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Abstract: With the enhancement of information volume, people are not satisfied with transmitting
only a single secret image at a time but chase to hide multiple secret images in a single picture;
however, the large-capacity steganographic scale can easily lead to the degradation of the quality
of the image, which attracts the attention of eavesdroppers. In this paper, we propose a Chaotic
mapping-enHanced imAge Steganography nEtwork (CHASE), which pioneers to hide colour images
in grey images and reduces the difference between the container image and the cover image through
the image permutation method, so as to enhance the security of the steganography. The method
demonstrates excellent steganalysis resistance in experiments and introduces Generative Adversarial
Networks (GANs) to improve the image fidelity in large-capacity steganographic scales. The fusion
of chaotic mapping and GAN optimisation enables the steganographic network to simultaneously
balance security and image quality. The experimental results show that CHASE can keep the secret
image with good invisibility under large-capacity steganographic scales, and at the same time, it can
reveal the secret image with high fidelity, and its steganalysis-resistant capability is much better than
other state-of-the-art methods.

Keywords: image steganography; chaotic mapping; generative adversarial network; invertible neural
networks; anti-steganalysis

1. Introduction

In order to ensure the security of transmitted information, people often use crypto-
graphic methods to encrypt secret information, thus hiding the meaning of the information
and making the information unreadable, but this practice cannot hide the existence of the
information. Irregular ciphertext information is often more susceptible to the attacker’s
suspicion during the transmission process, which generates a new security problem [1] of
how to secretly transmit information under the eavesdropping of the attacker. Information-
hiding technology may be the answer to this problem. This technology hides secret infor-
mation in multimedia carriers (e.g., images, text, etc.) and then saves or forwards it, which
does not easily draw attention, and only the receiver can extract the secret information,
thus realising the purpose of privacy data preservation and sharing [2]. Thanks to the
extensive use of images in practice, image steganography has gradually developed to be a
popular field of information hiding [3].

In image steganography, a cover/host image is used as a container for secret informa-
tion, and the resulting image containing the secret information is called a stego/container
image. Image steganography needs to successfully hide secret information while min-
imising the impact on the image quality to avoid significant impact on visual perception.
Secondly, the capacity limitation of steganography is an important consideration, as people
always chase to hide more secret information. In addition, steganography needs to be
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secure, i.e., the presence of secret information is not detected when an attacker uses a
steganalysis tool.

Traditional image steganography typically involves embedding secret information by
modifying pixel values in the spatial domain [4,5] or spectral components in the transform
domain [6–8]. However, these methods often degrade the quality of the stego image and
introduce noticeable changes to its statistical properties, making them susceptible to ste-
ganalysis detection. With advancements in deep learning technology, new approaches to
image steganography have emerged. For instance, the SGAN steganographic network [9]
utilizes a deep convolutional neural adversarial network (DCGAN) to generate cover im-
ages that better align with real distribution, enhancing visual consistency for embedded
secrets. Some methods [10–12] leverage Adversarial Neural Networks to address the statis-
tical alteration issue present in traditional image steganography. These advancements mark
a fusion of image steganography with deep learning techniques, presenting innovative
solutions to improve both security and visual perception.

Encoding and decoding operations in encoder-decoder networks exhibit similarity to
the hiding and reconstruction processes in information hiding. To leverage this similarity,
Hayes et al. [13] proposed the SteGAN text steganography model, which autonomously
learns the hiding and reconstruction processes of secret information, significantly en-
hancing steganographic capacity. Wang et al. [14] improved SteGAN further, enhancing
the realism of the stego image. However, both methods are limited to hiding binary
sequence information. To enhance steganographic capacity further, Baluja et al. [15] pro-
posed the Deep Steganography model, achieving the steganographic effect of hiding one
image within another, and later improving the model to enable large-capacity image
steganography—hiding two images in a single image [16]. Despite these advancements,
these methods, with separate designs for the encoder and decoder, involve irreversible
processes for hiding and reconstructing information, leading to potential image quality
degradation and security vulnerabilities against steganalysis.

This paper aims to integrate the strengths of image steganography based on encoder-
decoder networks and generative adversarial networks, proposing the CHASE image
steganography network to achieve high capacity, invisibility, and security. Diverging
from previous designs, we incorporate the invertible neural network (INN) for image
encoding and decoding, treating image hiding as a forward process and secret information
reconstruction as a backward process within a single trained network. Additionally, we
introduce a novel chaotic mapping permutation algorithm to enhance security. Through
extensive experiments, we validate the superior performance of our network in image
steganography tasks. Key contributions include:

• Designing CHASE, a novel invertible high-capacity image steganography network
capable of hiding a multi-channel colour secret image within a single-channel grey
cover image in a single steganography process.

• Proposing an image permutation algorithm based on Logistic chaotic mapping, utilis-
ing encrypted secret images in the steganography process to enhance security.

• Combining encoder-decoder steganography structure and the adversarial learning
concept of generative adversarial networks to improve image quality in stego and
revealed secret images at large-capacity scales, with generated stego images exhibiting
high resistance to steganalysis.

The subsequent sections are structured as follows: Section 2 provides an overview of
relevant research and existing methodologies in image steganography and INN. Section 3
comprehensively outlines our proposed image steganography network, based on the INN
and GAN, elucidating the implementation of the image permutation algorithm. Section 4
presents and scrutinizes the experimental outcomes. Finally, Section 5 encapsulates the
paper’s findings and offers a forward-looking perspective.
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2. Related Work

Image steganography stands as a prominent research domain within information secu-
rity. In this context, we succinctly examine seminal contributions in image steganography
alongside recent advancements in invertible neural networks.

