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Abstract: Increasingly often, due to the high sensitivity level of diagnostic systems, they are also
sensitive to the occurrence of a significant number of false alarms. In particular, in structural health
monitoring (SHM), the problem of optimal sensor placement (OSP) is appearing due to the need
to reach a balance between performance and cost of the diagnostic system. The applied approach
of considering nondominated solutions allows for adaption of the system parameters to the user’s
expectations, treating this optimization problem as multi-objective. For this purpose, the NSGA-II
algorithm was selected for the determination of an optimal set of parameters in the OSP problem
for the detection of delamination in composite structures. The objectives comprise minimization
of type-I and type-II errors, and number of sensors to be placed. The advantage of the proposed
approach is that it is based on experimental data from the healthy structure, whereas all cases with
a presence of delamination were acquired from numerical experiments. This makes it possible to
develop a customized SHM system for the arbitrary location of damage.

Keywords: optimal sensor placement; structural health monitoring; multi-objective optimization;
delamination; NSGA-II algorithm; numerical experiment; type-I and type-II errors

1. Introduction

Structural health monitoring (SHM) became a paradigm in the operation of numerous
structures and transport means, especially in civil and mechanical engineering, due to the
ability to continuously evaluate structural conditions based on measured response and build-
ing prognostic models based on this. Currently, SHM is incorporated into the latest design
and operation concepts, such as condition-based maintenance (CBM), the philosophy used in
aviation, where maintenance is scheduled according to the current condition of the structure
only [1,2]. SHM is also an integral part of the newest solutions in civil engineering, such
as building information modelling (BIM) [3,4] and the concept of digital twins [5], where
it plays a crucial role in the acquisition and management, being the main source of data
for the evaluation of structural condition. Regardless of the advancement of the mentioned
concepts and approaches based on them, there are still unsolved problems influencing their
performance. One of these problems is an appropriate sensor placement that determines the
effectiveness of the condition evaluation of a tested structure. It is especially important in
the case of SHM systems based on modal analysis, one of the oldest and most widely used
approaches in both civil and mechanical engineering [6]. Recent studies of the authors [7,8]
demonstrated the need for the application of an advanced machine-learning approach for this
task to find a balance between the performance and cost of an SHM system.

There are a plenty of different optimal-sensor-placement (OSP) strategies for SHM. A
systematic review on different approaches can be found in [9–11]. From these optimization
strategies, one group is of sequential-based sensor placement strategies where subsequent
steps are based on sequentially eliminated sensor locations that contribute less to the objective
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functions [10,12] or otherwise by adding sensor locations that enhance the value of the
evaluation function [10,13]. Another group are simple or metaheuristic optimization strategies
such as greedy algorithms [14], and bioinspired e.g., evolutionary, ant colony, particle swarm,
or physically inspired e.g., simulated annealing algorithms [10]. Among the above meta
heuristics, evolutionary methods have become evident [10]. These algorithms can be easily
customized to the needs of the optimization problem because the objective function can be
independently constructed without the need for reconfiguration of the optimization routine,
similarly to other heuristic approaches. The objective functions can be built based on classical
objectives, e.g., Fisher information matrix (FIT), mutual information (MI), etc., [10] as well as
based on outcomes of the SHM system [9] which allows for building different optimization
strategies. Increasingly often, different cost functions are taken in order define objective
of SHM with an OSP problem. This requires defining of the multiterm weighted objective
function or the necessity to build an appropriate aggregation operator [7]. Because in OSP
various evaluation functions can be considered and for the SHM systems the performance and
costs are counterparts [9], the multi-objective optimization strategies have been recognized as
useful strategies. In [15], a decision-making multi-objective optimization based on a particle-
swarm algorithm was used. The authors have used a minimum dependency based on Modal
Assurance Criteria (MAC), minimum of redundancy based on similarity measure, and the
maximization of signal-quality strength as a multi-objective. The obtained Pareto front solution
was filtered using the decision-making membership faction to select a subset of obtained
solutions. Another study, shown in [16], was based on multi-objective genetic optimization
with the application of two objectives using modal shapes. One of the objective was used to
compare the modes of the structure amongst themselves, and the other was used to compare
the modes of the same structure in two different configurations. The authors also showed
comparison of the multi-objective approaches with a single-objective approach and sequential-
based sensor-placement strategies, indicating robustness of the sensor networks selected using
the multi-objective approach for damage detection of civil construction. Another case study
with multi-objective optimization of sensor placement on a composite rotor blade is presented
in [17]. The objective function is based on the minimalization of the sensor number and,
simultaneously, the minimalization of the error between the reconstructed real mode and
the mode based on the information from the candidate sensor networks. Another study [18],
presents multi-objective optimization with the combination of maximization of the nominal
performance that could be defined using the mean and maximum of MAC, the conditional
number, or the effective independence and minimalization of the data uncertainty.

