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Abstract: Satellite communications face difficulties such as intensified environmental attenuation,
dynamic time-varying links, and diverse business scenarios, which usually require channel coding
schemes with high coding gain and high throughput. Low-density parity-check (LDPC) codes
are dominant in satellite communication coding schemes due to their excellent performance in
approaching the Shannon limit and the characteristics of parallel computing. The traditional weighted-
Algorithm B decoding algorithm ignores the channel received information and involves frequent
multiplication operations and iteration, which introduces the channel received information for
hard-decision and constellation mapping processing. Meanwhile, we design the correlated reliability
between the extrinsic information and the mapping processing information to improve the correctness
of decoding. The multiplication operation in the iterative process can be replaced by the simple sum
of the Hamming distance coefficient, the correlated reliability between the extrinsic information and
the mapping processing information, and the extrinsic information frequency, thereby reducing the
complexity and storage load of the system. The simulation results show that the presented MRAI-
LDPC algorithm can obtain about 0.4 dB performance gain, and the average number of iterations is
reduced by 68% under a low SNR. The algorithm can achieve better error-correcting performance and
higher throughput, providing strong support for reliable transmission of satellite communications.

Keywords: satellite communications; channel coding; LDPC code; multi-dimensional information
iterative decoding; reliable transmission

1. Introduction

Satellite communication technology is a communication system that uses artificial
satellites as the relay and inter-satellite and satellite-to-ground links as transmission net-
works to obtain, transmit, and process space information [1]. At the same time, satellite
communications have excellent coverage and communication capacity. Whether it is land,
sea, or air, it can realize communication connections and fill the areas that cannot be covered
by ground infrastructure. It is often used for disaster-relief emergency communication and
the real-time transmission of battlefield information [2]. Due to the long distance of satellite
communications, the signal will be significantly attenuated during transmission, and the
communication link will be affected by weather conditions such as clouds and rain [3],
resulting in a high bit error rate (BER). Channel coding technology, as a key underlying
technology in communication systems, can improve anti-interference and reliability [4].
The essence of channel coding technology is to introduce some controllable redundancy in
the transmitted information, and the receiver uses this redundancy to detect and recover
the transmission error so as to ensure efficient and reliable data transmission.

In recent years, achieving high-speed and reliable transmission with limited hard-
ware resources on satellite has become a core challenge in the development of satellite
communication. Different encoding and decoding techniques can significantly reduce
the signal-to-noise ratio (SNR) requirement under the same BER [5] (SNR = 10lg(Ps/Pn),
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where Ps and Pn represent the effective power of the signal and noise, respectively), thereby
reducing the transmission power of satellite communication equipment and making it
possible to miniaturize. For example, in satellite navigation, every 1 dB of SNR gain brought
about by channel coding is converted into profits of billions of dollars [6].

Low-density parity-check (LDPC) codes have the performance of approaching the
Shannon limit [7], high coding gain, and strong anti-interference ability [8]. They have been
incorporated into the channel coding standard by the consultative committee for space data
systems (CCSDS). Compared with traditional RS codes and convolutional codes, LDPC
codes have the advantages of a simple coding structure, easy hardware implementation,
and a low decoding threshold [9]. Compared with Turbo codes, LDPC codes have low
coding complexity and are more suitable for parallel high-throughput encoder–decoder
design [10]. LDPC codes have flexible bit-rate structures [11] and low error levels [12] and
meet the application scenario of satellite link communication, so they have been widely
used in the field of satellite communications [13]. For instance, reference [14] presented a
novel early termination stopping criterion for LDPC decoders that is based on detecting
the periodicity of syndrome weight oscillations. This design can reduce computational
energy and can be implemented to meet the energy resources of satellite communications.
Reference [15] presented filtered orthogonal frequency division multiplexed LDPC codes,
which can achieve a coding gain of 1.2 dB with a BER of 10−3 under moderate rain weather
conditions and can be well applied to Ka-band satellite communications.

