in practice such as UAV
identification.
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(a) (b) (c)
Figure 6. Performance evaluation of STEAM by comparing various attention mechanisms on UAV
trajectory images. (a) Structure of CBAM model; (b) structure of ViT model; (c) structure of our
STEAM model.

Table 1. Comparison of model performances on UAV trajectory data.

Model Loss Accuracy Precision Recall

Training Performance

CNN 1.7753 0.3125 1.0000 0.0417
CBAM [44] 0.0568 0.9924 1.0000 1.0000

STEAM 0.1698 0.9792 1.0000 0.9375
ViT [46] 2.7292 0.0303 0.0000 0.0000

Validation Performance

CNN 1.5938 0.5052 1.0000 0.0625
CBAM [44] 0.1941 0.8333 0.9886 0.9010

STEAM 0.1890 0.9688 0.9831 0.9115
ViT [46] 2.5221 0.0833 0.0000 0.0000

Figure 7 displays the overall results for both test and verification data. To evaluate the
performance of our study on limited UAV identification data, we trained the model using
only 50% of the entire dataset and devoted the remaining 50% to validation.

Experimental results highlight the effectiveness of STEAM in processing UAV trajec-
tory data. STEAM achieved a remarkable accuracy of 97.92% and an impressive validation
accuracy of 96.88% during training. Specifically, STEAM achieved a low loss of 0.1698, indi-
cating its effectiveness in closely predicting the true values [51]. At the initial epoch, STEAM’s
validation accuracy began at a modest rate, aligning closely with the training accuracy, which
suggests consistency in model learning. As the epochs progressed, a steady increase in vali-
dation accuracy was observed, indicating the model’s improving ability to generalize. This
demonstrates that STEAM has emphasized its ability to successfully capture most of the
relevant functions in the data and identify them well in the invisible data.
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(a) Results of CNN without STEAM. (b) Results of CBAM.

(c) Results of ViT. (d) Results of STEAM.

Figure 7. Results of model learning and validation evaluation on UAV trajectories.

In comparison, CNN models without STEAM layers exhibited a fluctuating perfor-
mance, with a training accuracy starting at around 31% and a validation accuracy at
approximately 50%. This fluctuation was particularly noticeable between epochs 2 and 4,
where a divergence between training and validation accuracy indicated potential overfit-
ting to the training data. Another attention mechanism, CBAM, showed excellent training
performance with 99.24% accuracy. However, the validation accuracy drops to 83.33% after
Epoch 6, indicating that CBAM is effective for training but may not identify as effectively
as STEAM in invisible data. Conversely, the ViT model performed much lower with an
accuracy of 3.03% throughout the epochs. This may be due to the complexity of the ViT
model and the possibility that the UAV trajectory data lacked sufficient context variability
for effective learning in this model. In addition, the unique requirements of transformer-
based models for pretraining on large datasets indicate that ViT is not suitable for real-time
applications of UAV trajectory analysis.

In summary, these results shown as Table 1 indicate that STEAM is a very suitable and
effective choice for UAV trajectory analysis, especially in scenarios that require real-time
processing and robust generalization capabilities for new data. Furthermore, STEAM’s
precision of 100% and recall of 93.75% during training, along with a precision of 98.31%
and recall of 91.15% in validation, highlight its proficiency in correctly identifying relevant
trajectory data while minimizing false positives and negatives. These metrics collectively
underscore STEAM’s effectiveness in providing reliable and accurate analysis of UAV
trajectories, making it an excellent tool for applications requiring precise and dependable
trajectory analysis.

The excellence of STEAM in both training and verification phases highlights its po-
tential as a reliable tool for UAV trajectory analysis in a variety of real-world applications.
These model performance comparisons describe the underlying functions that contribute to
the results, such as STEAM’s robust attention mechanisms and generalization capabilities,
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which are pivotal to outstanding performance. Custom attention strategies for trajectory
identification of STEAM, focusing on the most prominent trajectory functions, suggest the
need for UAV pathways critical for real-time and reliable trajectory analysis in various
operational contexts.

4.3. Interpolation Performance Comparison

Our proposed methodology supports advanced technology that takes the domain
of data collected from UWB from numerical values to images and fills in the holes using
DNN. In Section 3.2, although the excellence of the Kalman filter in the numerical domain
is recognized, we confirmed that data distortion occurs when the degree of missingness is
severe. On the contrary, we also confirmed that our proposed methodology using DNN
ensures stable interpolation performance in the image domain. This section lists specific
quantitative evaluations of these facts discussed earlier and describes the analysis based
on the results. Through this, we verify the excellence and feasibility of the proposed
methodology.