Many of the above-mentioned multi-objective-optimization problems use different al-
gorithms; most of them are dominance-based methods based on popular NSGA-II [17–20].
This algorithm is often used as long as no more than three objectives are taken into ac-
count [21,22]. There are also decomposition-based methods which decompose multi-
objective problems into a set of single-objective problems. For instance, Downey et al. [23]
presented a bi-optimization objective function based on the accuracy of the strain-map
reconstruction based on the optimal-sensor-placement network. They used the concept
of minimalization of type-I and type-II errors of the SHM system assuming that these
errors can be reduced by minimizing the mean absolute error between the real system and
estimated strain map response and by minimalizing the maximum difference between them.
It should be noted that the use of multi-objective optimization is an important direction in
developing OSP strategies in SHM systems.

In this study, the SHM system is based on the classification-of-information system,
which allows to estimate the sensitivity and specificity of damage recognition. These
characteristic features, together with the number of used sensors, are taken as individual
objectives in the multi-objective optimization of sensor placement. The outcomes are
presented as Pareto solutions which, linked to design variables, allow the user to obtain
required performance and costs of an SHM system. This is an ongoing study within a
series of previously performed studies [7,8] with a general focus on development of a
customizable SHM system with a trade-off between performance and cost effectiveness.
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2. Tested Structure and Experiments
2.1. Parameters of the Tested Structure

The structure considered in this study to test the developed OSP approach is a carbon-
fiber-reinforced polymeric (CFRP) composite plate with the dimensions of 490 × 240 mm,
thickness of 1.84 mm, and the following stacking sequence: (0/90)5s (see Figure 1a). In the
study, the healthy plate was considered as a reference for building the numerical models
described in the next subsection. The detailed description of the manufacturing process
and material properties of this plate are presented in [7].
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Figure 1. The scheme of the tested CFRP plate (a), and the experimental setup (b).

The plate was fixed on the shorter side to the aluminum frame at a distance of 20 mm
from the edge using screws located with a distance of 50 mm on the clamped sides and a
tightening torque of 20 Nm. The plate was then subjected to mechanical excitation using
the Penton CAD10T/EN loudspeaker (Worthing, UK) using the periodic chirp signal in the
bandwidth of 0 ÷ 625 Hz with a resolution of 0.195 Hz (see Figure 1b).

The measurements of a structural response were performed on a defined grid of
25 × 13 equidistantly spaced measurement points using a Polytec® PSV-500-3D scanning
laser vibrometer (Waldbronn, Germany) with three averaging cycles to improve the accu-
racy of the measurements. During measurements, the vibration velocity in the defined
measurement points was acquired. Details on the experimental setup are provided in [7].
As a result of the performed measurements, the structural response of a plate was acquired
in the form of a frequency-response function (FRF). The natural frequencies determined
from the modal analysis are presented in Table 1.

Table 1. Natural frequencies of the tested plate.

Mode No. Frequency, Hz Vibration Velocity, 10−4 m/s

1 58.20 0.2
2 67.58 0.17
3 159.76 0.31
4 174.22 0.48
5 232.81 1.1
6 294.92 0.66
7 299.61 1.37
8 339.45 0.41
9 434.76 0.53
10 543.36 0.47
11 562.11 0.18

To determine the strain values in both directions for the tested plate, Sx and Sy,
respectively, the transverse displacements w were considered. Further, from transverse
displacements smoothed using the least squares linear regression, the strain fields were
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determined. Each smoothed value is determined using the adjacent data points. The strain
value maps were normalized in such a way that the largest value was assigned to a unit
and the remaining values were scaled relative to the maximum value. The deformation
values on the plate surface in appropriate directions are calculated using the following
formula:

Sx(i,j)=
(

∂2w
∂x2

)
(i,j)

· 1
2

h; Sy(i,j)=
(

∂2w
∂y2

)
(i,j)

· 1
2

h, (1)

where h is the thickness of the plate.