In reference [16], a decoding algorithm based on majority logic for non-binary low-
density parity-check (NB-LDPC) codes was presented, including Algorithm B (AlgB)
and weighted-Algorithm B (wtd-AlgB). The AlgB decoding algorithm only considers the
extrinsic information frequency, and its performance is not as good as the performance
of the wtd-AlgB decoding algorithm. The wtd-AlgB decoding algorithm combines the
Hamming distance coefficient and the extrinsic information to form a reliable measure for
hard-decision symbols. However, the algorithm requires frequent multiplication operations
for each decision.

In order to meet the highly reliable transmission requirements for satellite communi-
cations, this paper presents a new decoding algorithm based on multi-dimensional reliable
information addition iteration (MRAI-LDPC). The main innovation of the MRAI-LDPC
algorithm is as follows: Firstly, the Hamming distance coefficient is directly calculated
by subtraction, avoiding its computer simulation process. Then, the channel received
information is subjected to hard-decision and constellation mapping processing, and we
design correlated reliability between the extrinsic information and the mapping process-
ing information to improve the correctness of decoding. Finally, the Hamming distance
coefficient, the correlated reliability between the extrinsic information and the mapping
processing information, and the extrinsic information frequency are simply summed to re-
duce the system’s complexity. The simulation results show that the presented MRAI-LDPC
algorithm can achieve better error-correcting performance and throughput, ensuring the
reliable transmission of satellite communications.

The remaining sections of this paper are organized as follows: Section 2 introduces
the system model of LDPC. Section 3 designs a new LDPC decoding algorithm based on
multi-dimensional reliable information addition iteration. In Section 4, we complete the
performance simulation and complexity analysis of the MRAI-LDPC decoding algorithm.
Finally, Section 5 provides a summary of this paper.

2. The System Model of LDPC

In satellite communications, signals may be affected by atmospheric fading, inter-
ference, and noise, resulting in transmission errors. LDPC codes have excellent error-
correcting performance, which can effectively detect and correct errors during transmission,
thus improving the reliability of communication systems. The constraint relationship be-
tween the check nodes and variable nodes of LDPC codes can be represented by the factor
graph model in Figure 1. The factor graph model of LDPC mainly includes the variable
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nodes (VNs), the check nodes (CNs), the parity-check matrix, and the side information
connecting the variable nodes and the check nodes.
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Consider the regular NB-LDPC code Fq[n, k] over q = 2r. The code Fq[n, k] is defined
by a sparse parity-check matrix H =

[
hi,j

]
m×n(hi,j ∈ Fq), which has a constant row weight ρ

and column weight γ. We design the set Ni of non-zero positions for the i-th row of H by:

Ni =
{

j : 0 ≤ j ≤ n − 1, hi,j ̸= 0
}

(1)

In Equation (1), for the i-th row, Ni is the set of hi,j ̸= 0 and j from 0 to n − 1 in H.
And we design the set Mj of non-zero positions for the j-th column of H by:

Mj =
{

i : 0 ≤ i ≤ m − 1, hi,j ̸= 0
}

(2)

In Equation (2), for the j-th column, Mj is the set of hi,j ̸= 0 and i from 0 to m − 1 in H.
Assume that c = (c0, c1, · · · , cj, · · · , cn−1) ∈ Fn

q is a codeword to be transmitted. Each
symbol cj is converted to its binary representation by cj = (cj,0, cj,1, · · · , cj,t · · · , cj,r−1) ∈ Fr

2 ,
where 0 ≤ j ≤ n − 1 and 0 ≤ t ≤ r − 1. For simplicity, we only consider the additive
white Gaussian noise (AWGN) channel with the binary phase-shift keying (BPSK) mod-
ulation. Each bit cj,t is modulated to a real sequence xj = (xj,0, xj,1, · · · , xj,r−1) with
constellation mapping rules ϕ(•), where xj,t = ϕ(cj,t) = 1 − 2cj,t. The received signal
yj = (yj,0, · · · , yj,t, · · · , yj,r−1) is obtained from the modulated signal through the AWGN
channel, where yj,t = xj,t + nj,t and nj,t ∼ N(0, σ2).

