
Citation: Yoon, M. Direct Numerical

Simulation of Turbulent Boundary

Layer over Cubical Roughness

Elements. Appl. Sci. 2024, 14, 1418.

https://doi.org/10.3390/

app14041418

Academic Editor: Zhaosheng

Yu

Received: 10 January 2024

Revised: 2 February 2024

Accepted: 6 February 2024

Published: 8 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Direct Numerical Simulation of Turbulent Boundary Layer
over Cubical Roughness Elements
Min Yoon 1,2

1 Department of Mechanical Engineering, National Korea Maritime and Ocean University,
Busan 49112, Republic of Korea; minyoon@kmou.ac.kr; Tel.: +82-51-410-4369

2 Interdisciplinary Major of Ocean Renewable Energy Engineering, National Korea Maritime
and Ocean University, Busan 49112, Republic of Korea

Abstract: The present study explores turbulence statistics in turbulent flow over urban-like terrain
using direct numerical simulation (DNS). DNS is performed in a turbulent boundary layer (TBL)
over 3D cubic roughness elements. The turbulence statistics at Reτ = 816 are compared with
those of experimental and numerical studies for validation, where Reτ is the friction Reynolds
number. The flow exhibits wake interference characteristics similar to k-type roughness. Logarithmic
variations in streamwise and spanwise Reynolds stresses and a plateau in Reynolds shear stress are
observed, reminiscent of Townsend’s attached-eddy hypothesis. The energy at long wavelengths
near the top of elements extends to smaller scales, indicating a two-scale behavior and a potential link
to amplitude modulation. The quadrant analysis of Reynolds shear stress is employed, revealing
significant changes in the contributions of ejection and sweep events near the top of elements.
The results of quadrant analysis in the outer region closely resemble those of a TBL over a smooth
wall, aligning with Townsend’s outer-layer similarity. The analysis of the transport equation of
turbulent kinetic energy highlights the role of the roughness elements in energy transfer, especially
pressure transport. Streamwise energy is mainly reduced near upstream elements and redirected in
other directions.

Keywords: direct numerical simulation; turbulent boundary layer; cubical roughness; turbulence
statistics; urban boundary layer

1. Introduction

The rapid urbanization following the Industrial Revolution has led to increased popu-
lation density and the proliferation of apartments and high-rise buildings within cities [1].
This expansion significantly releases pollutants from human activities into the atmosphere,
leading to severe atmospheric pollution when not expelled promptly [2]. At turbulent/non-
turbulent interfaces of the boundary layers, an active exchange of energy and substances
occurs [3]. Additionally, high-rise buildings introduce concerns of building-induced wind,
posing threats to human life and property. Assessing the impact of building-induced wind
has become a critical aspect of architectural design. Urban authorities now require studies
on how this wind influences pedestrians in large construction projects [4]. The refore, it
is essential to accurately scrutinize the complex and swirling flows around buildings and
their interactions.

Rough-wall turbulence is ubiquitous in both nature environments and industrial fields.
Recently, there has been a significant focus on the study of wall-bounded turbulence over
rough surfaces [5,6]. Extensive studies on rough-wall turbulence have been conducted
experimentally and numerically on 2D rods and 3D cubes [7–13], hemispheres [14,15],
LEGG® bricks [16,17], randomly distributed roughness [18,19], and real urban terrain [20,
21]. In urban regions, the canopy layer includes bluff bodies representing buildings,
typically one-tenth the size of the boundary layer thickness (δ). The characteristics of
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rough-wall flows can be determined based on the height (k), arrangement, and spacing of
roughness elements [22–24]. A major parameter is the plane density (λP), defined as the
plan area of elements per unit area of the urban array. Grimmond and Oke [24] identified
flow regimes in urban regions based on urban surface density, including λP. To concentrate
on flows around elements and their interactions, 3D cubic roughness elements are utilized
with λP = 0.25 in a staggered arrangement.

Several studies of turbulent flows over a staggered cube array with λP = 0.25 to
describe urban-like terrain have been conducted. Castro et al. [25] employed hot-wire
anemometry and laser Doppler anemometry to measure the velocity of urban canopy layers
with k/δ = 0.135 at Reθ = 12,000. Here, Reθ is the momentum thickness defined as U∞θ/ν,
where U∞ is the free-stream velocity, θ is the momentum thickness, and ν is the kinematic
viscosity. Castro et al. [25] reported the dominant scales of turbulence in the roughness
sublayer of urban flow are of the same order as the height of elements. Additionally, they
observed two energetic scales around the top of elements, with small scales superimposed
onto larger scales, supported by the results using particle image velocimetry (PIV) [26].
Reynolds et al. [27] conducted experiments with hot-wire anemometry to measure the
velocity of the turbulent boundary layer (TBL) at Reτ = 5250 with the same configuration
as Castro et al. [25] with k/δ = 0.085. Here, Reτ is the friction Reynolds number as uτδ/ν,
where uτ is the friction velocity. Perret et al. [28] conducted experiments on TBLs with cubic
roughnesses of k/δ = 0.044 at Reτ = 32,400 and k/δ = 0.045 at Reτ = 49,900 using hot-wire
measurements. Basley et al. [29,30] performed experiments at the same facilities as Perret
et al. [28] using stereoscopic PIV at two wall-parallel planes. A spectral analysis revealed
that large scales influence the flow within the roughness sublayer, and these scales depend
on the arrangement of cubes.