2.2. Numerical Experiments

Data for the intact plate were collected from the laboratory experiment. Additionally,
numerical experiments have been performed to collect data from various conditions of
structural damage. In order to develop a system for recognizing other health conditions (the
presence of delamination in this case), it was necessary to supplement the set of learning
examples with data coming from damaged conditions. For this purpose, it was decided
to supplement these data using an appropriately tuned numerical model. The model
was tuned based on data for the intact condition, and then, after an appropriate level of
compliance between the model and the experimental data was reached, the condition with
the presence of delamination was simulated. The model developed in this way made it
possible to obtain a set of learning examples covering damage conditions. The detailed
description of the definition of the numerical model and performing numerical simulations
as well as further processing of data was presented in the previous work [7].

The parameters and constraints of the model were assigned to be consistent with the
physical tested plate. Each layer of the composite plate is represented by a single element
throughout the thickness. Numerical modal analysis was used to determine the first seven
dominated eigenvalues and eigenvectors. To obtain the strain values, the absolute values of
the transverse displacements were normalized in descending order. The strain values were
calculated according to Formula (1). To obtain a denser mesh, the strain fields were smoothed
using regression analysis. An example comparison of experimental and numerical transverse
displacements shapes and adequate strain shapes is shown in Figure 2.
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3. Multi-Objective Optimization
3.1. OSP Problem

The primary goal of OSP is to localize the positions of the sensors in order to collect
relevant information about the analyzed structure. This information, together with the
available knowledge about the observed structure, allows for estimating its health condition
which is, in turn, one of the main objectives of an SHM system. Usually, the process of
determining sensor placement can be a part of the design of an SHM system [20]. This
is often preceded by the evaluation of the structural characteristic and dynamics of the
structure and also the selection of appropriate sensor types. The selection of the sensor
type and the evaluation of the dynamic characteristic of the composite plate was a part of
the research in [7], and is based on the application of strain gauges oriented horizontally
or vertically to monitor modal strain of the composite plates. Usually, the next step
comprises the necessity of sensor placement. This optimal placement strongly depends on
the objective function of the unconstrained or constrained optimization process. There are
many objective functions widely used for that purpose, e.g., a function based on Fisher
matrix indices [24,25], MAC [20,24], condition number [24], modal kinetic-energy-based
index [26], and many others, e.g., [9]. Most of them are mainly based on the assumption of
widely understood criteria of independency, which allow one to select these locations of
the sensors with the minimum redundancy of the captured data. In addition to that, from
the perspective of the effectiveness of the whole SHM system, including the OSP problem,
information on the health condition of the analyzed structure is the primary outcome of
any SHM system.

Taking the above into account, the spatial placement of the sensor network can be
based on the final evaluation of the SHM system, such as the effectiveness of a properly
recognized heath condition of the structure. This allows one to establish adequate input
to design parameters of the optimization process such as number of sensors, number of
analyzed modes, etc., and to link them directly to the final effectiveness of the SHM system
instead of using intermediate criteria such as statistical independency criteria, mutual
information criteria, and any others [20,24–26].

In this study, the minimalization of the type-I and type-II errors were taken separately
as the main criteria for the evaluation of the effectiveness of the SHM system [10,23,27]. The
minimalization of type-I error allows for increasing the specificity of the system leading to a
lower number of false alarms. The minimalization of the type-II error allows one to enhance
the sensitivity of the system in accurate detection of the health condition minimizing any
misses in the condition recognition. Keeping both of these criteria in balance requires a
trade-off and is crucial for designing SHM systems. For instance, too-high sensitivity may
lead to low specificity with a high number of false alarms, which may lead to information
overload of the human operator of the SHM system. On the other hand, maintaining
high specificity may lead to poor performance in the recognition of all faulty states of the
structure. In the paper [23], it was shown that both sensitivity and specificity are often
opposite counterparts in classification problems. Both types of errors are also naturally
opposite to the minimalization criteria of the number of sensors used. Usually more
relevantly selected and placed sensors lead to minimization of the type-I and type-II errors,
but are more costly and require more data to analyze.