First, we evaluate the similarity of images derived through the proposed methodology.
The dataset used for evaluation is categorized into 12 labels and consists of a total of 240 im-
ages, 20 for each label. Each label represents a unique UWB trajectory, and approximately
50% missing rates are applied to all images for evaluation. Based on this dataset, we derive
the results of applying our proposed methodology and Kalman filter to a single image and
measure the similarity between them and the original image using various metrics. Table 2
shows the measurement results.

Table 2. Image similarity results for trajectory interpolation.

1 2 3 4 5 6 7 8 9 10 11 12

Horizon Left
Down Left Up Mirror

C
Mirror

S
Original

C
Original

S
Right
Down

Right
Up Square Triangle Vertical

RMSE
(Pro-

posed)
0.0022 0.0034 0.0029 0.0041 0.0042 0.0035 0.0047 0.0037 0.0028 0.0047 0.0035 0.0023

RMSE
(Kalman

filter)
0.0138 0.0152 0.0157 0.0163 0.0176 0.0167 0.0180 0.0155 0.0151 0.0177 0.0176 0.0121

PSNR
(Pro-

posed)
53.57 49.57 51.28 47.91 47.85 49.16 46.74 48.98 51.58 47.00 49.48 52.92

PSNR
(Kalman

filter)
37.46 36.40 36.09 35.79 35.08 35.54 34.92 36.22 36.47 35.05 35.12 38.63

SSIM
(Pro-

posed)
0.9963 0.9925 0.9947 0.9903 0.9893 0.9921 0.9872 0.9915 0.9950 0.9870 0.9918 0.9963

SSIM
(Kalman

filter)
0.9296 0.9191 0.9135 0.9077 0.8915 0.9025 0.8871 0.9159 0.9196 0.8893 0.8921 0.9419

FSIM
(Pro-

posed)
0.7592 0.7330 0.7357 0.7061 0.7124 0.7245 0.7002 0.7145 0.7573 0.7048 0.7260 0.7717

FSIM
(Kalman

filter)
0.3748 0.3230 0.2952 0.2907 0.2678 0.2749 0.2726 0.2971 0.3267 0.2999 0.2853 0.4483

SRE
(Pro-

posed)
62.63 60.52 61.37 59.61 59.48 60.22 58.90 60.22 61.52 58.97 60.27 62.30

SRE
(Kalman

filter)
52.49 51.86 51.69 51.47 51.02 51.33 50.92 51.76 51.89 50.92 51.02 53.07

In the table, a row represents the average value of a single label for various metrics and
columns represent Root Mean Squared Error (RMSE), Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), Feature-based Similarity Index (FSIM), and
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Signal to Reconstruction Error Ratio (SRE) between the predicted image and the original
image for each interpolation technique. The description of each metric is listed as follows:

• RMSE is an indicator that measures the difference between the value predicted by the
model and the actual value. This method squares the prediction error, calculates the
average, and then takes its square root. The smaller the value, the closer the model’s
prediction is to the actual value. It is often used in regression analysis to evaluate the
prediction accuracy of a model.

• PSNR is an indicator used to measure the quality of signals, such as video or voice.
It is mainly used to evaluate the quality of image or video compression algorithms,
and, the higher the PSNR value, the lower the distortion between the original and
compressed signal. The higher the value, the higher the quality.

• SSIM measures the structural similarity between images and evaluates the similarity
between the original image and the image being compared. It then quantifies image
quality by considering brightness, contrast, and structural information. A high SSIM
value indicates that the two images are structurally similar and of high quality, with
values closer to 1 generally indicating higher quality.

• FSIM measures similarity by considering the features of the image and is based on
features and structural information in the frequency domain. FSIM is used to measure
the information loss in an image and evaluate its similarity to the original image, with
higher values meaning higher quality and closer to the original image.

• SRE represents the ratio of a signal to the error that occurs in the process of reconstruct-
ing that signal. It is primarily used to evaluate how accurately a system reconstructs a
signal through comparison between the original signal and the reconstructed signal.
A higher SRE value means lower reconstruction error and higher accuracy.