3. Design of LDPC Decoding Algorithm Based on Multi-Dimensional Reliable
Information Addition Iteration

The wtd-AlgB decoding algorithm in reference [16] uses the advantage of the ma-
jority logic rule as a symbol decision, but it involves frequent finite-field multiplication
and ignores the channel received information. To achieve a low-complexity and high-
reliability decoding scheme, this paper presents a new LDPC decoding algorithm based
on multi-dimensional reliable information addition iteration (MRAI-LDPC), which is de-
scribed below.

3.1. Simplified Design of the Hamming Distance Coefficient

Let z(k) = (z(k)0 , z(k)1 , · · · , z(k)n−1) be the hard-decision information at the k-th iteration.
At the same time, define the syndrome vector s(k) at the k-th iteration by:

s(k) = z(k)HT = (s(k)0 , s(k)1 , . . . , s(k)m−1) (3)
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Here, s(k)i represents the adjoint information of the i-th check node, which can be
expressed as Equation (4). z(k) is a valid codeword if s(k) = 0.

s(k)i = ∑
j∈Ni

hi,jz
(k)
j (4)

Let σ
(k)
i,j be the extrinsic information (EXI) from check node Ci to variable node Vj,

which can be defined by:
σ
(k)
i,j = h−1

i,j ∑
j′∈Ni\j

hi,j′z
(k)
j′ (5)

In Equation (5), 0 ≤ i ≤ m − 1 and j ∈ Ni. The check nodes only need to pass the EXI
to its adjacent variable nodes in each iteration.

For the j-th variable node, d(z(k)j , σ
(k)
i,j ) is the Hamming distance between z(k)j and σ

(k)
i,j .

θ is r + 1 dimension vector with θ = (θ0, θ1, · · · , θr), and θ
d(z(k)j ,σ(k)

i,j )
is the Hamming distance

coefficient, which is usually obtained by computer search with the goal of performance
optimization [17]. However, it is difficult to find the optimal θ when the finite-field order
is large.

Inspired by the method of calculating its initial reliability in reference [18], the Ham-
ming distance coefficient θ

d(z(k)j ,σ(k)
i,j )

can be simply designed as follows:

θ
d(z(k)j ,σ(k)

i,j )
= r − d(z(k)j , σ

(k)
i,j ) (6)

In Equation (6), r = log2q and θ ∈ [0, r]. Obviously, the smaller d(z(k)j , σ
(k)
i,j ) means

that σ
(k)
i,j is closer to z(k)j , indicating a higher reliability of σ

(k)
i,j , and the corresponding value

θ
d(z(k)j ,σ(k)

i,j )
should be obtained as a larger value. Moreover, the subtraction operation avoids

the computer simulation and further reduces the complexity and storage load.

3.2. Design of the Correlated Reliability

In fact, the wtd-AlgB algorithm only considers the Hamming distance coefficient
θ

d(z(k)j ,σ(k)
i,j )

and the extrinsic information frequency n(σ(k)
i,j ) in each iteration and ignores the

channel received information yj. Generally speaking, yj takes the value of a real number

(including positive and negative decimals), while σ
(k)
i,j is an integer within the range of

a finite field. Obviously, the calculation between an integer and a real number will add
an additional floating-point operation. In order to avoid floating-point operations in the
algorithm, combined with the updated method z(k)j of the iterative process in reference [19],
the channel received information yj is decided as follows:

z(0)j,t =

{
0, yj,t ≥ 0
1, yj,t < 0

(7)

In Equation (7), if yj,t ≥ 0, the initial hard-decision vector z(0)j,t is 0; otherwise, z(0)j,t = 1.
In this step, the channel received information is introduced to improve the correctness of
decoding, and the received real bit information is simplified to integer bit information,
which is beneficial to reduce memory consumption.