In many cases, the designer of the SHM system can be interested in solutions with
enhanced sensitivity rather than false-alarm avoidance. In this case, a weighed objective
function in multi-objective optimization allows for analysis of a specific region of the Pareto
front, biasing the search towards a solution that optimizes weighed objective function. In
this study, for the purpose of not losing the wider diversity of Pareto front solutions, no
weights have been considered, leaving the designer to select results from the wider range
of possible solutions and its design parameters.
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Taking all of these multiple conflicting objectives into account, the multi-objective
optimal-sensor-placement problem can be defined as follows, where the objective functions
can be represented as

f1(x1, x2, x3) =
FP(x1, x2, x3)

TN(x1, x2, x3) + FP(x1, x2, x3)
, (2)

f2(x1, x2, x3) =
FN(x1, x2, x3)

TP(x1, x2, x3) + FN(x1, x2, x3)
, (3)

f3(x1) = nx(x1) + ny(x1), (4)

where, f1, f2, f3 are objective functions associated with the minimalization of type-I error,
type-II error, and the minimalization of the total sensor used, respectively. The vector of
x = [x1.x2, x3] is a vector of design variables, where x1 represents the total number of sensors,
x2 is number of used shape modes, and x3 indicates the required minimal distance between
the sensors measuring the strain displacements in the same direction, because the modal
modes, especially for the healthy condition, are symmetrical. The minimum required distance
allows for maintaining the spread of the sensors at the surface of the plate avoiding placing
them in the same quadrant. FP, TN, FN, and TP correspond to false-positive, true-negative,
false-negative, and true-positive cases, respectively [25]. Because the proposed SHM is a
classification-based information system, these parameters are evaluated using classification
statistics obtained using k-fold validation based on classification-error statistics [9,25]. The
nx, ny corresponds to the number of strain sensors used for measuring along the x and y
direction, respectively. Finally, multi-objective optimization is defined to minimize

F(x) = min([ f1, f2, f3]), (5)

subject to
3≤ x1 ≤ 10 ; 2≤ x2 ≤ 7 ; 120 ≤ x3 ≤ 200,

d
(
sxi(x, y), sxj(x, y)

)
≥ x3; d

(
syi(x, y), syj(x, y)

)
≥ x3; f or i ̸= j,

where sxi(x, y), syi(x, y) are the positions of the i-th and j-th strain gauges oriented hori-
zontally, sxi, and vertically, syi, at the coordinates (x, y), and d is the Euclidean distance
between the considered sensors. The range from 2 up to 10 sensors was used to maintain
the consistency of this paper with previous studies [7]. The lower limit of 2 sensors requires
the use of at least one sensor in every X or Y direction. The upper boundary has been
selected based on the limited number of channels in our measurement path presented
in [8]. The number of modes was also selected according to the number of modes used in
previous research [7]. The upper boundary of the number of modes was limited to seven
most-dominated modes in the frequency-response function; therefore, the 7th, 5th, 6th,
9th, 4th, 10th, and 8th mode from Table 1. were taken into account. The last mode from
this set, the 8th mode, has about 10% of the energy of the highest mode. Other modes in
the considered band rate have less than or equal to 5% of the energy in comparison to the
most dominated mode. The value of minimum required distance was established based
on the occurrence of the symmetric modes’ shapes of which the strain values are the same
(for the healthy condition of the plate) in four imaginary quadrants of the plate visible
in Figure 1a. To force the placing sensor in separate imaginary quadrants, this value of
120 mm was selected as the low boundary. A similar approach was used in the study [7].
On the other hand, the upper limit of the required distance between the sensors was also
limited to avoid considering unfeasible solutions where a large number of sensors with the
same orientation could not be placed in the limited plate size.
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To limit the number of possible solutions, it has been assumed that the position of the
sensors are assigned to the closest node of the virtually superimposed grid on the composite
plate, where nodes are vertically and horizontally spaced with the distance of 5 mm:

x, y ∈ N | xi − xj = 5k, yi − yj = 5m k, m ∈ N (6)

Due to the dimensions of the side clamps of the considered composite plate and the
size of strain gauges, the coordinate values are limited to the following limits: 20 ≤ x ≤ 470
and 5 ≤ y ≤ 235. The number of possible combinations of sensor placement, excluding
constraint of the required distance between sensors is still huge and comprises, e.g., for
three sensors 1.18 × 1010, candidate solutions.