According to the table results, our proposed methodology shows superior performance
compared to Kalman filter for all metrics. The results from our proposed methodology
have RMSE values close to 0 for all labels, which means that the images are numerically
close to the original data. Moreover, they have an SSIM value close to 1, which means that
they are structurally similar to the original data.

4.4. Evaluation of System Performance

This section assesses the overall performance of our proposed system. It is hypothe-
sized that defects may occur in the process of collecting UAV location data due to external
environmental factors and network conditions. To address this, some images from each
label were intentionally removed. These images were then recovered through interpolation
and classified using the STEAM model. The dataset employed for this evaluation is divided
into 12 labels, comprising a total of 240 images, with 20 images per label. For 30% of the
images, 30% of their content was removed, 20% had 50% removed, 10% had 70% removed,
and the remaining 40% were left intact.

Table 3 displays the classification results using the STEAM model, including precision,
recall, and F1-score for each label. These metrics demonstrate the system’s effectiveness in
classifying UAV trajectory, even with partial missing data.
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Table 3. Experimental results of classification utilizing proposed system.

Class Precision Recall F1-Score

hor 1.00 1.00 1.00

ld 1.00 1.00 1.00

lu 1.00 1.00 1.00

mc 0.91 1.00 0.95

ms 0.95 1.00 0.98

oc 1.00 1.00 1.00

os 1.00 1.00 1.00

rd 1.00 0.90 0.95

ru 0.95 0.90 0.92

squ 1.00 0.90 0.95

tri 0.91 1.00 0.95

ver 1.00 1.00 1.00

The subsequent Table 4 details the accuracy of STEAM classifiers for each label relative
to the extent of data omission.

Table 4. Accuracy of classification of each label separated as data missing rate.

Class Data Missing Data Missing Data Missing Data Missing
Rate (0) Rate (30) Rate (50) Rate (70)

hor 100 100 100 100

ld 100 100 100 100

lu 100 100 100 100

mc 100 100 100 100

ms 100 100 100 100

oc 100 100 100 100

os 100 100 100 100

rd 87.5 100 75 100

ru 87.5 100 100 50

squ 100 100 75 50

tri 100 100 100 100

ver 100 100 100 100

While Table 4 indicates a decrease in accuracy for certain labels with increased
missing data, the system demonstrated high accuracy for most labels, underscoring
its resilience in effectively classifying UAV trajectory, even in scenarios with significant
data gaps.

5. Conclusions

Our proposed framework, integrating a distance-based UWB positioning system and
advanced image processing technologies, provides a comprehensive solution for accurate
UAV trajectory tracking. The limitations faced by conventional GPS methods in complex
environments and the difficulty of visual observation under various conditions require
innovative approaches for UAV maneuver detection.

Therefore, we propose a new solution that utilizes UWB technology to accurately track
and classify UAV trajectories in real time, even in complex environments. It also improves
the reliability of abnormal maneuvering detection approaches by addressing data quality
problems caused by external disturbances through image-based data interpolation. More-
over, the introduction of STEAM, a novel attention mechanism specifically designed for
UAV trajectories, is a key innovation in our framework. It efficiently highlights important
trajectory features with high precision and less complexity, outperforming existing models
on classification tasks.
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Our framework’s experimental results underscore its effectiveness in UAV trajectory
tracking, demonstrating robust performance independent of raw data quality. Moreover,
the framework’s validation using a lightweight learning model emphasizes its computa-
tional efficiency while maintaining exceptional classification accuracy.

We have several research plans for future work. First, we aim to explore the integra-
tion of supplementary data sources, such as infrared or LiDAR sensors, to enhance the
comprehensive understanding of UAV trajectories, especially in challenging environments
or adverse weather conditions. Second, evaluating the scalability and generalization ca-
pabilities of the proposed framework across diverse UAV platforms, mission types, and
operational contexts will provide valuable insights into its broader applicability and per-
formance under varied scenarios. Lastly, leveraging trajectory data from multiple UAVs,
we intend to construct a framework capable of gaining extensive insights into complex
flight trajectories formed by clusters of drones, offering a nuanced understanding of collab-
orative aerial maneuvers. By pursuing these future research directions, we aim to further
advance the effectiveness and versatility of the proposed framework, addressing emerging
challenges and extending its practical utility in diverse real-world scenarios.
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