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Abstract: This paper investigates the problem of attitude tracking in quadrotor unmanned aerial
vehicles (UAVs) using a model-free online learning control (MFOLC) scheme. The attitude system,
which is represented by unit quaternions, is considered in the presence of uncertain and unknown
inertia parameters, time-varying external disturbances, and angular velocity measurement noise. A
computationally low-cost control scheme consisting of a model-free baseline controller and a module
capable of learning from previous control input is designed. The proposed controller does not require
precise inertial parameters and does not involve feedforward terms that use these parameters and
true system states. This ensures that the approach can protect the control effort from sensor noise
as well as parameter uncertainty. We also show that all the signals in the closed-loop system are
uniformly ultimately bounded. Comparative simulations and real-world experiments are conducted
for validation, which demonstrate the effectiveness and fine performance of the proposed scheme.

Keywords: attitude tracking; quadrotor; online-learning control; model-free control

1. Introduction

Multirotor UAVs play an important role in several civil and military fields because of
their mechanical simplicity, vertical takeoff and landing capability, and natural stability [1].
The quadrotor is a typical multirotor UAV that is widely used in aerial photography,
military reconnaissance, emergency communication, agriculture, surveying and mapping,
etc. [2-4] Attitude tracking control is fundamental for a quadrotor to complete various
tasks, yet it is also a challenging issue. In practical applications, the attitude controller must
achieve control accurately and quickly under internal and external uncertainties, such as
external disturbances caused by turbulence, inaccurate or even unknown model parameters,
and angular velocity measurement noise. Furthermore, due to the limitation of on-board
processor performance and the fact that many tasks require running complex programs
online (e.g., simultaneous localization and mapping), the attitude control algorithm must
utilize inexpensive online computations.

Various efforts have been made in designing quadrotor attitude controllers. Initially,
linear methods such as proportional-integral-derivative (PID) and linear quadratic regulator
(LQR) methods were widely used for quadrotor attitude control [5-8]. To improve robust-
ness under unknown external disturbances, disturbance estimation-based approaches have
been studied. Controllers employing these approaches consist of a baseline controller
and an external disturbance estimation component, which compensate for disturbance.
For instance, Chen et al. [9] proposed a disturbance observer to estimate the unknown
disturbance, and by using the output of the disturbance observer, a flight controller of the
quadrotor was developed to track the given signals which are generated by the reference
model. However, in Chen’s work the disturbance is assumed to consist of some harmonic
disturbances. More generally, Wang et al. [10] designed a finite-time extended state ob-
server to cope with external disturbances, and a nonsingular terminal sliding-mode control
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scheme was developed for a quadrotor. In addition, the sliding-mode technique was also
used to establish observers to estimate the external disturbances within the appointed
settling time [11]. To improve the accuracy of the disturbance estimation, neural networks
were integrated into controllers to provide a more accurate estimation of the external
disturbances [12,13]. However, neural networks require a large amount of training data,
while their generalization abilities in different environments also need to be validated. The
idea of disturbance estimation-based control has also been applied to the case of model
parameter uncertainty. In such a case, one first designs a baseline controller using a set of
nominal parameters, and then estimates and compensates for the parameter uncertainties
as external disturbances. Once the output of the estimation component can approximate
the true disturbances, the stability of the closed loop system can be theoretically guaranteed.
However, when the sensor noise is significant, it is difficult for the estimated disturbances
to converge to the true value, and thus it is hard to ensure the stability of the system.
Furthermore, the disturbance estimation component requires additional computational
consumption and prior information on the quadrotor to build a nominal model.

To address the issue of unknown model parameters, learning-based control has been
widely utilized in recent years. This includes offline learning methods such as reinforcement
learning and deep reinforcement learning. These methods learn control policies directly
from flight data and thus avoid having to use a UAV model [14,15]. However, their gener-
alization remains difficult to ensure, and their performance and stability should be further
verified when the scene that generates the data for training differs greatly from the actual
scene. Because of this, offline learning methods have only achieved good performance in
some static scenarios, such as drone racing [16]. In contrast, online learning approaches
combine a model-based controller with a model online-learning mechanism, which can
cope with uncertain model parameters or unknown situations [17,18]. This is very similar
to disturbance estimation-based methods, which are also essentially a data-based method,
and therefore control performance may be hard to guarantee when the measurements are
noisy. In addition, the online learning mechanism increases computational consumption.