The multi-objective approach allows one to obtain decision variables of an SHM sys-
tem to be independent of any weighed multi-objective function approach, which usually is
difficult to determine at the early stage of the designing process. For SHM design purposes,
the proposed multi-objective approach should return nondominated solutions using the
approximation of the Pareto front for the considered individual objectives. Nondominated
solutions obtained in this way give an opportunity for the designer to select appropriate
parameters of the SHM system, adjusting it to the appropriate sensitivity level of fault recog-
nition and at the same time keeping the appropriate level of false alarms and considering
the appropriate cost of the system with the number of sensors used.

3.2. General Optimization Procedure

To estimate individual objectives of F(x), the SHM effectiveness through the estimation
of classification performance statistics need to be completed. For this purpose, a classifier
should be prepared that takes information on the strain values for the given coordinates
according to the sensor’s network placement, and returns the information about the health
condition of the composite plate. Separately, to avoid using the coordinates of the location
of the sensors as design variables, the appropriate method of sensor placement was used
internally in this proposed optimization procedure. This allows one to take advantage of
the available knowledge on the effectiveness of the selected sensor-placement algorithm
used for the composite plate based on the results obtained in [7].

The general optimization procedure is based on the application of a heuristic approach
with elitist modification of the NSGA-II algorithm [18,20,28–31]. The algorithm allows
approximation of the Pareto front which represents the equivalent trade-off between con-
sidered objectives f1, f2, f3. In this paper, the optimization framework launch execution
of other processes such as OSP and validation of classification. The general scheme of the
optimization process is shown in Figure 3.

The NSGA-II executes the process of multi-objective optimization by defining an initial
and any after generation, where individuals represent candidate sensor networks. These
sensor networks are generated using the sensor-placement method based on selected design
parameters and available strain maps for different shape modes obtained experimentally,
according to [7], for the heathy condition of the composite plate. During the process of
optimization, some of the parameters are treated as constant parameters, among others,
they include the clamping area of the composite plate, where placing sensors is not possible.
Another constant parameter is the relative additive noise level used in data augmentation
for the purpose of obtaining balanced dataset for learning of the classifiers.

In this research, one of the algorithms for sensor placement shown and evaluated
in the paper [7] was used. This algorithm is based on the selection of the position of
the sensor candidates on the rank defined on the basis of the sum of values of the mode
shapes for individual coordinates. Initially, the mode shapes are ordered according to
their higher dominance in frequency-response function shown in Table 1. Next, individual
strain maps of selected modes are normalized from 0 to 1, assigning 1 to the highest
strain value. Then, the sum of the strains of selected modes is performed, and the strain
values in the x and y direction are organized separately as vectors of values in descending
order [7,8]. Afterwards, based on this order, the sensors are sequentially placed in the
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coordinates, which corresponds to the highest value in the mentioned vector, taking into
account other requirements such as maintaining the required distance between sensors, etc.
The effectiveness of this algorithm was compared with other algorithms, among others,
with a modified Effective Independence Method [12]. In this comparison, we also took into
account the influence of the noise level on the accuracy of damage detection. More details
can be found in [7].
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placement problem.

In this study, the sensor network obtained using the above algorithm is mainly eval-
uated using the prepared classifier, which is validated using k-fold cross-validation. The
results of this validation make it possible to compute the objective function f1, f2, which
represents the number of type-I errors and type-II errors. This allows one to compute a
multi-objective function for the individuals in the considered generation. The selection pro-
cess of individuals for the next generation is performed using the tournament selection [23]
with a fraction value of 0.8. During the creation of offspring generations, the mutation
operator that allows individuals to generate feasible values that meet the bound constraints
shown in Equations (5) and (6) was used [32]. The one-point crossover operation on the
basis of an intermediate combination [32] was used.