Experimental results can enhance the understanding of high-Reynolds-number flows,
but there are limits to the relatively small field of view and low-resolved data near the
wall due to roughness elements. Kanda [31] performed a large-eddy simulation of tur-
bulent channel flows over the staggered arrays with λP = 0.25 of cubes with k/δ = 0.167.
Wall-normal profiles of Reynolds shear stress were reported near the wall under elements,
and low-speed streaks and vortical structures were visualized in instantaneous flow fields.
To fully resolve all turbulent scales, Coceal et al. [32,33] conducted the direct numerical simu-
lation (DNS) of turbulent channel flows at Reτ = 500 over the staggered cubes with λP = 0.25
and k/δ = 0.133. Coceal et al. [33] observed vortical structures around low-momentum
regions in the logarithmic layer, reminiscent of the hairpin vortex model [34]. However, the
sizes of the computational domains are not sufficiently large to resolve δ-scale turbulence
structures [35]. While the free-slip boundary condition was applied to the top boundary of
channel flows, there are limitations in mimicking the real urban boundary layer due to the
periodicity in the streamwise direction and in fully resolving the flow around individual
elements with uniform grids in the wall-normal direction [33]. The refore, the DNS of
TBL is essential to fully resolve turbulent flows under the roughness sublayer and large
scales. The re are DNS studies that conduct TBLs over 3D cubic roughness elements with
λP = 0.25 [36,37]. The height of elements is approximately 0.06δ, equivalent to 26~30 wall
units based on Reτ = 434~488. Lee et al. [36] and Ahn et al. [37] concentrated on examing
the effects of streamwise and spanwise spacing of elements on the properties of TBLs.
Considering the average thickness (=600 m) of urban boundary layers [38], DNS studies of
TBLs for higher k/δ and Reτ are required to understand turbulent flows around buildings.

The objective of the present study was to explore the energy transport near roughness
elements in rough-wall turbulence. To this end, DNS was conducted on a TBL (Reτ = 816)
over a staggered array of 3D cubical roughness elements with k/δ = 0.121. For comparison,
DNS data from a zero-pressure-gradient (ZPG) TBL with a smooth wall at a similar Reτ were
employed. This paper is organized into four sections. Section 2 describes the numerical
procedure for DNS. Section 3.1 analyzes the streamwise variations of turbulence statistics
following a roughness step change. Turbulence statistics are compared with the results
of other experiments and DNS studies for validation in Section 3.2. In Section 3.3, turbu-
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lence statistics are conditionally averaged, and spectral analysis is conducted. Section 3.4
employs quadrant analysis to investigate Reynolds shear stress and the contributions of
each quadrant to flows near the roughness elements. Additionally, Section 3.5 calculates
the transport equation of Reynolds stress and conditionally averages each budget term to
examine the energy transfer near the elements. Finally, Section 4 concludes the paper with
a summary of the present results.

2. Numerical Details

The governing equation of incompressible flows can be expressed in non-dimensional
form as follows:

∂ũi
∂t

+
∂ũiũj

∂xj
= − ∂ p̃

∂xi
+

1
Re0

∂

∂xj

∂ũi
∂xj

+ fi, (1)

∂ũi
∂xi

= 0, (2)

where xi are the Cartesian coordinates, ũi are corresponding raw velocities, and p̃ is the
pressure. The velocity (ũ) is decomposed into time- and ensemble-averaged (U) and
fluctuating (u) components. The third term on the right-hand side of Equation (1) represents
the momentum forcing (fi). The governing equation is non-dimensionalized using U∞ and
δ0, where δ0 is the inlet boundary layer thickness. The Reynolds number Re0 is defined as
U∞δ0/ν. The fractional step method [39] is adopted to discretize the governing equation
by decoupling the pressure and velocity. The second-order Crank–Nicolson scheme is
used to implicitly discretize the convection and viscous terms in time, and the second-
order central finite difference scheme is employed to discretize all terms in space with a
staggered grid. The discrete momentum forcing is explicitly determined in time based
on the velocity at the previous time step to satisfy the no-slip boundary condition on the
immersed boundary. The numerical algorithm for fi is described in previous studies [8,40].
A superposition of a Blasius velocity profile and isotropic free-stream turbulence is imposed
on the inlet boundary. The free-stream turbulence is generated from the Orr–Sommerfeld
and Squire modes in the wall-normal direction and from the Fourier modes in time and
in the spanwise direction [41]. The turbulent intensity of the free-stream turbulence is
set to 5% and superimposed up to 2δ0, which induces the rapid decay of the free-stream
turbulence in the downstream direction [42]. A convective boundary condition is used at
the exit boundary, and the Neumann boundary condition is applied at the upper boundary.
The no-slip boundary condition is applied at the bottom wall and to cubic roughness
elements, and a periodic boundary condition is adopted in the spanwise direction.