To achieve accurate and robust attitude control with compact computational power,
Zhang et al. [19] proposed an online learning control (OLC) algorithm. This approach
achieves robust attitude control for spacecraft by adding the online learning of previous
control outputs to a baseline controller. However, a feedforward term that compensates
for the gyroscopic moments requires knowing the exact inertia matrix, which is difficult to
accomplish in practice.

Motivated by the need for an accurate, robust, and computation-saving attitude
tracking controller for quadrotors, the present paper makes several improvements to the
original OLC and applies it to a quaternion-based quadrotor attitude dynamical system.
The main contributions of this paper are as follows.

1. A model-free online learning control (MFOLC) scheme is proposed to achieve the
attitude tracking of quadrotors. The closed-loop attitude system is uniformly ulti-
mately bounded (UUB) stable when the control torques and the external disturbances
are bounded.

2. In contrast to previous studies on the robust attitude tracking control problem for
quadrotors, the proposed controller is computationally inexpensive, and does not re-
quire accurate model parameters of quadrotors. Both simulation and real-world exper-
iment show that our scheme can achieve attitude tracking in the presence of parameter
uncertainties, external disturbances, and noisy angular velocity measurements.

The rest of this paper is organized as follows. In Section 2, we introduce the quaternion-
based mathematical model of a rigid quadrotor and a control problem statement. Section 3
presents the control law design and a stability analysis. A comparative simulation and a
real-world experiment are given in Section 4. The conclusions and directions for future
works are given in Section 5.



Appl. Sci. 2024, 14, 980

30f13

2. Model Description and Problem Statement
2.1. Notations

Let R denote the set of real numbers, R"*" denotes the set of m by n real matri-
ces, and I, € R™" denote an n by n identity matrix. For a matrix A € R"™*", AT de-
notes its transpose, ||A|| = \/Amax (ATA) denotes its 2-norm, where Amax(M) denotes the
largest eigenvalue of a symmetric matrix M. For any vector v = [01,03,...,0,]" € R"*1,

[0]| = VoTv denotes its Euclidean norm. The operator (v)" for a vector v = [v1,,v3]" € R3
denotes a skew-symmetric matrix:

0 —03 (%)
v = | v3 0 -0 (1)
—02 01 0

In attitude control, we denote the inertial frame as Z, and the UAV fixed body
frame as B. The attitude of a quadrotor is defined by the state of B relative to Z. Unit-
quaternion q = [s,v7] T e R is used to present the attitude of quadrotors, where s
is the scalar part and v € R3*! is the vector part; moreover, ||g|| = 1. Furthermore,

R(q) = (I3 + 250" + 20" 0") € R3*3 denotes the rotation matrix from B to Z.

2.2. Attitude Model of a Quadrotor

The attitude of the quadrotors is modeled as an airborne rigid body in terms of the
unit-quaternion, g. Thus, the attitude dynamics are given by the following [20,21]:

o [sm) 1 —e)T
0= 5] =2 [vw +s<t>131 () @
Jo(t) = —w(t) Jw(t) + u(t) + d(t) )

where w(t) € R3*! is the angular velocity of the quadrotor expressed in the body frame;
J € R3*%3 denotes the inertia matrix, which is a positive definite constant matrix; u(t) € R3
is the control torques provided by four rotors; and d(t) € R3 denotes the time-varying
external disturbance torques acting on the vehicle. For the sake of brevity, time stamps will
be omitted below when they do not interfere with comprehension, e.g., writing w(f) as w.

. . . . T . .
Once given the desired attitude quaternion, g, = [ss, v} ], desired rotational speeds

w,; and desired rotational accelerations w, the attitude tracking error quaternion

q, = [se,0]] "and angular velocity error w, can be defined as follows:

Se = S84+ vTvd @)
Ve = 850 — svy + v vy
We = W — Qd (5)

where Q); = (R(qe))de. By directly differentiating g, and w, the tracking error dynamics
can be obtained as follows:

. se|l 1 —vlw,
io= o] = 2l F o ®
Ja, = —wA]wﬂ(wQQd—m) futd @)

where Q; = (R(qe))Ta')d.

Note that the thrust and torsional torque produced by each rotor are bounded; the
desired rotational speeds and accelerations given by the user or higher-level controller are
also bounded. Therefore, the following reasonable assumptions are made.
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Assumption 1. Control torque u is bounded; i.e., there exists u > 0 such that ||u| < u. w; and
wy are bounded, and thus w, and w, are bounded; i.e., there exist Wy, Wy, We, W, > 0, such that
Hw”d < wy, wdH < wy, ||weH < w,, and HweH < We.