2.1. Image Steganography

Traditional image steganography is broadly categorized into spatial and transform
domains. Spatial techniques, like the LSB algorithm, are simple but often result in noticeable
quality degradation and artifacts. Transform domain methods, involving DFT, DWT,
and DCT, aim to embed data into spectral components but may overlook natural pixel
distribution, impacting image quality. Researchers address this by exploring steganography
in complex image texture regions, minimizing steganographic distortion to embed pixels
judiciously. Approaches like S-UNIWARD [17], WOW [18], and HUGO [19] adopt this
concept. However, these methods still rely on human-designed processes, making them
vulnerable to steganalysis attacks.

The integration of deep learning into image steganography has spurred the develop-
ment of various methods, broadly categorized into three classes based on the embedding
process: (1) Enhanced Cover Image Generation; (2) Steganographic Distortion Framework
Design; and (3) Stego Image Generation.

In the class of enhanced cover image generation, most methods utilize a Generative
Adversarial Network (GAN) to create cover images with intricate textures suitable for
steganography. Volkhonskiy et al. [9] were pioneers in using GANs for image steganog-
raphy, employing the generator and discriminator for enhanced cover image generation.
Shi et al. [20] enhanced this method by incorporating the Wasserstein distance as the loss
function and modifying the generative network structure, improving the quality of the
generated images. However, this class faces challenges in reduced steganographic capacity,
and the potential for suspicion due to unrealistic cover images is a concern for attackers.
The steganographic distortion framework class is centred on employing neural networks
to formulate more rational distortion functions. Through adversarial training, the neural
network learns the embedded distortion probability of each pixel, thereby guiding the
modification of the cover image. Tang et al. [10] introduced a GAN to automatically learn
steganographic distortion in images. This method proved effective in comparison with
human-designed adaptive steganography algorithms and demonstrated notable resistance
against steganalysis attacks.

The category of stego image generation integrates encoder-decoder networks into the
realm of image steganography, showcasing continued advancements. Hayes et al. [13]
introduced the HayesGAN steganographic network, pioneering the concealment of text
information within images using coding networks. This method involves inputting text
information and cover images into the encoder network to obtain stego images, which are
then reconstructed by the decoder network. To enhance security, the stego image and cover
image undergo steganography analysis and detection through a discriminative network.
Zhang et al. [21] significantly increased the capacity for hidden text information with the
SteganoGAN, which, achieving a large-capacity image steganography of 4.4 bpp, this
network produces more realistic stego images.

Baluja [15], employing DCGAN, achieved steganography for colour image of the
same size. The network structure comprises three components: a pre-processing network
resizing the secret image to match the cover image’s size, an encoder network combining
the secret image and cover image to generate the stego image, and a decoder network
facilitating the extraction of the secret image. Rehman et al. [22] made improvements on this
foundation, but both steganographic networks led to the issue of colour distortion. Zhang
et al. [23] addressed this by converting the RGB format of the steganography-performed
image to YCrYb format. Since the Y channel exclusively retained semantic information
without colour details, the secret grey image was hiding in the Y-channel of cover image.
Subsequently, the obtained stego image was combined with the Cr and Cb channel images,
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effectively resolving the colour distortion problem. However, this approach also resulted
in a two-thirds reduction in the steganographic capacity. The inherent link between the
concepts of encoder-decoder networks and concealment-extraction has garnered significant
attention in image steganography methods. However, the irreversibility in the design
of these methods using encoder-decoder networks has led to a certain level of degrada-
tion in secret information extraction accuracy, consequently limiting improvements in
steganographic capacity.

2.2. Invertible Neural Network

The flow model entails the mapping of a simple a priori distribution, typically Gaus-
sian, to the true distribution of the data through a series of invertible transformations. This
mapping is invertible, allowing for both the generation of samples from the data (forward
flow) and the reconstruction of the data from the samples (backward flow). The earliest flow
model, NICE, was introduced by Dinh et al. [24]. It comprises multiple additive coupling
layers, significantly enhancing the capacity to learn nonlinear deterministic transformations
of data through the scaling transformation layer. Subsequently, Dinh et al. [25] extended
NICE by introducing a convolutional neural network (CNN), resulting in RealNVP. They
improved the additive coupling layer to an affine coupling layer, making it suitable for
image processing tasks. Kingma et al. [26] further advanced the field by introducing invert-
ible 1 × 1 convolution and proposing Glow, a model capable of synthesizing images with
enhanced perceptual fidelity.

Invertible neural networks serve as a practical realization of the flow model, garnering
significant interest from researchers in the imaging domain. Within the realm of super-
resolution, Lugmayr et al. [27] presented SRFlow, a normalized flow-based super-resolution
method that effectively learns the conditional distribution of high-resolution outputs given
low-resolution inputs, resulting in high-quality images. Ardizzone et al. [28] introduced
conditional invertible neural network (cINN), showcasing an architecture capable of ef-
ficiently pre-processing conditional inputs into valuable features and generating diverse
samples with sharper images. In the context of medical image reconstruction, Denker
et al. [29] introduced the conditional flow model cINN, enhancing reconstruction quality
by substituting the standard Gaussian distribution with a radial Gaussian distribution.
Addressing the rendering of visually appealing sRGB images, Xing et al. [30] devised an in-
vertible image signal processing (InvISP) pipeline, demonstrating improved quality in both
rendered sRGB images and reconstructed RAW data. For image rescaling, Xiao et al. [31]
developed an invertible rescaling network (IRN) capable of producing visually superior
low-resolution images through the inverse bijection process, while also reconstructing high-
resolution images with quality closely resembling the original image. Invertible neural
networks have found application in conjunction with image steganography. Lu et al. [32]
introduced an invertible steganographic network (ISN) designed to conceal multiple colour
images within one colour image, exhibiting enhanced steganographic capacity while main-
taining good invisibility. Meanwhile, Jing et al. [33] proposed the HiNet steganography
framework, incorporating a low-frequency wavelet loss to enhance security while pre-
serving high image quality. Building upon HiNet, Guan et al. [34] introduced a focus
map mapping module to guide the location of image steganography effectively, thereby
improving overall image hiding capacity.