Then, the constellation mapping rule ϕ(•) is processed, and the mapping processing
bit information is wj,t = ϕ(z(0)j,t ) = +1 with z(0)j,t = 0; otherwise, wj,t = ϕ(z(0)j,t ) = −1. In

reference [20], the correlated reliability between the hard decision z(k)j and the channel
received information yj is calculated. Similarly, in the j-th iteration, the correlated reliabil-
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ity between the extrinsic information σ
(k)
i,j and the mapped processing information wj is

computed by:

ρ(σ
(k)
i,j , wj) =

r−1

∑
t=0

ϕ
(

σ
(k)
i,j,t

)
wj,t (8)

Here, 0 ≤ j ≤ n − 1, and σ
(k)
i,j,t is the binary expression of σ

(k)
i,j . Obviously, the larger the

ρ(σ
(k)
i,j , wj), the more reliable the extrinsic information σ

(k)
i,j is.

3.3. The Mechanism of Addition Operation

Since the wtd-AlgB algorithm has a large number of multiplication operations with
I(σ(k)

i,j ) = θ
d(z(k)j ,σ(k)

i,j )
n(σ(k)

i,j ), it leads to an increase in resource consumption and energy

consumption. To reduce the hardware resource on the satellite, the addition operation of
θ

d(z(k)j ,σ(k)
i,j )

, ρ(σ
(k)
i,j , wj), and n(σ(k)

i,j ) can be expressed as:

Mj(σ
(k)
i,j )= [r − d(z(k)j , σ

(k)
i,j )] + ρ(σ

(k)
i,j , wj) + n(σ(k)

i,j ) (9)

In Equation (9), it is worth mentioning that each indicator is an integer and is positively
correlated. The larger the total reliability Mj(σ

(k)
i,j ), the more likely it is to be judged as σ

(k)
i,j .

For the j-th variable node, the updated variable node of the MRAI-LDPC decoding
algorithm is shown in Figure 2. Bidirectional information transfer is carried out between
the variable node Vj and the check node Ci. z(k)j is passed to Ci through Vj, and Ci feeds

back the total reliability Mj(σ
(k)
i,j ) to Vj.
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Therefore, for the j-th variable node, the updated variable node of the MRAI-LDPC
decoding algorithm is:

zj
(k+1) =


arg maxMj(σ

(k)
i,j )

σ
(k)
i,j , i∈Mj

, max
i∈Mj

Mj(σ
(k)
i,j ) ≥ TH

z(k)j , max
i∈Mj

Mj(σ
(k)
i,j ) < TH

(10)

In Equation (10), the optimal threshold value TH is obtained by computer search.
As mentioned above, a new LDPC decoding algorithm based on multi-dimensional

reliable information addition iteration (MRAI-LDPC) is designed as shown in Figure 3.
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4. Simulation and Analysis of the MRAI-LDPC Decoding Algorithm
4.1. Decoding Performance

In this section, the performance of the presented MRAI-LDPC algorithm is simulated
based on two quasi-cyclic LDPC codes (QC-LDPC) with different construction methods.
The total frame number Ttotal is 108, and the maximum iteration number Imax is 100. The
algorithm stops decoding when Ttotal is more than 108 or Imax is more than 100.

4.1.1. Experiment 1

Consider the F16(225, 147) regular NB-LDPC code with finite-field construction [21],
which has column weight ρ = 14, row weight γ = 14, and code rate R = 0.65. The
parameters for several decoding algorithms are set as follows: (1) the threshold of the
AlgB algorithm is set to 7; (2) for the wtd-AlgB algorithm, the threshold is set to 7 and the
Hamming distance coefficient is θ = (2.1, 2.0, 1.0, 1.0); (3) for the presented MRAI-LDPC
algorithm, the threshold TH is set to 7. Meanwhile, we use the bit error rate (BER), the
frame error rate (FER), and the average number of iterations (ANI) as the performance
metrics. The BER and FER simulation results are shown in Figure 4.