Assumftion 2. External disturbance torque d is bounded; i.e., there exists d > 0 such that
d]| <d.

In practice, the inertia matrix J is unknown, but it can be estimated by weighting
the individual components of the quadrotor and building a physical model [22]. Let m
denote the total mass of the quadrotor, and / denote the approximate distance between the
motor and the center of mass, both of which can be practically measured. Similar to the
literature [23], we assume that the mass of each motor is ’f and treat the four motors as point

masses, then the inertia matrix of this simplified physical model is diag ( ”‘TIZ, mle, ml 2) . This

simplified physical model has a larger moment of inertia along each axis than a quadrotor
with the same size. Thus, we make the following assumption.

Assumption 3. Inertia matrix | is unknown, but the upper bound of its 2-norm can be estimated
by the mass and size of the quadrotor; i.e., we can select | = ml?> > 0 such that ||J|| < 7.

2.3. Problem Statement

The control objective can be stated as follows. Consider the rigid quadrotor attitude
system given by (2) and (3), design a control law u such that:

1.  the closed-loop attitude error system given by (6) and (7) is globally stable under
Assumptions 1-3.
2. the attitude and angular velocity error converge to a small region.

3. Model-Free Online Learning Control Design
3.1. Control Law Design

Considering the control objective, we define the attitude synthesis error € = kyv, + w,,
where k, > 0. It is clear that, as the attitude and angular velocity error converge to a small
region, € also converges to a small neighborhood of the origin. Then, the model-free online
learning control (MFOLC) law is proposed as follows:

u(t) =+ L(f) ®)
n=—Ke ©)
L(t) = Kpu(t — 1) (10)

where 7 is the baseline controller, K = diag(ky, k2, k3), and k; > 0,i = 1,2,3. L(t) is
the online learning term, where K; = diag(k; 1,k; 2, k;3) is the learning intensity matrix,
and k;; > 0,i = 1,2,3. u(t — 7) is the control input in time t — 7, and 7 > 0 is called
a learning interval.

Remark 1. Since the ordinary OLC law is

u(t) =ku(t—1) —ky [e — Kll(—wA]w + %p](selg + v?)weﬂ (11)

where ky > 0 is the learning intensity, ky > 0 is the control gain, x; > 0 is the feedfor-
ward gain. There are two main differences between the proposed MFOLC and the ordinary OLC.
(1) The baseline controller of the MFOLC discards the gyroscopic torque compensation term, which
enables the controller to be independent of the inertia matrix of quadrotors and to weaken the control
saturates. (2) The control parameters of each attitude axis can be adjusted independently, which
enhances the control effectiveness for quadrotors with an asymmetric structure.
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3.2. Stability Analysis

Substituting (8)—(10) into (7) and combining the result with (6) yields the dynamical
equation of attitude synthesis error:

Jé = —€"Jw + Sw, + B — Ke (12)

where .
S = Skl (sels +00) + kpol T + (10)" = Q)T = JOF (13)
B = kpolJOy — O]y — JOu +d + L(t) (14)

The following lemma is given as a preparation for the proof of the MFOLC'’s stability.

Lemma 1. Under Assumptions 1-3, the following inequalities hold:

[Swe|| < clle]] (15)
18Il < p (16)
where
o = J(1.5k, + 3wy) (17)
0= 7(w§ + kg +@) +d+ Kk (18)
Proof of Lemma 1. Note that ||a"|| = ||a|| for a € R>*!, ||s.Iz + v)'|| = 1, and ||R(q,)| = 1.

According to the Minkowski inequality and Assumptions 1 and 3, we have
1 - _
151 < 1 Ghollsets + 02 + Kylloel + 3100l ) < 715k, +3@) = (19

It is clear that o > 0. Recall that since ||e|| < kp + [|we|| and k, > 0, [|we| < ||e]|.
Therefore,
[Sewell < [[S][[|ewe|l < elle]] (20)

Then Equation (15) holds. Similarly, according to the Minkowski inequality and
Assumption 1, B
ILu(t =) < [IL][|ju(t = D) < kit (21)

holds, where k; = max(k;1,k;2,k13). Upon combining Assumptions 2 and 3, we can
conclude that B . o
18Il < T(@3 + ky@a +@a) +d+Kjii = p (22)

As such, p > 0. Therefore, this completes the proof. [J
The stability analysis of the closed-loop attitude system can be stated in the following
Theorem.