3. Proposed Approach
3.1. Overview

Figure 1 illustrates our comprehensive steganography model. The primary objective
of the proposed steganography in this paper was to improve the hiding capacity of image
steganography while maintaining high-fidelity image quality. Additionally, we aimed
to bolster steganography’s resilience against steganalysis attacks by incorporating an
image permutation algorithm based on Logistic chaotic mapping. In this section, we
begin by delineating the concealed secret information’s location and presenting an image
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permutation algorithm grounded in chaotic mapping. Subsequently, we provide a detailed
analysis of our image steganography network, CHASE, treating its encoding (hiding) and
decoding (reconstructing) processes as the network’s forward and backward processes,
respectively. We also introduce an adversarial neural network for adversarial training
to enhance image quality. Finally, we expound on the network’s training strategy and
elucidate the rationale behind constructing the loss function.
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Figure 1. The process in which the cover image and secret image undergo the forward hiding
network, resulting in the generated stego image and associated loss information. Subsequently, the
stego image, along with auxiliary variables produced from stego image, is input into the backward
reconstructing network. This network reveals the cover image and secret image. The revealed
secret image, alongside the original secret image, undergoes assessment by the discriminator for
differentiation. Through iterative adversarial training, the quality of the reconstructed secret image
is refined.

3.2. Network Architecture
3.2.1. Steganography Position

In contrast to conventional image steganography methods that conceal information
within RGB or grey image, our approach in this paper involves hiding secret information
within the Y channel of YCrCb images. Some RGB-based steganography techniques tend
to distort the colour of the stego images. This distortion arises from the fact that RGB
images consist of three channels (R, G, B), encompassing semantic, luminance, and colour
information. When concealing secret information, the distribution of this information is
inevitably disrupted, resulting in colour accuracy issues.

Y = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B
Cr = 0.5 ∗ (R − Y) ∗ 0.713 + 128
Cb = 0.5 ∗ (B − Y) ∗ 0.564 + 128

(1)


R = Y + 1.403 ∗ (Cr − 128)

G = Y − 0.714 ∗ (Cr − 128)− 0.344 ∗ (Cb − 128)
B = Y + 1.773 ∗ (Cb − 128)

(2)

As depicted in Figure 2, within the YCrCb encoding format, the Cr and Cb channels
encapsulate both partial semantic and complete colour information of the image. Mean-
while, the Y channel contains only partial semantic information and luminance information.
By concealing information solely in the Y channel, we mitigated the problem of colour
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distortion during embedding. The conversion between YCrCb and RGB coding formats is
described by Equations (1) and (2). Unlike Zhang et al. [23], who only hides grey image
in the Y channel, our approach allows for hiding colour image in Y channel, significantly
enhancing steganographic capacity.
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Figure 2. In the first row, the first column of images is the original RGB image, and the second, third,
and fourth columns are, in order, images with R, G, and B channels. And in the second row, the first
column image is the greyscale image of the original RGB image, and the second, third, and fourth
columns are the images of Y, Cr, and Cb channels in turn.

3.2.2. Image Permutation

During information hiding, we found that the presence of a large, solid colour area in
the chosen cover image or complex texture in the secret image can lead to the error image,
i.e., the residual image between the stego image and the cover image, containing discernible
texture information from the secret image. This poses a significant security risk if the set
of cover images used for training is inadvertently disclosed. To address this concern,
we integrated image permutation with image steganography to minimize the distinction
between the stego image and the cover image. This ensures that even if the image set is
exposed, attackers cannot extract valuable information from the error image. Leveraging
the sensitivity of chaotic systems to initial values and their ability to generate variable and
intricate pseudo-random sequences [35], we proposed an image permutation algorithm
based on Logistic chaotic mapping. The permutation process, depicted in Figure 3, involves
four primary steps, and its reversal process serves as the inverse of the scrambling process.
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Without the correct key and the inverse permutation algorithm, an incorrectly restored image (fourth
image) is obtained.
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Step 1: Pixel Position Choosing

Iterate over image rows and columns, selecting pixel values alternatively at odd and
even positions for each row and column. This process creates four sub-images with pixel
positions denoted as (odd, odd), (odd, even), (even, odd), and (even, even). The dimensions
of these sub-images are one-quarter of the original image.

Step 2: Chaotic Sequence Generation

The Logistic chaotic mapping is expressed in Equation (3), where the control parameter
µ ranges between (0, 4], but when the value range is within the interval of (3.5699456, 4],
it enters the chaotic state [36]. We utilized the logistic chaotic map twice with different
parameters to generate random sequences. As we can see in Figure 4, initially, using
the Logistic chaotic mapping (F_Logistic) to generate a chaotic sequence (F_Sequence)
of the same size as the sub-image for reordering, the position index of each element in
this ordered sequence is calculated based on the original chaotic sequence. Subsequently,
we used Logistic chaotic mapping (S_Logistic) again with distinct control parameters
and initial values to generate four copies of the sequence (S_Sequence) for reordering,
each having a quarter of the length of F_Sequence. Calculations are performed to obtain
the position index of each element in the ordered sequence, guiding the reordering of
F_Sequence sequentially to intensify its disorder. Finally, Guide_Index is acquired and
utilized as guidance to determine the pixel positions of the sub-image to be scrambled.