The sizes of the computational domain are 885δ0, 100δ0, and 37δ0 in the streamwise,
wall-normal, and spanwise directions, respectively. The number of grids in each direction
is 4069 (x), 541 (y), and 385 (z). The grid spacing is uniform in the streamwise and spanwise
directions, while the gird is stretched in the wall-normal direction using a hyperbolic
tangent function: y(j) = Ly[1 + tanh(α

{
(j − 1)/(Ny − 1)− 1

}
)/tanhα], j = 1, 2, · · · , Ny.

Here, α is the constant 3.05, and Ly and Ny are the domain size and the number of grids in
the wall-normal direction, respectively. The uniform spacing is the order of the Kolmogorov
length η (i.e., ∆x+ < 10η+) with a minimum η+ value of 2, which is sufficient to resolve all
turbulence scales [43]. The superscript + represents the quantities normalized by wall units
at Reτ = 816. The time step in wall units is 0.0241, and the averaging time is 1400δ0/U∞.
The parameters of the computational domain are summarized in Table 1. The procedure
for the DNS of TBLs is described in previous studies [42,44].

Table 1. Information of the computational domain. The domain size and the number of grids in each
direction are denoted by Li and Ni, respectively. ∆x, ∆y, and ∆z are the grid resolutions in streamwise,
wall-normal, and spanwise directions, respectively.

Lx/δ0 Ly/δ0 Lz/δ0 Nx Ny Nz ∆x+ ∆z+ ∆ymin
+ ∆y100

+

885 100 37 4609 541 385 11.92 5.97 0.16 0.95
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Figure 1 depicts schematic views of cubic roughness elements. The 3D cubes are
periodically arranged in both the streamwise and spanwise directions in a staggered
manner. The height of each cube is k = 1.59δ0, and the streamwise and spanwise sizes
of the cube are lx = lz = 1.54δ0, representing lx ≈ lz ≈ k. The streamwise and spanwise
spacing is px/k = 2 and pz/k = 2, respectively. As illustrated in Figure 1, ε represents a
virtual origin, and y′ indicates y − ε. The virtual origin is obtained from the moment M
due to the forces in the downstream direction, where M is defined as ∑

y=k
y=0 (Cpy) + C f k.

Here, 0.5Cf is the frictional drag, and 0.5Cp is the form drag. Consequently, ε is calculated
from ε = M/(Cf + Cp), interpreted as the wall-normal location where the drag acts on the
roughness [45]. Four locations indicated as P0, P1, P2, and P3 are chosen for analyzing
the turbulence statistics. A smooth wall is applied to the region x/δ0 < 700, and the 3D
cubic roughness elements are implemented on the wall over x/δ0 = 700. Inflows are
developed over the smooth wall, and turbulent flows are fully developed beyond x/δ0
= 600. The flow characteristics suddenly change from smooth to rough near x/δ0 = 700.
After a transitional state, the flows become stable and enter an equilibrium region [46–48].
The turbulence statistics are obtained at x/δ0 > 840, far from the step change, where Reτ is
816. For comparison, the DNS dataset for a ZPG TBL with a smooth wall at Reτ = 825 is
employed [42,44], referred to as “Smooth”. The present data set is referred to as “Rough”.
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Figure 1. A schematic view of cubic roughness elements. The height of each element is k, and lx and
lz are streamwise and spanwise sizes of each element, respectively. The distance between adjacent
elements is px and pz in the streamwise and spanwise directions, respectively. Virtual origin is ε, and
y′ is defined as y − ε. P0, P1, P2, and P3 denote data locations.

3. Results and Discussion
3.1. Roughness Step Change

Figure 2 displays 3D iso-surfaces of λci, where λci is a measure of swirling strength [49]
used to identify vortical motions, focusing on the region around the step change at x/δ0 = 700.
The iso-surfaces illustrate 5% of the maximum value of λci, with color depths representing
wall-normal locations. The cubic roughness elements become visible in the region x/δ0 > 700.
At x/δ0 = 700, horizontal vortices are observed near the bottom of the upstream face of the
elements. Vortex sheets emerge on the top and sides of the elements and are then ejected toward
the downstream direction, leading to the generation of hairpin-like structures [48]. After a few
rows of elements, hairpin-like structures originate from a strong shear layer over elements with
less contribution from vortex sheets [28,32,33,50].
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Figure 3a–c show the streamwise variations of δ, displacement thickness (δ*), and Reθ ,
respectively. In Figure 3, all quantities are spatially averaged, and each circle represents
the averaged result over px/k = 2. The boundary layer thickness is defined as the wall-
normal location where U = 0.99U∞, and δ* gradually increases with an increase in x/δ0.
The magnitude of Reθ increases up to 1500 near the exit boundary, representing an increase
in θ as x/δ0 increases. Figure 3d represents the streamwise variations of the virtual origin
normalized by the height of cubic roughness (ε/k). The magnitude of ε/k is 0.81, which is
lower than one, similar to that of Coceal et al. [32]. A larger ε/k implies that the contribution
of the form drag to the total drag is dominant compared to the frictional drag, which can
be negligible [51]. The friction velocity over a rough wall can be obtained from the total
drag, the sum of frictional and form drag, as uτ