In the process of the optimization evaluation, the following termination criteria were
used. If the spread distance of the solutions across the Pareto front changes less in sub-
sequent iterations than an established tolerance, the optimization process should stop.
Otherwise, if the limited number of generations will be computed, the process may stop
as well. Due to the heuristic characteristics of the conducted optimization, e.g., making
the process of optimization independent of the process of the initial generation of the
design variables, the process was repeated several times. In addition to the optimization
process, the obtained Pareto front was evaluated using the standard deviation of the Pareto
distance [28]—a standard deviation of distances between two closest neighbors for non-
dominated solutions. In these calculations, the dominated solutions at the ends of the
Pareto fronts are omitted. The second evaluation parameter was defined as the spread
distance, which takes the standard deviation of the Pareto distance as an internal parameter.
Apart from the Pareto distance [28], the spread distance [28] allows one to estimate the
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change of the Pareto fronts in a subsequent iteration of the optimization process. The lower
the value, the more equally can distributed solutions on the Pareto front be reached.

The evaluation of the current health condition of the analyzed plate is based on the
observed relevant sensor network, and based on the appropriate information obtained
from the acquired knowledge about the dynamic modal behavior of the composite plate for
healthy and damage conditions. This approach requires an appropriate representation of
knowledge, which, in this case, takes the form of an intrinsic mathematical representation
of the trained k nearest-neighbor classifier (k-NN).

For the purpose of the estimation of hyperparameters, a separated validation dataset
was prepared. This validation set consisted of 54 sensor networks obtained individually for
all combinations of the number of sensors from 2 to 10 and the number of modes from 2 to
7. These sensors positions were established based on the criteria shown in paper 7. These
solutions are dominated solutions used only for the purpose of hyperparameters’ selection.
Every dataset for every sensor network contains a set of 2560 validation examples. The
Bayesian optimization in the space of the considered hyperparameters was performed using
Matlab© fitcknn routine. The objective function used for this purpose was the loss function
estimated as 1-classification accuracy. In order to maintain good generalization properties
of the classifier and to avoid overlearning, the estimated nearest classifier numbers were
selected based on the criteria that this hyperparameter does not lead to a higher difference
than 1% of the loss function between the best selection indicated by the routine, usually with
a high number of neighbors and one that is selected manually with a very limited number
of nearest neighbors. The analysis indicated that squared Euclidean, Minkowski, Euclidean,
Chebyshev, Cityblock, and Mahalonobis do not indicate any significant differences between
classification accuracy (more than 5%).

The selection of the hyperparameters mentioned above allows us to estimate the
hyperparameters separately for the set of classifiers with different input numbers (number
of sensors). Finally, the squared Euclidean distance with four nearest neighbors and inverse
distance weighing were efficient to obtained high-accuracy classifiers for the set of used
classifiers. For data sets that contain information from more than five modes, even three or
two nearest neighbors can be applied without loss of classification accuracy.

The general optimization procedure described in this section was implemented in
the Matlab© 2023a release (MathWorks Inc., Natick, MA, USA) using k-NN and NSGA-II
Matlab built-in algorithms.

3.3. Data Preparation

The process of multi-objective optimization requires preparing a high-accuracy trained
classifier which allows the evaluation of the value of the multi-objective function for all
individuals. In this study, the classifiers are learned and validated during every iteration
of the optimization procedure for the known number of inputs (sensor numbers) and
selected strain modes. Due to the stochastic nature of the selection of the subset of the data
sets for learning and validation for the same set of design variables, small differences can
be observed for the same value of the input variable vector as a result of this stochastic
nature. To decrease the variability of the results of the type-I and type-II errors due to the
mentioned stochastic nature, a ten-fold cross-validation procedure was used to evaluate
the classification statistics.

The proper evaluation of the objective function using type-I and type-II errors requires
also a balanced data set preparation. For this purpose, the learning data set was augmented
using replication of the learning examples with additive noise with normal distribution.
The additive noise of the percentage k is defined as of 95% probability with the value ε

falling within the range of ε ∈ [−a,+a], which can be written as follows:

Φµ,σ2(a)− Φµ,σ2 (−a) = 95%, (7)
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where Φµ,σ2 is a cumulative normal distribution with the mean µ and the standard deviation
σ2. This requires the estimation of the standard deviation σ2 of the zero-mean normal
distribution based on the following equality equation:

Φ−1
(

97.5%; σ2
)
− Φ−1

(
2.25; σ2

)
= 2a (8)

where Φ−1 is the inverse cumulative normal distribution of the zero mean estimated at the
boundaries of the 95% probability interval, and σ2 is seeking standard deviation. Solving
Equation (8) provides the required value for the standard deviation. In this case, for
normalized values of strain maps, a 5% normal additive noise has a standard deviation of
2.551 × 10−2.