Xn+1 = µ × Xn × (1 − Xn), n = 0, 1, 2 . . . (3)
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Figure 4. Utilizing two chaotic mappings, the resulting chaotic sequence is further scrambled. This
final disrupted sequence is then employed to guide the permutation of the image, thereby enhancing
the overall image scrambling.

Step 3: Iterative Scrambling of Sub-Images

Continuously repeat Steps 2 and 3 until all four sub-images have undergone scrambling.

Step 4: Random Exchange of Sub-Images

Perform a random exchange of positions for the scrambled sub-images. To maintain
consistency in size with the cover image, concatenate these sub-images back into the
original image based on their row and column positions. Output the final scrambled image
after this exchange.

This algorithm iteratively scrambles sub-images in a chaotic manner, guiding the
disordering of pixel positions. After the final iteration, a random exchange of sub-image
positions is performed, resulting in the output of the scrambled image. The traversal of
sub-images and the transformation of the final position of the sub-images are conducted to
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enhance the efficacy of image permutation. Improving the degree of scrambling contributes
to enhanced security.

3.2.3. Chaos Mapping Enhanced Image Steganography Network (CHASE)

Information-hiding encoder-decoder networks proposed by researchers such as
Baluja [15] and Rehman et al. [22] typically adopt an independent design for encoder
and decoder networks. This approach results in the irreversibility of the secret information
encoding and decoding processes, consequently diminishing the success rate of secret
information restoration. Taking inspiration from the architecture of invertible neural net-
works like Dihn [25] and Lu [32], our proposed CHASE model integrates the encoding
and decoding of secret information within the same network. Figure 5 illustrates our
steganographic network (CHASE), and Table 1 provides an explanation of the notation
used below.
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Figure 5. The framework of CHASE. During forward hiding, the Haar wavelet transforms the
scrambled secret image and cover image. Invertible blocks then process the transformed data,
generating the stego image and loss information. In backward reconstruction, auxiliary variable
and the stego image pass through invertible blocks to reconstruct the cover image and scrambled
secret image. The inverse scrambling of the latter yields the final secret image. In the hiding and
reconstructing blocks, ρ, η, φ, and ψ can be arbitrary functions, and we utilized Dense block [37] to
represent them to enhance the image processing effect.

Table 1. Summary of notations used in this article.

Notation Description

Xh Cover image
Xs Secret image
Xc Stego image
Scr(x)/Scr−1(x) Image scrambling process/Image inverse scrambling process
F(x)/ F−1(x) Hiding process/Reconstruction process
X̂s Reconstructed secret image
Xs Inverse Scrambling reconstructed secret image
X̂h Reconstructed host image
r Loss function generated during forward hiding process
z Auxiliary variable used to assist in reconstructing images
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In the forward hiding process of the network, Xh is transformed from the RGB en-
coding format to the YcrCb format, with the Y channel selected as the actual cover image.
Subsequently, the Y channel image and Xs undergo separate transformations using the Haar
wavelet, a discrete wavelet transform variant that is easy to implement. Hiding information
in the frequency domain is better advantageous for preserving the visual quality of the
image than in the spatial domain. Additionally, the Haar wavelet transform is orthogonal,
ensuring the retention of image information, and enabling complete reconstruction of the
original image during the inverse transformation. The two transformed images are input
into the network.

Following the invertible block sequence and, ultimately, the inverse wavelet transform
(IWT), the Y channel image with intact information and the loss information r are obtained.
The Y channel image at this stage undergoes further transformation to yield Xc, which is
utilized for actual transmission. In the backward process, the Y channel image is initially
extracted from Xc. The reconstructed Y channel image and the scrambled secret image X̂s
then undergo the scrambling inverse process to ultimately obtain the reconstructed secret
image Xs. We designed the hiding and reconstructing processes as reciprocal problems,
and this process can be expressed by the following formula:

IWT(F(DWT(Xh), DWT(Src(Xs)))) = (Xc, r) (4)

IWT
(

F−1(DWT(Xc), z)
)
=
(

X̂h, Scr−1(X̂s
)
= Xs

)
(5)

Invertible Block. The designed hiding and reconstruction networks share identical
sub-modules and network parameters, employing the affine coupling layer as the invertible
block. In contrast to the additive coupling layer, the affine coupling layer adeptly captures
intricate relationships in input information and effectively manages high-dimensional data
distribution. The input accepted at the beginning of the reversible block is (Xh, Xs), which
can also be denoted as (X1

h, X1
s ) to indicate the first input. Throughout the forward hiding

process, multiple invertible blocks process information. For the i-th invertible block, its
input (Xi

h, Xi
s) and output (Xi+1

h , Xi+1
s ) can be represented by the following formula: Xi+1

h = e
(
α⊙ψ

(
Xi

s
))

⊙ Xi
h ⊕φ

(
Xi

s
)

Xi+1
s = e

(
α⊙ ρ

(
Xi+1

h

))
⊙ Xi

s ⊕ η
(

Xi+1
h

) (6)

where ρ(·), η(·), φ(·), and ψ(·) can represent arbitrary functions. Here, e(·) signifies a
Sigmoid function, and the coefficient α acts as a regularization factor to mitigate numerical
instability arising from the e(·) function. Following the last forward hiding block, the
outcomes undergo IWT to obtain the stego image and loss information, respectively. For
the backward reconstruction module, the information flow direction is inverted. In the
i-th module, the output (X̂i

h, X̂i
s) from the i + 1-th module serves as input (X̂i+1

h , X̂i+1
s ), as

expressed by the following equation:X̂i
s =

(
X̂i+1

s ⊖ η
(

X̂i+1
h

)
⊙ exp

(
−α⊙ ρ

(
X̂i+1

h

)))
X̂i

h =
(

X̂i+1
h ⊖φ

(
X̂i

s
))

⊙ exp
(
−α⊙ψ

(
X̂i

s
))
)

(7)

Initially, the inverse extraction model takes the stego image and auxiliary information
as input. At the final stage, executing IWT and image inverse permutation yields the
reconstructed secret image.