2/U∞
2 = 0.5(Cf + Cp) [7]. The streamwise

variations of uτ are displayed in Figure 3e, where the magnitude of uτ decreases with
an increase in δ0. Based on the streamwise variations of δ and uτ , the friction Reynolds
number can be obtained (Figure 3f). The magnitude of Reτ gradually increases over the
step change and then converges. In the present study, a DNS dataset is analyzed in the
range x/δ0 = 839–857, where the averaged Reτ is 816 with δ/δ0 = 13.14.
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3.2. Data Validation

In this section, turbulence statistics are compared with previous results for validation.
Figure 4a shows the streamwise mean velocity normalized by U∞ with respect to y′/δ.
The grey line represents U/U∞ for smooth, and the blue squares depict the results of
Reynolds et al. [27]. Since ε is zero in a smooth wall, y′ for smooth is the same as y.
The profile of U/U∞ deviates from the smooth result near the wall, but both results
converge well in the region y′/δ > 0.6. Although the 3D cubic elements extend up to
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y′/δ = 0.023, where the profile of U/U∞ has an inflection point with a strong shear layer,
the streamwise velocity is recovered. As shown in Figure 4a, U/U∞ is similar to the result
of Reynolds et al. [27].
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Figure 4b represents the streamwise mean velocity in wall units with respect to y′/y0.
Here, y0 is the roughness length, which can be evaluated from the fitting of the logarithmic
law of U+ = 1/κ ln(y′/y0), where κ is the von Kármán constant of 0.41. In the present
study, y0/δ is 0.010, and y0

+ is 8.26. The dashed grey line in Figure 4b indicates the
logarithmic law of U+ = 1/κ ln(y′/y0). The magnitude of U+ varies logarithmically in the
range y′/y0 = 10–26. The squares in Figure 4b represent the results of Basley et al. [30] and
Perret et al. [28], and they align with the logarithmic law in the range y′/y0 = 6–70. A wider
range for the logarithmic law is observed at a higher Reτ compared to the present result.

The streamwise Reynolds stress in wall units (⟨uu⟩+) is compared to the experimental
results of Basley et al. [30] and Perret et al. [28]. The bracket ⟨·⟩ indicates the time- and
ensemble-averaged quantity. As shown in Figure 5, the magnitude of ⟨uu⟩+ is lower
than that of the experimental results, which is attributed to the relatively lower Reτ [35].
Hutchins and Marusic [35] reported that long-wavelength energy in the outer region
penetrates the near-wall region, called footprints, leading to an enhancement of streamwise
Reynolds stress at the inner peak. The dashed grey line represents the logarithmic law
of ⟨uu⟩+ = B1 − A1 ln(y′/δ). Here, B1 is a constant that depends on the flow geometry
and wake parameter, and A1 = 1.26 is the slope constant proposed by Marusic et al. [52].
The profile of ⟨uu⟩+ follows the logarithmic law in the range y′/δ = 0.36–0.48 and overlaps
with the experimental results of Perret et al. [28] over y′/δ = 0.36.
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Alfredsson and Örlü [53] proposed a diagnostic function to plot the streamwise mean
velocity and standard deviation of u. The diagnostic function can be expressed as the
ratio of the square root of streamwise Reynolds stress to the streamwise mean velocity
(⟨uu⟩0.5/U). The y reported that ⟨uu⟩0.5/U has a linear relationship with U/U∞ in the
outer layer of smooth-wall TBLs. Castro et al. [54] observed a linear relationship between
⟨uu⟩0.5/U and U/U∞ in rough-wall TBLs with a different slope from that reported by
Alfredsson and Örlü [53]. Figure 6 shows the diagnostic function by Alfredsson and
Örlü [53] as ⟨uu⟩0.5/U with respect to U/U∞, and the dashed grey line represents the linear
relationship by Castro et al. [54]. The magnitude of ⟨uu⟩0.5/U linearly decreases with an
increase in U/U∞ in the range U/U∞ = 0.6–0.9, following the linear relationship by Castro
et al. [54]. This implies that the present flow is in a fully rough regime. The results of Perret
et al. [28] also exhibit variations in accordance with a linear relationship in the same range.
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Figure 6. The profile of ⟨uu⟩0.5/U with respect to U/U∞. The dashed grey line shows the fully-rough
regime from Castro et al. [54].

3.3. Turbulence Statistics

Figure 7a displays wall-normal profiles of the streamwise mean velocity in wall units,
with the result of smooth represented by the grey line. The green dashed line shows the
logarithmic law of U+ = 1/κ ln y′+ + B − ∆U+ for a rough wall, and the blue dashed line
represents U+ = 1/κ ln y′+ + B for a smooth wall. Here, B is a constant of 5.1, and ∆U+ is
the roughness function. The magnitude of ∆U+ is 10.15, estimated as the best fitting of U+

with logarithmic variation in the range y′+ = 30–200.
The streamwise velocity is conditionally averaged at four locations, namely P0, P1, P2,

and P3, as illustrated in Figure 1. Figure 7b depicts the conditionally averaged streamwise
velocity (Ui) with respect to y′/δ. The four profiles of Ui overlap at y′/δ > 0.1, representing
that the influences of roughness elements on the mean flow are restricted to the region
y′/δ < 0.1. An inset in Figure 7b provides a magnified view of Ui

+ near the roughness
according to y+. The magnitude of U0

+ (black) is zero below y+ = k+ = 98.6, indicating
that the no-slip boundary condition is well applied to the immersed boundary at surfaces
of the cubic roughness elements. Reverse flows, as negative U1

+ (green) and U2
+ (blue),

are observed in the region y/k < 1 at P1 and P2, consistent with the observations of Castro
et al. [25] and the flow patterns [33,37]. Since roughness elements are located upstream of
P1 and downstream of P2, the flow direction bypasses the elements toward the wall-normal
and spanwise directions or is reversed.