The solid line in Figure 4 represents the BER performance, while the dashed line
represents the FER performance. It can be seen from Figure 4 that:

• The BER performance and FER performance of the presented MRAI-LDPC algorithm
are superior to the AlgB algorithm and the wtd-AlgB algorithm, thanks to the intro-
duction of the channel received information, which improves the total reliability;

• The presented MRAI-LDPC algorithm achieves significant performance gains. For
example, at a BER of 10−5, the MRAI-LDPC decoding algorithm has about 0.4 dB
BER performance gain over the wtd-AlgB algorithm. When FER is 10−4, it has an
FER performance gain of about 0.15 dB and 1.15 dB compared with the wtd-AlgB and
wtd-AlgB algorithms, respectively;
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• In addition, with the increase in SNR, the BER and FER of the MRAI-LDPC decoding
algorithm decrease more rapidly, and the performance gain is more obvious.
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As depicted in Figure 5, the presented MRAI-LDPC algorithm has the fastest conver-
gence speed among these decoding algorithms, especially in low SNR regions. For instance,
at an SNR of 4.0~4.5 dB, the average number of iterations (ANI) of the MRAI-LDPC sig-
nificantly decreases by 70~85% compared to the AlgB algorithm. When the SNR is 4.0 dB,
the ANI of the wtd-AlgB algorithm is 38, while the MRAI-LDPC algorithm requires only
28 iterations on average.
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4.1.2. Experiment 2

We also simulated the F16(255, 175) regular NB-LDPC code with a finite geometric
construction [22]. This code has constant column weight ρ = 16, row weight γ = 16, and
code rate R = 0.68. The parameters are set as follows: (1) for the AlgB algorithm, the
threshold is set to 9; (2) the threshold and the Hamming distance coefficient are set to 9
and (2.1, 2.0, 1.0, 1.0) with the wtd-AlgB algorithm; (3) the threshold TH of the presented
MRAI-LDPC algorithm is set to 8.

Figure 6 depicts the decoding performance of the q-ary sum–product algorithm
(QSPA) [23], AlgB decoding, wtd-AlgB algorithm, and MRAI-LDPC algorithm. Some
results can be noted as follows:

• At a BER of 10−5, the presented MRAI-LDPC algorithm has about 0.4 dB performance
gain over the wtd-AlgB algorithm. Compared with the AlgB algorithm, the presented
MRAI-LDPC algorithm can achieve a performance gain of about 1.35 dB with a BER
of 10−4;

• When the SNR is greater than 4.5 dB, the BER curve of the MRAI-LDPC algorithm de-
creases faster, and the decreasing trend is almost the same as that of the QSPA algorithm.
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Additionally, we list the FER performance of the AlgB algorithm, the wtd-AlgB algo-
rithm, and the MRAI-LDPC algorithm in Table 1. According to the numerical values, the
FER of the MRAI-LDPC algorithm is smaller than that of the wtd-AlgB algorithm and the
MRAI-LDPC algorithm under the same SNR, which indicates the presented MRAI-LDPC
algorithm has the best error-correcting performance.

Table 1. The FER performance comparison of the F16(255, 175) QC-LDPC code.

SNR AlgB Algorithm
(FER)

wtd-AlgB Algorithm
(FER)

MRAI-LDPC Algorithm
(FER)

4.0 dB 0.6711409396 0.5602240896 0.2554278416
4.2 dB 0.5390835580 0.3241491086 0.1257071025
4.4 dB 0.3401360544 0.1877934272 0.0412116217
4.6 dB 0.2202643172 0.0714285714 0.0127575429

As can be clearly seen in Figure 7, the presented MRAI-LDPC decoding algorithm
has the fastest ANI performance, and its average number of iterations is smaller than
that of the AlgB and wtd-AlgB algorithms. At an SNR of 4.4 dB, the wtd-AlgB algorithm
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requires about 22 iterations on average. In contrast, the MRAI-LDPC algorithm requires
about 7, which means that the MRAI-LDPC reduces the average number of iterations by
68% compared with the wtd-AlgB algorithm.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 13 
 

 
Figure 7. The ANI performance comparison of the 16(255,175)F  QC-LDPC code. 