The Loss information r and auxiliary variable z. In the forward hiding process, the
loss of information in the cover and secret image results in the generation of loss infor-
mation r in the output. For successful secret information reconstruction in the backward
reconstruction module, both the loss information r and the stego image must be used as
input. In actual transmission processes, transmitting loss information is impractical, as it
may make it easier for an attacker to deduce the original secret information or result in
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information leakage. Moreover, transmitting loss information poses a risk of information
leakage. While some steganography methods employing reversible neural networks utilize
auxiliary variables sampled from standard Gaussian distributions during the reverse ex-
traction process, this approach may compromise the accuracy of secret image extraction.
The success of deep learning-based image steganography is attributed to the frequency
differences between the cover image and the secret image [38]. To enhance secret image
extraction accuracy, we leveraged the high-frequency sub-bands of the Stego image as
auxiliary variables, containing partial information of the secret image to better assist in the
reverse extraction operation.

Generative Adversarial Networks. The introduction of the auxiliary variable z facil-
itates secret information extraction but may compromise the completeness of the secret
information, leading to a reduction in the quality of the secret image. To enhance the fi-
delity of the reconstructed secret image, we incorporated a Generative Adversarial Network
(GAN) [39]. The GAN framework comprises a generator responsible for image generation
and a discriminator tasked with evaluating the difference between the generated and
real images.

In our setup, CHASE serves as the generator to generate the reconstructed secret image
and the original secret image as the real image. The generator aims to produce a recon-
structed image indistinguishable from the real image, while the discriminator is trained to
differentiate between the generated and real images. The discriminator network structure
is detailed in Table 2. Through iterative adversarial training, the distribution difference
between the reconstructed secret image generated by the backward reconstruction process
using auxiliary variable z and the distribution of the original secret image diminishes.

Table 2. The structure of the discriminator network. It employs convolution kernels of various scales
to perform dimensionality reduction on the input, effectively extracting meaningful features. The
CBAM [40] self-attention mechanism was employed to enhance the representation of these features.

Layers Process Output Size

Input / 3 × 256 × 256
Layer 1 3 × 3 Conv + LeakyReLu 64 × 256 × 256
Layer 2 4 × 4 Conv + BatchNorm + LeakyReLu 64 × 128 × 128
Layer 3 3 × 3 Conv + BatchNorm + LeakyReLu 128 × 128 × 128
Layer 4 4 × 4 Conv + BatchNorm + LeakyReLu 128 × 64 × 64
Layer 5 3 × 3 Conv + BatchNorm + LeakyReLu 256 × 64 × 64
Layer 6 4 × 4 Conv + BatchNorm + LeakyReLu 256 × 32 × 32
Layer 7 3 × 3 Conv + BatchNorm + LeakyReLu 512 × 32 × 32
Layer 8 4 × 4 Conv + BatchNorm + LeakyReLu 512 × 16 × 16
Layer 9 3 × 3 Conv + BatchNorm + LeakyReLu 512 × 16 × 16
Layer 10 4 × 4 Conv + BatchNorm + LeakyReLu 512 × 8 × 8
Layer 11 CBAM 1 × 32,768
Layer 12 FC 1 × 100
Output FC 1 × 1

The introduction of the GAN aims to enhance the quality of the reconstructed im-
age, bringing it closer to the original image. Continuous adversarial training within the
backward reconstruction process enables the reconstruction of higher-quality secret im-
ages using the auxiliary variable z as input. The primary objective of this deep learning
framework is to achieve superior visual quality and fidelity while preserving secrecy.

3.3. Optimization Strategy

Model Training Strategy. Due to the potential instability in the training process of
Generative Adversarial Network (GAN), a two-stage training approach was employed to
enhance stability and improve the quality of generated images. In the initial phase, training
network operates without GAN, which only use z to help reconstruct secret image. Once a
relatively stable state is reached in the quality of the generated loss information r and the
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secret image reconstructed by the auxiliary variable z, the training proceeds to the second
phase. In the second phase, a discriminator network is utilized to train the reconstructed
secret image to distinguish it from the original secret image. This aims to ensure that the
distribution of secret images reconstructed by CHASE aligns with the distribution of the
original secret images, thereby enhancing the quality and fidelity of the generated images.
The two-stage training strategy is implemented to address potential challenges in GAN
training, promoting stability and aligning the generated images more closely with the
desired distributional properties.