Reynolds stresses are averaged at all points of the wall-parallel plane and analyzed.
Figure 8a presents the streamwise Reynolds stress in wall units (⟨uu⟩+) with respect to y′+.
The magnitude of ⟨uu⟩+ rapidly increases at y′+ = k′+ = 19 in accordance with the height of
cubic roughness, and the profile of ⟨uu⟩+ has a peak at y′+ = 37. Here, k′ is defined as k − ε.
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The green dashed line represents the logarithmic law of ⟨uu⟩+ = −0.67 ln y′+ + 5.75
from the best fitting. The profile of ⟨uu⟩+ aligns with the logarithmic law in the range
y′ = 130–220. The logarithmic variation in ⟨uu⟩+ is one of the statistical features of
Townsend’s attached eddy hypothesis [55]. Hwang and Sung [56] observed the logarithmic
variation in the streamwise Reynolds stress reconstructed by wall-attached u structures of
ZPG TBL in the range y+ = 100–0.3δ+, similar to a TBL subjected to adverse pressure gradi-
ent [57], pipe and channel flows [58,59], and drag-reduced flow [60]. For high-Reynolds-
number turbulence, logarithmic variations in ⟨uu⟩+ are reported in experiments [52,61]
and numerical simulations [62–64]. Although the present result is under relatively lower
Reτ , the statistical feature of wall-attached structures typical of high-Reynolds-number
flows can be observed.
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Figure 7. Wall-normal profiles of (a) streamwise mean velocity (U+). The grey line represents the
result of smooth. The blue and green dashed lines show the logarithmic law of U+ = 1/κ ln y′+ + B
and U+ = 1/κ ln y′+ + B − ∆U+, respectively. (b) Wall-normal profiles of conditionally averaged
streamwise velocity (Ui

+) at P0 (black), P1 (green), P2 (blue), and P3 (red). An inset shows the results
in near-wall region.
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Figure 8. (a) Wall-normal profiles of streamwise Reynolds stress (⟨uu⟩+). The green dashed line
in (a) represents the logarithmic law of ⟨uu⟩+ = −0.67 ln y′+ + 5.75. (b) Wall-normal profiles of
wall-normal Reynolds stress (⟨vv⟩+), spanwise Reynolds stress (⟨ww⟩+), and Reynolds shear stress
(⟨−uv⟩+). The red dashed line in (b) shows the logarithmic law of ⟨ww⟩+ = −0.38 ln y′+ + 3.38.

Figure 8b displays three wall-normal profiles of wall-normal Reynolds stress (⟨vv⟩+),
spanwise Reynolds stress (⟨ww⟩+), and Reynolds shear stress (⟨−uv⟩+). Each profile
of ⟨ww⟩+ and ⟨vv⟩+ exhibits a peak at y′+ = 84 and 140, respectively. In addition, the
profile of ⟨ww⟩+ logarithmically varies as ⟨ww⟩+ = −0.38 ln y′+ + 3.38 in the range
y′ = 130–220 [56], and a plateau is observed in ⟨−uv⟩+. The se observations can be pre-
dicted by Townsend [55] and Perry and Chong [65]. The logarithmic variation in ⟨ww⟩+
and the plateau in ⟨−uv⟩+ support Townsend’s attached eddy hypothesis over rough
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walls [66]. This could imply that wall-attached structures play an important role in the
present flow.

To further analyze the streamwise Reynolds stress, a pre-multiplied spanwise energy
spectrum of u (kzϕuu) is considered. Figure 9a illustrates a 2D contour of kzϕuu normalized
by the maximum of kzϕuu (kzϕuu/kzϕuu,max) as functions of λz

+ and y′+. Here, kz is the
spanwise wavenumber, and λz (=2π/kz) is the spanwise wavelength. In the present study,
kzϕuu is defined in the region y′+ > k′+ since there is non-homogeneity in the spanwise
direction at y′+ < k′+. A strong peak is observed in kzϕuu/kzϕuu,max at y′+ = 39 and λz

+ = 383,
and a weak peak can be seen at y′+ = 230 and λz

+ = 550. The spanwise wavelength of
the strong peak is λz

+ ≈ 4k+, similar to spanwise sizes of low momentum regions over
elements in instantaneous flow fields [31,33]. On the other hand, the scales are clearly
separated in smooth with an inner peak at y′+ = 13 and λz

+ = 115 and an outer peak at
y′+ = 170 and λz

+ = 660, as shown in Figure 9b. Large and small scales can be decomposed
based on kzϕuu for wall-bounded turbulence at λz/δ = 0.5 (λz

+ ≈ 400) [67,68]. Although
the scale separation is not clear at y′+ > k′+ due to the roughness elements, the energy at
long wavelengths near y′+ = 30 is extended to λz

+ = 100, and a weak peak arises in the
outer region.
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Figure 9. (a) Two-dimensional contour of pre-multiplied spanwise energy spectrum of streamwise
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represents a peak of kzϕuu/kzϕuu,max at y′+ = 39 and λz

+ = 383. (b) Two-dimensional contour of
kzϕuu/kzϕuu,max of smooth.