Theorem 1. Consider the quadrotor attitude system governed by (2) and (3) under Assumptions
1-3. With the application of the control law (8)—(10), we suppose that the control parameters are
chosen so that

k> J(1.5kp +3w,) +1 (23)

where k = min(ky, ka, k3), holds. Then, the attitude synthesis error € is UUB.

Proof of Theorem 1. Consider the following Lyapunov function candidate:

_ 1T
V= Ee Je (24)



Appl. Sci. 2024, 14, 980 60f13
Obviously, V > 0 and V = 0 if and only if € = [0,0,0]. The derivative of V is
V=eTJé (25)
Substituting (12) into (25) yields
V=—e'Ke —e'e"Jw+ eTSw, + e’ (26)

Note that e’ Jw = 0, and according to Lemma 1, the following inequality holds:
Vs —(k=o)e*]+plel (27)

Since ||e|| > 0 and p > 0, we have

2
pllell < llel* + £ 8)

Substituting (28) into (27) yields
V< —nle|*+6 (29)

where t=k—0c—1,andd = %.
It is seen from (25) that V < 0 when e are outside of set D = {e‘ lel| < 2\/% }

This implies that V(¢) decreases monotonically outside set D. Hence, the attitude synthesis
error in the closed-loop system is bounded. Moreover, we can choose a sufficiently small
g >0, lete =g+ 2\/%, and define set D’ = {el||e|| < ¢’ } to guarantee that

. !
lim le(t)]| € D (30)

It can be concluded from (30) that there exists a T(¢) > 0, such that ||e(t)|| < € for
t > T(¢'). This shows that e is UUB from its definition [24].

According to Theorem 2 in [25], when € converges to a small region ¢/, |w, ;(t)| < 2¢/,
|qe,i(t)| < € /kp,i=1,2,3.

This completes the proof. [J

Remark 2. The proposed MFOLC is more intuitive than the ordinary OLC in control parameter
tuning. The following steps can be used for parameter tuning in the MFOLC. Firstly, one can set
an appropriate @y according to the quadrotor’s task and estimate | through the weight and size of
the quadrotor. Secondly, one can find the appropriate k, according to the system response and then
calculate the minimum values of kq, ko, and k3 using Equation (22). Finally, ky, kv, ko, ks, ki1, ki 2,
and k; 3 should be fine-tuned according to the attitude responses of the quadrotor.

4. Validation
4.1. Comparative Simulation

The efficacy of the proposed method is illustrated with numerical simulations. The
parameters of the quadrotor are chosen according to a quadrotor developed in [23]. The
key parameters for the quadrotor used for simulation are as follows:

o  Total mass of the quadrotor: m = 4.14 kg;
e The distance from the center of mass to each motor: [ = 0.315 m;
e  The inertia matrix:
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0.082 0 0
Jo=| 0 00845 0 (kg-mz) 31)
0 0 01377

To test the robustness of the MFOLC algorithm, the uncertainty of inertia and external
disturbances are also considered in the simulation.

5co0s 0.5t — 1sin 0.5t — 3
AJ(t) = diag | 3cos0.5¢+2sin0.5t —4 |1 x 1072 (kg-m?) (32)
4cos0.5t — 1.5sin 0.5t + 5

2sin ¢t +5c0s0.15¢ + 3]
d(t) = | —3cos¢t —4sin0.7t — 4| x 1073(N - m) (33)
8cos ¢t —4sin0.5t — 1 |

where ¢ = 0.5+ ||w||. The external disturbance is shown in Figure 1.

0.1 Disturbance (unit: Nm)
0.05
-
0
0 20 40 60 80 100
0
N
T —0.05
—0.1
0 20 40 60 80 100
0.01
<L 0
—0.01
0 20 40 60 80 100
t (second)

Figure 1. The external disturbance used in the simulation.

The proposed MFOLC and the ordinary OLC developed in [19] are compared. The
desired attitude quaternion is g, = [0.9353,0.2273,0.2708, 0.01459]T, which is equivalent to
a 30° roll angle, a 30° pitch angle, and a 10° yaw angle. The initial state of the quadrotor is
q(0) = [1,0,0,0]", w(0) = [0,0,0]", and w4(0) = @w4(0) = [0,0,0]". The simulation starts
fromt =0and u(t <0)=[0,0, O]T. The control parameters are listed in Table 1.

Table 1. Control parameters chosen for simulation.