Loss Function. To ensure the fidelity of both the stego and reconstructed secret images
to the original cover image and secret image, respectively, two crucial losses are employed
throughout the training process:

• Hiding Loss. In the forward hiding process, the network conceals the secret informa-
tion within the cover image to generate the stego image. The objective is to make the
stego image visually close to the cover image. Hence, the hiding loss is defined as
follows, where N represents the number of reversible blocks:

Lhid(Θ) = ∑N
n=1𝓁hid

(
X(n)

h , X(n)
c

)
(8)

• Reconstruction Loss. The secret image reconstructed by the backward reconstruction
process should be kept consistent with the original secret image, and for this purpose,
the reconstruction loss is defined in the following form, where N represents the number
of reversible blocks:

Lrec(Θ) = ∑N
n=1𝓁rec

(
X(n)

s , Xs
(n)
)

(9)

And the next two loss functions are used in each of the two stages of training.
• Loss information r loss. In stage 1, we performed L2 regularization of the loss informa-

tion r as a distribution loss function to constrain the loss information distribution to be
more concentrated around values close to zero, thus reducing the complexity of the
model, making the model smoother and the training more stable.

Llin = ∥r∥2
2 (10)

So, the total loss function at stage 1 is expressed as:

Ls1 = λhLhid + λrLrec + λl Llin (11)

• GAN Loss. In Stage 2, the cross-entropy loss function is employed as the distribution
loss to quantify the disparity between the distribution of the reconstructed secret
image and the original secret image. By considering the original secret image as the
ground truth and the reconstructed secret image as the predicted distribution in the
GAN model, minimizing the cross-entropy loss encourages the model to align its
predicted distribution closely with the ground truth distribution. The GAN loss is
defined in the following form, where N represents the number of reversible blocks.

Lgan(Θ) = −∑N
n=1

[
X(n)

s logX
(n)
s +

(
1 − X(n)

s

)
log
(

1 − X
(n)
s

)]
(12)

Therefore, the total loss function at stage 2 is expressed as:

Ls2 = λhLhid + λrLrec + λgLgan (13)

4. Experimental Results
4.1. Implementation and Setup Details

Datasets and settings. During model training, we utilized the DIV2K training set [41],
comprising 800 high-quality 2 K resolution images, to train our CHASE. The model’s
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performance was assessed using the DIV2K test set (100 2 K images) [41] and a validation set
consisting of 120 images randomly selected from the COCO test set [42] and the ImageNet
test set [43], respectively. Data augmentation during training involved random horizontal
and vertical flipping, as well as random cropping of images. For the test set, images
underwent centre cropping exclusively, and the resolution size for both training and test
images was maintained at 256 × 256.

The forward hiding network and the backward reconstructing network underwent
training and validation with 16 invertible blocks, respectively, optimizing their parameters
using the Adam [44] optimizer with β1 = 0.9 and β2 = 0.999. In stage 1, the total number of
epochs was set to 3 K, with an initial learning rate of 1 × 10−4, halved every 1 K iterations.
Hyperparameters in Equation (11) are configured as λh = 8, λr = 1, λl = 1. In stage 2,
the total number of epochs was 1.5 K, the initial learning rate was 1 × 10−4, and the
discriminator underwent pre-training for 500 epochs. The learning rate was halved every
200 epochs, followed by joint training of the discriminator and CHASE for 1 K epoch, with
the learning rate halved every 500 epochs. The hyperparameters in Equation (13) were set
as λh = 16, λr = 1, λgan = 1. The hiding loss employed an L2 regularized loss function,
while the reconstruction loss utilized an L1 regularized loss function.

Benchmarks. To assess the efficacy of our steganography method, we conducted
a comparative analysis against various state-of-the-art image steganography methods,
including a version of our proposed steganography method without image permutation
algorithm named CHASE_WO, a spatial-domain image steganography method known
as 4bit-LSB, Rehman’s steganography [22] based on convolutional neural network, and
DeepMIH founded on the invertible neural network proposed by Guan [34].

To ensure fairness in the comparison, we acquired the relevant open-source code for
each method and adhered to the parameter configurations specified in their respective
papers. The retraining process was executed using the aforementioned dataset.

Evaluation metrics. To gauge the quality of the cover-stego image pairs and the secret-
reconstructed secret image, we employed two widely used evaluation metrics in image
steganography, namely the peak signal-to-noise ratio (PSNR) and Structural Similarity
Index (SSIM) [45].

The PSNR serves as a standard image quality metric to assess the impact of a steganog-
raphy method on an image. It calculates the peak signal-to-noise ratio between the original
image and the steganographic image, providing a quantitative measure of image quality.
Higher PSNR values indicate superior image quality, with results typically expressed in
decibels (dB). The mathematical expressions for PSNR, given an original image X and a
generated image Y with an input size of m × n, are as follows:

MSE =
1

mn ∑m−1
i=0 ∑n−1

j=0 [X(i, j)− Y(i, j)]2 (14)

PSNR = 10 · log10

(
MAX2

X
MSE

)
(15)

In the PSNR formula, MAXX represents the maximum pixel value of the image,
typically 255 in the case of an 8-bit image. It is important to note that the PSNR value used
for comparison is the average of the PSNR values calculated for the R, G, and B channels of
the two images.

On the other hand, SSIM is a metric that considers not only brightness (luminance
contrast) differences but also structural similarity. It assesses the structural similarity
between the original image and the steganographic image, taking into account luminance
and contrast similarities. The SSIM value ranges from −1 to 1, where a value closer to 1
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indicates better image quality. For two input images, X and Y, the mathematical expressions
for SSIM are as follows:

SSIM(X, Y) =

(
2µxµy + C1

)(
2δxy + C2

)(
µ2

Xµ2
Y + C1

)(
δ2

xδ2
y + C2

) (16)

In the SSIM formula, µx and µy represent the pixel means of images X and Y, respec-
tively, while δx and δy are the variances of X and Y. The covariance of X and Y is denoted
by δxy. Additionally, there are two constants, C1 and C2, which play a role in preventing
division by zero.