3.4. Quadrant Analysis of Reynolds Shear Stress

The quadrant analysis of Reynolds shear stress, as introduced by Wallace et al. [69], was
conducted to provide a statistical interpretation of turbulence structures within turbulent
shear flows. Quadrant events are defined based on the combination of u and v, denoted
as Q1 (u > 0 and v > 0), Q2 (u < 0 and v > 0), Q3 (u < 0 and v < 0), and Q4 (u > 0 and v < 0).
Physically, Q2 and Q4 are associated with ejection and sweep motions, while Q1 and Q3 are
interpreted as outward and inward motions.

The area fraction of each quadrant event (AFi) with respect to y/k is depicted in
Figure 10a, where the results of Coceal et al. [33] are presented with square symbols for Q1
(green), Q2 (black), Q3 (blue), and Q4 (red). Across the entire region, Q2 and Q4 contribute
dominantly to the occupied area, with AF4 (red) exhibiting prominence near the wall under
roughness, particularly AF2 (black) at y/k > 0.25. The distributions of AF1 (green), AF2, AF3
(blue), and AF4 are found to be similar to those reported by Coceal et al. [33]. Figure 10b
presents wall-normal profiles of AFi as a function of y/δ, focusing on the outer region.
Similar to the near-wall region, AF2 and AF4 emerge as dominant contributors in the outer
region. However, the magnitude of AF4 increases with y/δ, while that of AF2 decreases.
Notably, the magnitude of AF1 surpasses that of AF2 near the edge of the boundary layer.
The results of smooth align well with the present results in the outer region, reminiscent of
Townsend’s outer-layer similarity [55].
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Figure 10. Area fraction (AFi) of quadrant events of Reynolds shear stress with respect to (a) y/k
and (b) y/δ: Q1 (green), Q2 (black), Q3 (blue), and Q4 (red). Each squares in (a) and each circles in
(b) represent AFi of Coceal et al. [33] and smooth, respectively.

Figure 11a illustrates the fractional contribution of each quadrant (⟨−uv⟩∗i ) defined as
⟨−uv⟩i/∑4

k=1|⟨−uv⟩k|, which is compared with DNS data from Coceal et al. [33] denoted as
square symbols for Q1 (green), Q2 (black), Q3 (blue), and Q4 (red). The magnitudes of ⟨−uv⟩∗1
(green) and ⟨−uv⟩∗3 (blue) are dominant near the wall under roughness but decrease with
increasing y/k. Additionally, the magnitude of ⟨−uv⟩∗4 (red) increases rapidly from the wall
to the top of the elements and then decreases at y/k > 1. Ejections maintain their fractional
contribution dominantly, especially in the outer region. As seen in Figure 11a, ⟨−uv⟩∗2 (black)
and ⟨−uv⟩∗4 are dominant contributors in the range y/k > 1.2. All trends of ⟨−uv⟩∗i are similar
to the results of Conceal et al. [33]. Figure 11b presents wall-normal profiles of Reynolds shear
stress for quadrant events (⟨−uv⟩+i ) with respect to y/δ, and they are compared to the results
of smooth. The dashed grey lines indicate ⟨−uv⟩+, equivalent to the summation of ⟨−uv⟩+i
at all quadrants. The magnitude of ⟨−uv⟩+i decreases toward the edge of the boundary layer.
Ejections and sweeps dominate in the outer region, where ⟨−uv⟩+2 is greater than ⟨−uv⟩+4 .
Although ⟨−uv⟩+i is lower than that of smooth, the behavior of the profiles is similar, in
agreement with the results of Schultz and Flack [70].
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Figure 11. (a) Relative contributions of each quadrant to Reynolds shear stress (⟨−uv⟩∗i ): Q1 (green),
Q2 (black), Q3 (blue), and Q4 (red). (b) Wall-normal profiles of Reynolds shear stress of quadrant
events (⟨−uv⟩+i ). The dashed lines denote Reynolds shear stress (⟨−uv⟩+). Each squares in (a) and
each circles in (b) represent AFi of Coceal et al. [33] and smooth, respectively.