The noise level was established on the basis of the initial evaluation of an accuracy of
the damage recognition on the basis of a random subset of input variables with a lower
number of sensors and a lower number of modes. The goal of the selection of this noise level
was to select the highest value of the noise level to obtain the highest possible generalization
properties of the classifier, which still guarantee obtaining a satisfactory level of damage
recognition. For this purpose, a five-fold cross-validation procedure was used for the
selected subset of input variables with different numbers of sensors, modal shape numbers,
and different noise levels from 2 up to 5%. As a satisfactory level of the classifier validation
accuracy, at least 95% of classification accuracy [25] was used. It has been observed that for
the first three mode shapes and two sensors with a level of 5% of additive random noise, the
validation accuracy leads to 95.6%. For other cases and lower noise levels, the validation
outcome resulted in higher accuracy. Due to this, the noise level of 5% was attributed as
a noise level in the augmentation process of a leaning dataset. The idea of using a high
possible noise level results from using numerous numerical cases in the learning examples
to maintain high generalization properties of the used classifiers.

3.4. Optimization Results

The results of the optimization process allows for estimating the approximation of
the Pareto front for the multi-objective function shown in Equation (5). Finally, the front is
represented by 38 solutions. The optimization process was terminated, since the average
change in the spread of the Pareto solutions was less then 10−4. The standard deviation of
an average distance for the solution equals 10.41 × 10−2 and the spread distance equals
29.51 × 10−2. The solutions have been obtained after 51 generations. To avoid the influence
of the randomly generated initial population and also to avoid the influence of any other
stochastic processes (e.g., a 10-fold validation process), the process was repeated several
times. No significant changes have been observed in the repetitions of the optimization
process.

Pareto solutions in the multi-objective function domain are shown in Figure 4a. The
parameter space can be observed in Figure 4b. Additionally, some projections of the
Pareto solutions for type-I and type-II errors are presented separately in Figures 4c and 4d,
respectively. In Figure 4c,d, dominated solutions from the results of paper [7] have been
added as well. These results have been obtained using the same OSP algorithm for single-
objective optimization based on the aggregated t-norm evaluation function presented in [7]
and with the constant required minimum distance of 127.5 mm.
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Figure 4. Results of the multi-objective optimization process: (a) scatter plot of the results representing
approximation of three-dimensional Pareto front in the multi-objective function domain, (b) scatter
plot of parameter space of design variables, (c) a side view Pareto front presenting perspective of
type-I error value versus number of sensors, (d) a side view Pareto front presenting perspective of
type-II error value versus number of sensors.

4. Analysis and Discussion

The analysis of the obtained results indicates that the process of multi-objective opti-
mization based on Pareto front leads to many nondominated solutions, which allows for
binding effectiveness of the SHM system with design variables. Based on this information,
the designer of the SHM system may decide on the number of sensors in the individual
direction, their placement, and the number of modes, simultaneously, while keeping an
appropriate level of sensitivity in the system in damage detection as well as an appropriate
level of possible false alarms.

To facilitate the SHM user to make decisions about the characteristic sensitivity, speci-
ficity, and the utilized sensor number, the obtained results of optimization can be further
postprocessed to support this selection. A common-sense approach that can be used for
that purpose is a Pareto principle that 80% of the effects come from 20% causes. Using this
principle, the Pareto front solutions have been divided into the following subset:

∑z∈A g(z)
∑z∈Z g(z)

≥ 0.8 f or g(z) = −log(z + 1) and g(z1) ≤ g(z2) ≤ · · · ≤ g(z n) (9)

where {
z ∈ A

∣∣ z = f1 + f2 + α· f 3
}

or {z ∈ B | z = β · f 1 + f2}.
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Annotation zi represents individual solutions of a Pareto front, g(z) is the negation
transformation function, and z ∈ A represents the subset of Pareto solutions with a
cumulative contribution of the top 20% solutions, when all objective functions f1, f2, f3
are taken into account, but with limited influence of the number of sensors represented
by weight α. Similarly, z ∈ B represents the subset of Pareto solutions with cumulative
contribution of the top 20% solutions when the sum of type-I and type-II errors are taken
into account, with the limited influence of the type-I error represented by weight β. In
the present study, the following exemplary weights were assumed, α = 0.2 and β = 0.5.
These weights can be appropriately estimated for the known costs of sensors and required
unbalanced performance toward type-I or type-II errors. The Pareto solutions shown in
Figure 4 represented by the magenta-filled circles show the top 20% of solutions for set A,
and the green-filled circles show solutions for the weighed sum of the observed type-I and
type-II errors represented by set B.