Relative Payload (RP) is utilized as an evaluation metric to compare the steganographic
capacity of each steganographic image. RP is calculated as the ratio of the amount of secret
information that a steganography method can embed to the cover image capacity. This
metric gauges the efficiency of information hiding in the image steganography. A higher
relative payload signifies that the method can embed more secret information in the image.
The mathematical expression for RP is as follows:

RP =
bits(secret in f ormation)

bits(cover capacity)
× 100% (17)

Furthermore, we assess the security of our CHASE and benchmarks in Section 4.4
using two prominent types of steganalysis tools: statistical steganalysis and deep learning-
based steganalysis.

4.2. Comparison

Quantitative results. Table 3 presents the evaluation metrics for CHASE, as well as
the un-scrambling version CHASE_WO, alongside other steganography methods on the
DIV2K, COCO, and ImageNet test sets. Notably, CHASE_WO outperformed existing state-
of-the-art high-capacity image steganography methods and even low-capacity alternatives
for cover-stego image pairs on various datasets at equivalent capacities. While CHASE
introduced some degradation in the quality of the stego image, it achieved higher quality
for the reconstructed secret image compared to low-capacity steganography methods.
Specifically, CHASE_WO improved PSNR by 1.85 dB for cover-stego image pairs, 2.55 dB
for secret-reconstructed secret image pairs, and 0.02 in SSIM compared to DeepMIH [34].

In our CHASE, both cover-stego image pairs and secret-reconstructed secret image
pairs exhibited PSNR values surpassing 30 dB, indicating excellent visual quality. The
PSNR and SSIM of secret-reconstructed secret image pairs were improved by up to 1.43 dB
and 0.02, respectively, on the COCO dataset compared to low-capacity steganography
methods, showcasing competitive image quality advantages.

Qualitative results. Figure 6 displays images generated by different steganogra-
phy methods, including 4bit-LSB, Rehman et al. [22], DeepMIH [34], our CHASE, and
CHASE_WO. Visually, 4bit-LSB exhibited noticeable artifacts, Rehman et al. produced a
yellowish tint, while CHASE, after image scrambling, closely resembled the corresponding
cover image. The secret image obtained from the reduction process was nearly identical
to the original secret image, showcasing high-fidelity results even with large capacity and
complex hidden information.
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Table 3. A comprehensive comparison of benchmarks across different datasets. Note for steganog-
raphy methods with a relative payload greater than 100%, the evaluation metrics for cover-stego
images consider the images after hiding, while the metrics for secret-reconstructed secret images
represent the average across all extracted secret images. Arrows (↑) indicate the direction of more
effective changes in values.

Methods RP

Cover/Stego Image Pair

DIV2K COCO ImageNet

PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑
4bit-LSB 50% 33.19 0.94 33.79 0.94 33.68 0.94

Rehman et al. [22] 33.3% 30.70 0.92 30.18 0.91 32.68 0.93

DeepMIH [34] 300% 34.13 0.94 34.29 0.94 33.39 0.93

CHASE_WO 300% 35.98 0.94 33.59 0.92 33.34 0.93

CHASE 300% 33.09 0.91 31.34 0.90 30.03 0.92

Methods RP

Secret/Reconstructed Image Pair

DIV2K COCO ImageNet

PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑
4bit-LSB 50% 30.81 0.90 32.04 0.91 31.26 0.90

Rehman et al. [22] 33.3% 32.11 0.93 32.13 0.92 34.75 0.93

DeepMIH [34] 300% 33.47 0.93 33.87 0.93 32.21 0.92

CHASE_WO 300% 36.02 0.95 34.41 0.94 32.07 0.93

CHASE 300% 32.23 0.93 33.47 0.93 31.62 0.91
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Figure 6. A visual comparison of our CHASE with 4bit-LSB, Rehman et al. [22], and DeepMIH [34],
showcasing both the stego images and the reconstructed secret images. The red boxes in the first
column denote cropped regions for image steganography actually labeled as GT (Ground Truth) in
the second column. The subsequent columns (from the third to seventh) display the steganographic
image of different methods. The first row illustrates the effects of their stego images, while the second
row shows the reconstructed secret images.

4.3. Ablation Study

Effectiveness of image-permutation. The image disambiguation algorithm serves
two crucial purposes: (1) preventing the disclosure of secret information through the
corresponding error image, even if the training image set is leaked, and (2) ensuring that,
without the key and inverse permutation algorithm knowledge, attackers cannot accurately
reconstruct the correct information, even with black-box attack attempts. Table 4 illustrates
a noticeable degradation in the image quality of cover-stego and secret-reconstructed image
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pairs due to the inclusion of image-permutation. However, this sacrifice is justifiable in
scenarios demanding high security.

Table 4. Ablation experiments on image-premutation and GAN.