Controller MFOLC OLC
kp =1 kp =215
K; = diag(0.8,0.85,0.8) ki =038
Parameters K= diag(1.625, 1.7,1.725) ko =07
7=0.01 7=0.01
K1 = 3.5

Note that according to Assumption 3, ] can be selected by | = mI?> = 0.4108 kg - m?,
such that [|Jo|| = 0.1377 < J. According to Table 1, k > J(1.5k, +3@,) + 1 = 1.6162 is also
satisfied. In addition, to maintain hover, attitude control torques must be limited, with the
maximum roll, pitch, and yaw control torque of 1 Nm, 1 Nm and 0.1 Nm, respectively.
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4.1.1. Scenario 1: Without Measurement Noise

In this scenario, a relative ideal situation is simulated in which only external dis-
turbances are acting on the quadrotor. Figure 2a—c show the simulation results for the
attitude angle, the angular velocity, and the control input torque, respectively. The attitude
transient-response specifications are listed in Table 2. To compare steady-state performance,
the root mean square error (RMSE) of the Euler angles are calculated for both controllers.
Table 3 presents the steady state RMSEs of the MFOLC and OLC from 10 to 100 s.

Attitude (unit: deg) . Angular Velocity (unit: deg/s)
| ref
< { ----oLC
5 20 ref 3
---oLCc
—MFOLC
: 6
0
40
e ref
i
é 20 - )
= ---oLc
—MFOLC
0
0 6
2 K
10 N ref
H
o -
> 0

t (second)

t (second)
(a (b)

Control Torque (unit: Nm)

.
L limit

0 N ---.0oLC
o 08 U‘JILQJ ——MFOLC

t (second)

(©)

Figure 2. Evolution of (a) attitude tracking; (b) angular velocity tracking; (c) control torques, without
measurement noise.

Table 2. Attitude transient-response specifications without measurement noise.

Specifications MFOLC OLC Units
. Roll 0.11 0
Maximum Pitch 0.19 0 %
overshoot Yaw 0.03 0
Roll 3.27 4.12
Settling time Pitch 3.125 3.81 s

Yaw 3.465 4.375
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Table 3. Steady state RMSE without measurement noise.
MFOLC OLC Units
roll angle error 2.3508 40.1740
pitch angle error 2.2847 9.0077 1012 degree
yaw angle error 4.5797 23.1220
We 1 0.4892 35.8330
Wep 0.1774 22.4560 10712 degree/s
We 3 5.5551 15.3720

In Figure 2a,b, both the MFOLC and OLC can achieve a control objective within 5 s.
In Table 2, the proposed MFOLC has a shorter settling time and a slight overshoot, and a
smoother angular velocity trajectory. It is worth noting that the MFOLC achieves such fine
performance without priori information, compared to the OLC which uses the exact inertia
matrix. This is because the MFOLC uses a more flexible and intuitive parameter system.

In Table 3, the attitude steady-state error of the MFOLC is improved by 87.26% com-
pared to that of the OLC. This is because the OLC algorithm contains the feedforward
term that depends on the inertia matrix. Additionally, in the simulation, the inertia ma-
trix has some unknown uncertainty, which affects the steady-state performance of the
OLC algorithm.

In Figure 2¢, the MFOLC also requests a smaller control torque than the OLC, and the
duration of the control torque to reach the limit is significantly less than that of the OLC.
This means a lower energy consumption for the quadrotor.

4.1.2. Scenario 2: With Angular Velocity Measurement Noise

In this scenario, not only external disturbances but also angular velocity measurement
noise are acting on the quadrotor. For the consideration of engineering applications, the
noisy angular velocity measurement w, is modeled as follows:

wp(t) = w(t) +w(t) (34)

where w(t) € R? is the angular velocity sensor noise, modeled as zero-mean Gaussian
random variables, with variance matrix X, = diag(0.0025,0.0025,0.001).

Figure 3a—c show the simulation results for attitude angle, angular velocity, and control
input torque, respectively. The attitude transient-response specifications and steady state
RMSEs from 10 to 100 s are listed in Tables 4 and 5, respectively.

Table 4. Attitude transient-response specifications with angular velocity measurement noise.

Specifications MFOLC OLC Units
. Roll 1.88 2.0
Maximum Pitch 0.93 0.98 %
overshoot Yaw 3.59 3.69
Roll 3.2 4.145
Settling time Pitch 3.07 3.79 s
Yaw 3.08 3.745

Table 5. Steady state RMSE with angular velocity measurement noise.