3.5. Turbulent Kinetic Energy Budgets

The transport equation of Reynolds stress can be expressed as follows:

∂
〈
uiuj

〉
∂t

+ Uk
∂
〈
uiuj

〉
∂xk

= Pdij − Dsij + Tdij + Pvij + Vdij, (3)
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where Pdij, Dsij, Tdij, Pvij, and Vdij denote the production, viscous dissipation, turbulent
transport, pressure transport, and viscous diffusion, respectively. Each term is defined as

Pdij = ⟨−uiuk⟩
∂Uj
∂xk

+
〈
−ujuk

〉 ∂Ui
∂xk

, Dsij = 2ν
〈

∂ui
∂xk

∂uj
∂xk

〉
, Tdij = − ∂⟨uiujuk⟩

∂xk
,

Pvij = − 1
ρ

(〈
∂p
∂xi

uj

〉
+

〈
∂p
∂xj

ui

〉)
, Vdij = ν

∂2⟨uiuj⟩
∂x2

k
.

(4)

Here, ρ is the density. The turbulent kinetic energy (TKE) is defined as 0.5 (⟨u1u1⟩+
⟨u2u2⟩+⟨u3u3⟩), and the budget of the TKE equation can be obtained using Equation (3).
Here, u1, u2, and u3 are equivalent to u, v, and w, respectively.

Figure 12a shows wall-normal profiles of the TKE budgets, among which the produc-
tion (Pd+), viscous dissipation (Ds+), turbulent transport (Td+), pressure transport (Pv+),
and viscous diffusion (Vd+) are introduced in wall units. The magnitude of each budget
is significantly changed near the top of the elements due to a strong shear layer over ele-
ments [25,71]. In addition, the TKE budgets of smooth are displayed in Figure 12b. Positive
budget magnitudes are interpreted as a gain of TKE, whereas a negative one represents a
loss of TKE. The magnitude of each TKE budget is lower than that of smooth. The profile
of Pd+ has a positive peak, similar to that of smooth. This could imply that the production
process of TKE is not sensitive to elements, while other profiles of TKE budgets exhibit
different trends, especially near y′+ = k+. A positive peak of Vd+ and a negative peak of
Ds+ are observed near y′+ = k+, where viscosity predominantly influences the flows from
the top of elements. The re is a positive plateau of Td+ in the region y′+ < k+, while a
positive peak can be found at y′+ = 5 for smooth. The location of a negative peak of Td+ is
similar to that of Pd+, representing that generated TKE is transferred to the near-wall region
around elements through turbulent transport. Convex peaks with negative Pv+ emerge
on both sides of a concave peak at y′+ = k′+, whereas the magnitude of Pv+ of smooth is
almost zero at y′+ > 15. Further analysis of the pressure transport of each Reynolds stress
is necessary.
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Figure 13a shows the pressure transport of streamwise (Pv11
+), wall-normal (Pv22

+),
and spanwise (Pv33

+) Reynolds stresses in wall units. The summation of Pvii
+ is the same as

2Pv+ in Figure 12a. Wall-normal profiles of Pv11
+, Pv22

+, and Pv33
+ of smooth are displayed

in Figure 13b. The magnitude of Pv11
+ is negative at all y′+, whereas that of Pv22

+ and
Pv33

+ is positive, indicating that energy is transferred from the streamwise component to
the wall-normal and spanwise components [72]. As shown in Figure 13a, the dominant
contributions of Pv11

+ to Pv
+ near y′+ = k′+ result in negative Pv+. The profile Pv33

+ has a
peak at y′+ = 25, which is higher than the peak location (y′+ = k′+) of Pv22

+. For smooth,
the peak location of Pv33

+ is closer to the wall than that of Pv22
+. This discrepancy in
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peak locations is attributed to cubic roughness elements with additional walls at y′+ = k′+.
The magnitude of Pv33

+ is larger than that of Pv22
+ in the region y′+ > 21, in accordance

with the result of smooth near the wall. 
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Figure 13. (a) Wall-normal profiles of pressure transport of Reynolds stresses: streamwise, Pv11+ 

(black); wall-normal, Pv22+ (blue); and spanwise, Pv33+ (red) components. Vertical dashed line repre-
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Figure 13. (a) Wall-normal profiles of pressure transport of Reynolds stresses: streamwise, Pv11
+

(black); wall-normal, Pv22
+ (blue); and spanwise, Pv33

+ (red) components. Vertical dashed line
represents y′+ = k′+. (b) The profiles of Pv11

+, Pv22
+, and Pv33

+ of smooth.

The pressure transport of Reynolds stress budgets is conditionally averaged at four lo-
cations: P0, P1, P2, and P3. Figure 14a represents the conditionally averaged pressure
transport of streamwise Reynolds stress (Pv11,i

+), which is negative at all y′+ except
Pv11,1

+ (green) at y′+ < k′+. The magnitude of Pv11,2
+ (blue) is more than twice as low

as that of Pv11,3
+ (red) near y′+ = k′+, representing that most of the energy in the streamwise

direction is reduced at the point of P2. Note that the cubic elements are located immediately
downstream of P2. The energy transfer by Reynolds stress budgets is in accordance with
the results of flow visualization near the elements [33,37]. The profiles of Pv11,0

+ (black),
Pv11,1

+, Pv11,2
+, and Pv11,3

+ are thoroughly overlapped in the region y′+ > 150. Figure 14b,c
shows wall-normal profiles of Pv22,i