Image-Premutation GAN Cover/Stego Pair Secret/Reconstructed Pair

× × 33.82/0.92 35.18/0.93
×

√
35.98/0.94 36.02/0.95√

× 33.61/0.92 30.41/0.90√ √
33.09/0.91 32.23/0.93

In Figure 7, the error images produced by various methods highlight the effectiveness
of the image-permutation. Despite the challenging task of hiding a secret image with
complex texture in a cover image, CHASE’s error image exhibited no texture replication
artifacts associated with the original secret image. In contrast, error images from 4bit-LSB,
Rehman et al. [22], DeepMIH [34], and CHASE_WO showed discernible texture replication
artifacts, revealing the outline of the secret information and posing a risk of information
leakage. In comparison, CHASE not only achieved a relatively larger hiding capacity but
also maintained superior visual effects and security.
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Figure 7. Illustrating a concealed visual comparison on images challenging for steganography. In
the cover and secret images in the first column, the green box denotes areas cropped for image
steganography. The first row of images on the right displays the stego images for each steganography
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Effectiveness of the GAN. Table 4 demonstrates a notable enhancement in the image
quality of cover-stego and secret-reconstructed image pairs through the incorporation
of the GAN. Specifically, in the forward hiding process, the PSNR value for the cover-
stego image pair improved by 2.16 dB, and SSIM improved by 0.02. In the backward
reconstruction process, the PSNR value for the secret-reconstructed secret image saw
an improvement of 0.84 dB, with SSIM increasing by 0.02. The introduction of image-
permutation adds complexity to the actual secret image, challenging the model in restoring
it. Consequently, the image quality of the secret-reconstructed secret image pair saw a
significant decrease. After training with the adversarial training network, the PSNR value
and SSIM increased by 1.82 dB and 0.03, respectively. This indicates that GAN effectively
promotes the convergence of the distribution of secret images and reconstructed secret
images, enhancing image quality while maintaining high restoration accuracy.
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4.4. Steganalysis

Steganalysis serves as a countermeasure to steganography, detecting concealed in-
formation within carrier media. We evaluated the security of our steganography method
against both statistical and deep learning-based steganalysis techniques.

Statistical steganalysis. We employed StegExpose [46], a widely utilized steganalysis
tool that relies on statistical image characteristics, to assess the anti-steganalysis capabilities
of our CHASE method. To evaluate its performance, we generated 500 stego images using
CHASE and selected an additional 1000 clean images for the test set. The StegExpose tool
was applied with threshold adjustments between 0 and 1. The true positive rate (TPR) and
false positive rate (FPR) were calculated, leading to the creation of the receiver operating
characteristic curve (ROC) shown in Figure 8. The orange solid line represents our CHASE
method’s ROC, while the dark blue dotted line represents random guessing method. The
assessment of steganography method detection by steganalysis tools can be framed as a
two-classification task, with the Area Under the Receiver Operating Characteristic (ROC)
Curve, denoted as AUC, serving as a widely used metric for evaluating the performance of
such models. A higher AUC value, closer to 1, indicates superior detection performance,
while a value nearing 0.5 suggests performance akin to random guessing. The AUC value
of our CHASE method, at 0.53, underscores its strong resistance to steganalysis, affirming
its high level of security. StegExpose hardly detect whether secret information was present
in the stego images generated by CHASE.
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Deep learning-based steganalysis. The rise of deep learning has advanced steganaly-
sis technology. In this section, we employed SRNet [47] and Zhu-Net [48], two state-of-the-
art deep learning-based image steganalysis networks, to evaluate our CHASE method and
benchmarks. Differing from the conventional approach of training the network with com-
mon steganography algorithms and then utilizing the model to detect different methods,
we adopted a novel image steganalysis method proposed by Weng et al. [49]. This method
involves directly using distinct cover-stego image pairs generated by each steganography
method as training sets for the network. The number of training sets was progressively
increased to examine the network’s detection capabilities under varying quantities of
training sets.

We generated 1500 stego images through both CHASE_WO and CHASE, forming
their respective test sets with corresponding clean cover images. During the training of
SRNet and Zhu-Net, the batch was set to 1, and other hyperparameters were configured
according to their respective papers. Figure 9 illustrates changes in the detection accuracy
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of the steganalysis model as the number of training sets increases. The left image displays
the detection effect under SRNet, while the results for Zhu-Net are on the right.
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Regardless of SRNet or Zhu-Net, our CHASE method exhibited superior anti-steganalysis
capabilities compared to other methods. Under SRNet, even with 200 pairs of training
samples, the detection accuracy of our CHASE method surpassed existing methods, with
the SOTA method DeepMIH showing an 8% lower accuracy and Zhu-Net showing a
7.9% lower accuracy. Additionally, the unscrambling version CHASE_WO demonstrated
an average 11.86% and 10.2% higher detection accuracy on SRNet and Zhu-Net, respec-
tively, compared to the scrambling version CHASE. This discrepancy may be attributed
to the distinct deep learning methodologies employed by SRNet and Zhu-Net to analyse
residual information in the cover/stego image for prediction. As depicted in Figure 9,
compared to other steganography methods, obtaining the residual image by CHASE from
the cover/stego image is challenging for an attacker, resulting in enhanced resistance
against steganalysis, even at large-capacity steganography scales.

5. Conclusions

In this paper, we present CHASE, an advanced image steganography network based on
invertible neural networks, surpassing existing state-of-the-art methods. CHASE achieves
a ground-breaking steganography capacity by enabling the concealment of colour images
within grayscale images. The incorporation of adversarial networks significantly enhances
the imperceptibility of concealed images and restores the quality of hidden information. To
bolster security, we introduce an image permutation algorithm based on Logistic chaotic
mapping, mitigating the risk of secret information exposure and endowing the steganogra-
phy network with superior resistance to steganalysis compared to other methods. CHASE
exhibits robust generalization across diverse datasets, outperforming other state-of-the-art
methods in various numerical comparisons, including capacity and image quality.

Looking ahead, exploring image steganography methods applicable in practical sce-
narios becomes a crucial direction for research. Real transmission channels often involve
malicious eavesdroppers, channel noise, and image compression, posing challenges to
secret information transmission. Addressing these challenges and concurrently enhanc-
ing capacity, security, and robustness in practical applications represent a pertinent and
necessary future research direction.
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