The analysis of Figure 4b together with Figure 4c,d of the obtained results indicates
that optimal solutions, which belong to the set A set, require the use of four to six sensors
and the first six dominated modes (7th, 5th, 6th, 9th, 4th, 10th). An exemplary sensor
network for this subset of possible sensor networks is presented in Figure 5.
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the case with 5 sensors, 4 sensors in x direction, and 1 sensor in y direction for the required distance 
Figure 5. The example of nondominated solutions from Pareto solutions belonging to subset A: (a) the
case with 5 sensors, 4 sensors in x direction, and 1 sensor in y direction for the required distance of
188 mm and the first six modes; (b) the case with 6 sensors, 4 sensors in x direction, and 2 sensors in
y direction for the required distance of 184 mm. In both figures, sum of first six dominated mode
shapes are presented (7th, 5th, 6th, 9th, 4th, 10th) as a background contour plot.

In that case, when set B is considered, five to eight sensors are necessary to consider
with the use of at least first five to seven dominated modes. This can be observed in
Figure 4c,d, and also in Figure 6, where the sum of the errors versus the number of sensors
are presented.

The analysis of the design variables of the solutions belonging to set B, shown in
Figure 4b. indicates that for six to seven sensors it requires consideration of at least six
modes to effectively recognize the healthy conditions of the composite plate. The solution
with the minimal error type-II is presented in Figure 7a. This sensor networks consist of
seven sensors, five in the x direction and two in the y direction for the required distance of
177 mm and the first five dominated modes (7th, 5th, 6th, 9th, 4th). The exemplary sensor
network for solutions of set B is presented in Figure 7.
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Figure 7. The example of nondominated solutions from Pareto solutions belonging to subset B: (a) the
case with 7 sensors, 5 in x direction and 2 in y direction for the required distance of 177 mm and
first five dominated modes (7th, 5th, 6th, 9th, 4th). (b) The case with 6 sensors, five in x and 1 in y
directions for the required distance of 194 mm and the first seven dominated modes (7th, 5th, 6th,
9th, 4th, 10th, 8th).

This case study is based on the experience gathered in the ongoing studies presented
in [7,8]. In paper [7], specific optimal-sensor-placement algorithms and different ways of
evaluating sensor networks using different aggregated criteria were selected and compared.
Additionally, the selected classification models that allow the mapping of signals from
sensor networks to the evaluation of the condition of the composite plate were selected
and validated. In [8], validation of optimal-sensor-placement networks based on the
experimental data was shown. It should be emphasized that the ongoing studies presented
in [7,8] were aimed at finding the optimal solutions based on the accuracy of composite-
plate state recognition, but the candidate sensor-placement networks were selected based
on the intermediate criteria such as Fisher matrix indices, etc. These results are also
presented in Figures 4c,d and 6. In the present study, the selection of the optimal sensor
network is driven by the evaluation of the SHM system using minimization of type-I and
type-II errors and the number of sensors. Comparison of the results shows the advantage
of the optimization framework presented in this study over the previous results where
the optimal-sensor-network selection was not dependent on the final outcome of the
SHM system.
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5. Conclusions

This study presents the results of multi-objective optimization of the sensor-placement
network evaluated using the effectiveness of the SHM system. This effectiveness was
achieved by evaluating the sensitivity to recognize the damage condition of the composite
plate and also by minimizing false alarms. Additionally, this evaluation can be completed
using the minimization of the sensor number, which allows for finding the trade-off between
the cost and performance of an SHM system. A specific genetic approach using NSGA-II
allowed for recognizing Pareto front solutions and allowed the designer of an SHM system
the opportunity to select appropriate values of design variables. The examples with five,
six, and seven sensors in the sensor network were demonstrated as the solutions of the
performed optimization in this study. This decision can be taken by directly linking the
selected results with the design variables. In this study, a selection of design variables
based on the Pareto principle is also proposed.
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