MFOLC OLC Units
roll angle error 0.1624 0.1706
pitch angle error 0.0821 0.0842 degree
yaw angle error 0.1037 0.1049
We 1 2.2417 2.2601
We 2.2424 2.2601 degree/s

We3 0.7159 0.7243




Appl. Sci. 2024, 14, 980

10 of 13

Attitude (unit: deg) 30 - Angular Velocity (unit: deg/s)
3 207 ref
===0LC
—MFOLC
0 - n
0 6
£
S 20 ref
= ---0LC
—MFOLC
O o
0 6
10+
% 5 ref
> ---oLC
—MFOLC
[
0 6 0 2 4 6
t (second) t (second)
(a) (b)

Control Torque (unit: Nm)

T
N

s — S limit
0.5 ! . ----oLc
X 05 . ——MFOLC

t (second)

()

Figure 3. Evolution of (a) attitude tracking; (b) angular velocity tracking; and (c) control torques,
with angular velocity measurement noise.

Comparing the simulation results in Section 4.1.1, the addition of angular velocity
measurement noise leads to a significant increase in the overshoot and steady state RMSE for
both controllers. However, the reduced performances are still in a fine performance range.

Overall, the comparative simulation shows that, both the MFOLC and OLC can realize
attitude tracking control of the quadrotor in the presence of angular velocity measurement
noise, model uncertainty and external disturbance. However, the MFOLC has better perfor-
mance in terms of settling time, steady state control accuracy, and energy consumption.

4.2. Real-World Experiment

For a real-world experiment, we validate the proposed MFOLC in an outdoor envi-
ronment. The quadrotor we used in the experiment is shown in Figure 4a. It is a small
quadrotor designed by our team. Its power system consists of four sets of Emax RS2205 mo-
tors, kangkong 5045 three-blade propellers, and an XRotor 30A electronic speed controller
(ESC). The flight controller is also self-developed, based on an STM32F407 microprocessor,
as shown in Figure 4b. The onboard angular velocity sensors are three ADXRS646 micro-
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electro-mechanical system (MEMS) gyroscopes. The quadrotor is powered by a 3-cell LiPo
battery and has a total mass of 0.9 kg. Figure 4c presents the outdoor flight picture.

(b)

Figure 4. Photo of (a) the tested quadrotor platform; (b) Photo of the flight controller; and (c) the

outdoor flight experiment.

The attitude control loop ran at 200 Hz, and the control parameters were as follows:

ky = 2, K; = diag(0.8,0.8,0.8), K = diag(1.225,1.325,1.35), and T = 0.01. By using an
anemometer, the wind speed at the flight field was 3.7 m/s from the east. The quadrotor
performed a route flight and the proposed MFOLC tracked the target attitude provided
by the position controller, and the target angular velocity and acceleration were always
set to zero.

The corresponding experimental results are illustrated in Figure 5. Overall, the MFOLC

exhibits a good attitude command tracking performance, while the yaw angle tracking
error is relatively large. This is because the yawing torque is produced by the weak reactive
torque form each rotor. To maintain hovering and other axial attitude stabilizations, the
yawing torque produced by speed difference of rotors is much smaller than rolling and
pitching torques, resulting in relatively large attitude tracking errors.

roll

pitch

yaw

Attitgde (unit: geg)

ref
—MFOLC

0 20 40
t (second)

(a)

Figure 5. Evolution of (a) attitude tracking; and (b) angular velocity tracking in a real-world experiment.

5. Conclusions

80

100

Angular Vvelocity (uvnit: deg/sl)

ref
—MFOLC
20 40 60 80 100
ref
—MFOLC
20 40 60 80 100
t (second)
(b)

Although many nonlinear controllers can be used for quadrotor attitude tracking,

none of them have addressed external disturbances, uncertain or even unknown model
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parameters, and low computational consumption simultaneously. In this paper, we de-
veloped a novel model-free online learning control scheme to achieve attitude tracking
in the presence of time-varying external disturbances, uncertainties in the inertia matrix,
and angular velocity sensor noises. The proposed approach guaranteed the closed-loop
attitude error system to be uniformly ultimately bounded stable. An accurate inertia matrix
and expensive computational consumption were not needed to implement the control law.
Thus, the proposed MFOLC is quite suited for small quadrotors with compact arithmetic,
which is illustrated by a real-world experiment. A remaining problem of our method is
that it is not specifically designed for the input saturation limit case, especially when the
quadrotor needs to maintain enough vertical thrust to resist gravity when performing
attitude control tasks. Moreover, the control margin that can be allocated to attitude control
is limited. Hence, in future work, we intend to further investigate the MFOLC algorithm
for the input saturation limit case.
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