4.2. Complexity Analysis 
Here, we analyze the computational complexities of the presented MRAI-LDPC al-

gorithm per iteration. The hard decision ( )kz  requires nr  real comparisons (RCs). To 
compute the syndrome vector (k)s , n  Galois-field multiplications (GMs) and ( 1)n    
Galois-field additions (GAs) are required for computing. Then, n  GAs and n  GMs 
are required to obtain the extrinsic information ( )

, k
i j . Counting the extrinsic information 

frequency ( )
,( )k
i jn    requires n   real additions (RAs). Additionally, the mapped pro-

cessing information jw  is computed by nr  RCs. It takes ( 1) n r  RAs to compute the 

correlated reliability ( )
,( ),k
i j jw  between ( )

, k
i j  and jw . We require 3n  GAs for com-

puting the total reliability ( )
,( )k

j i jM  . Finally, updating the new decision vector involves 
( 1)n    RCs in the MRAI-LDPC algorithm. 

Let   be the total edges of the nodes; note that δ = nγ = mρ . When an iteration is 
completed, 0 real multiplications (RMs), 5 n    GAs, 2   GMs, r   RAs, and 

(2 1)n r    RCs are required for the MRAI-LDPC algorithm. The total complexities are 
shown in Table 2. The MRAI-LDPC algorithm increases 2   GA, ( 1)r    RA, and 

(2 1)n r   RC operations compared to the wtd-AlgB algorithm. However, lower energy 
consumption can be obtained in hardware implementation since the MRAI-LDPC algo-
rithm does not involve the real-multiplication operation. 

Table 2. Computational complexities per iteration with various decoding algorithms. 

Decoding Algorithm RM GA GM RA RC 
wtd-AlgB   3 n   2      

Presented MRAI-LDPC 0 5 n   2  r  (2 1)n r    

Under the simulation of the 16 (225,147)F  QC-LDPC code with finite-field construc-
tion, when the decoding is successful, the average number of iterations for the wtd-AlgB 
algorithm and the MRAI-LDPC algorithm is 9 and 5 at an SNR of 4.5 dB. The intuitive 
data are given here, and the numerical results of the total computational complexities are 

Figure 7. The ANI performance comparison of the F16(255, 175) QC-LDPC code.

4.2. Complexity Analysis

Here, we analyze the computational complexities of the presented MRAI-LDPC al-
gorithm per iteration. The hard decision z(k) requires nr real comparisons (RCs). To
compute the syndrome vector s(k), nγ Galois-field multiplications (GMs) and n(γ − 1)
Galois-field additions (GAs) are required for computing. Then, nγ GAs and nγ GMs
are required to obtain the extrinsic information σ

(k)
i,j . Counting the extrinsic information

frequency n(σ(k)
i,j ) requires nγ real additions (RAs). Additionally, the mapped processing

information wj is computed by nr RCs. It takes nγ(r − 1) RAs to compute the correlated

reliability ρ(σ
(k)
i,j , wj) between σ

(k)
i,j and wj. We require 3nγ GAs for computing the total

reliability Mj(σ
(k)
i,j ). Finally, updating the new decision vector involves n(γ − 1) RCs in the

MRAI-LDPC algorithm.
Let δ be the total edges of the nodes; note that δ = nγ = mρ. When an iteration is

completed, 0 real multiplications (RMs), 5δ − n GAs, 2δ GMs, δr RAs, and δ + n(2r − 1)
RCs are required for the MRAI-LDPC algorithm. The total complexities are shown in
Table 2. The MRAI-LDPC algorithm increases 2δ GA, δ(r − 1) RA, and n(2r − 1) RC
operations compared to the wtd-AlgB algorithm. However, lower energy consumption
can be obtained in hardware implementation since the MRAI-LDPC algorithm does not
involve the real-multiplication operation.