+ and Pv33,i
+, respectively. The magnitude of Pv22,1

+ is
negative at y′+ < 10, where the energy in the wall-normal direction is reduced. However, the
other profiles have positive contributions, indicating a gain of energy from other directions.
In the region y′+ < k′+, the energy in the streamwise direction is mainly reduced at P2,
whereas the energy in the wall-normal and spanwise directions is dominantly enhanced
at P3 and P2, respectively. In addition, the spanwise energy increases at P0 in the region
y′+ > k′+. Similar to Pv11,i

+, each profile set of Pv22,i
+ and Pv33,i

+ coincides well at y′+ > 150.
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4. Summary and Conclusions

Turbulence statistics were investigated in turbulent flow over urban-like terrain. DNS
was performed on a TBL over a staggered array of 3D cubic roughness elements, which
was applied over x/δ0 = 700 at the roughness step change. The turbulence statistics were
averaged at Reτ = 816 and compared with the results of experiments and DNS for validation.
The magnitude of ∆U+ is 10.15, leading to ks

+ = 238.3 [5] in the fully rough region [22,70].
Here, ks is the sand-grain roughness height. Reversed flows at upstream and downstream
elements indicate that the present flow is under the wake interference flow regime [24], sim-
ilar to k-type roughness [6,23]. Interestingly, the logarithmic variations in streamwise and
spanwise Reynolds stresses and the plateau in Reynolds shear stress were clearly observed,
reminiscent of Townsend’s attached-eddy hypothesis. Strong energy at long wavelengths
was found near the top of the elements, and the energy extended to small scales, consistent
with two-scale behavior [25]. The extension of energy from large scales at the top of the
elements to adjacent smaller scales could be related to amplitude modulation [29,68,73,74].
In addition, a quadrant analysis of Reynolds shear stress was employed. The contributions
of ejection and sweep events to Reynolds shear stress suddenly changed near the top of the
elements, related to low-momentum regions and hairpin vortex packets [31,33]. The area
fraction and magnitude of each quadrant are similar to those of a TBL with a smooth wall
in the outer region, supporting Townsend’s outer-layer similarity. The transport equation
of Reynolds stress was conditionally averaged. The budgets of TKE were influenced by the
elements, and in particular, the role of pressure transport in energy transfer was important.
Streamwise energy was primarily reduced at upstream elements. This energy was then
transferred in two directions: to the wall-normal direction beside the elements and to the
spanwise direction. The spanwise transfer occurred over the elements and at upstream
elements near the wall. Investigating turbulence structures and their interactions would be
crucial for understanding the mechanism behind energy and substance transfers in urban
boundary layers.
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Nomenclature

A1 slop constant 1.26
AFi area fraction of each quadrant event
B constant 5.1
B1 constant
Ds viscous dissipation of turbulent kinetic energy budgets
Dsij viscous dissipation of Reynolds stress budgets
fi momentum forcing
k height of roughness elements
ks sand-grain roughness height
kz spanwise wavenumber
kzϕuu pre-multiplied spanwise energy spectrum of streamwise velocity fluctuations
k′ height of roughness elements except virtual origin
Li domain size in each direction
lx, lz streamwise and spanwise sizes of roughness elements
M moment
Ni number of grids in each direction
Pi four locations (P0, P1, P2, and P3)



Appl. Sci. 2024, 14, 1418 14 of 17

Pd production of turbulent kinetic energy budgets
Pdij production of Reynolds stress budgets
Pv pressure transport of turbulent kinetic energy budgets
Pvii,j conditionally averaged pressure transport of Reynolds stress budgets
Pvij pressure transport of Reynolds stress budgets
p̃ pressure
px, pz streamwise and spanwise spacing of roughness elements
Qi quadrant events of Reynolds shear stress
Re0 Reynolds number
Reθ momentum thickness Reynolds number
Reτ friction Reynolds number
Td turbulent transport of turbulent kinetic energy budgets
Tdij turbulent transport of Reynolds stress budgets
U streamwise mean velocity
Ui conditionally averaged streamwise velocities
U∞ free-stream velocity
u, v, w streamwise, wall-normal, and spanwise velocity fluctuations
ũi raw velocities
uτ friction velocity
u1, u2, u3 streamwise, wall-normal, and spanwise velocity fluctuations
Vd viscous diffusion of turbulent kinetic energy budgets
Vdij viscous diffusion of Reynolds stress budgets
x, y, z streamwise, wall-normal, and spanwise directions
xi Cartesian coordinates
y0 roughness length
y′ wall-normal direction over virtual origin
α constant 3.05
∆U+ roughness function
∆x, ∆z grid resolutions in streamwise and spanwise directions
∆ymin 1st grid resolution in wall-normal direction
∆y100 100th grid resolution in wall-normal direction
δ boundary layer thickness
δ0 inlet boundary layer thickness
δ* displacement thickness
ε virtual origin
η Kolmogorov length
θ momentum thickness
κ von Kármán constant of 0.41
λci swirling strength
λP plane density
λz spanwise wavelength
ν kinematic viscosity
0.5Cf frictional drag
0.5Cp form drag
⟨uiui⟩ Reynolds stress components
⟨−uv⟩ Reynolds shear stress
⟨−uv⟩∗i fractional contribution of each quadrant
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