Table 2. Computational complexities per iteration with various decoding algorithms.

Decoding Algorithm RM GA GM RA RC

wtd-AlgB δ 3δ − n 2δ δ δ
Presented MRAI-LDPC 0 5δ − n 2δ δr δ + n(2r − 1)

Under the simulation of the F16(225, 147) QC-LDPC code with finite-field construc-
tion, when the decoding is successful, the average number of iterations for the wtd-AlgB
algorithm and the MRAI-LDPC algorithm is 9 and 5 at an SNR of 4.5 dB. The intuitive data
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are given here, and the numerical results of the total computational complexities are shown
in Table 3. Specifically, the total computational complexities of the MRAI-LDPC algorithm
are 29,025 fewer than those of the wtd-AlgB algorithm.

Table 3. Total computational complexities of the F16(225, 147) QC-LDPC code.

Decoding Algorithm RM GA GM RA RC Total Operations

wtd-AlgB 28,350 83,025 56,700 28,350 28,350 224,775
Presented MRAI-LDPC 0 77,625 31,500 63,000 23,625 195,750

Column weight: ρ = 14; row weight: γ = 14 (SNR of 4.5 dB).

Similarly, under the F16(255, 175) regular NB-LDPC code and an SNR of 4.6 dB, the
average number of iterations for the wtd-AlgB algorithm and the MRAI-LDPC algorithm is
10 and 4, respectively. According to the values in Table 4, compared with the wtd-AlgB
algorithm, the total computational complexities of the MRAI-LDPC algorithm are reduced
by 121,890, which greatly reduces the difficulty of hardware implementation.

Table 4. Total complexities under the F16(255, 175) QC-LDPC code.

Decoding Algorithm RM GA GM RA RC Total Operations

wtd-AlgB 40,800 119,850 81,600 40,800 40,800 323,850
Presented MRAI-LDPC 0 80,580 32,640 65,280 23,460 201,960

Column weight: ρ = 16; row weight: γ = 16 (SNR of 4.6 dB).

To summarize the results in Tables 3 and 4, it is clear that for a certain SNR, the
presented MRAI-LDPC algorithm has the lowest complexity compared to the wtd-AlgB
algorithm, which is an advantage that can reduce energy consumption and cost.

5. Conclusions

In view of the difficulties of satellite communication information transmission, such as
increasing environmental attenuation and dynamic time-varying links, this paper presents
a new LDPC decoding algorithm based on multi-dimensional reliable information addition
iteration that realizes a satellite communication system with a fast transmission rate and
efficient decoding while ensuring the reliability of satellite link communication. The ex-
isting wtd-AlgB decoding algorithm involves frequent finite-field multiplication, and its
performance needs to be improved. In the MRAI-LDPC algorithm, we design a subtrac-
tion operation to calculate the Hamming distance coefficient. Then, the channel received
information is introduced for hard-decision and constellation mapping processing. The
correlated reliability between the extrinsic information and the mapped processing infor-
mation is designed to promote the correctness of decoding. Finally, an addition operation
is used to obtain total reliability, avoiding real-field multiplication operations and reduc-
ing hardware complexity and power consumption. The simulation results show that the
MRAI-LDPC algorithm outperforms about 0.4 dB in performance and has fast convergence
performance compared with the wtd-AlgB algorithm. Meanwhile, the average number
of iterations is reduced by 68% to improve the system’s throughput. The MRAI-LDPC
algorithm has better error-correcting performance to ensure the reliability of information
transmission. Moreover, we believe that it has application value in future satellite high-
speed data transmission systems. It is worth mentioning that more research is needed on
efficiently implementing this algorithm on field-programmable gate arrays (FPGAs).
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