friried applied
e sciences

Article

Applying Geostatistics to Understand Seismic Activity Patterns
in the Northern Red Sea Boundary Zone

Sayed S. R. Moustafa !, Mohamed H. Yassien !, Mohamed Metwaly >*(, Ahmad M. Faried ! and Basem Elsaka 3

check for
updates

Citation: Moustafa, S.S.R.; Yassien,
M.H.; Metwaly, M.; Faried, A.M.;
Elsaka, B. Applying Geostatistics to
Understand Seismic Activity Patterns
in the Northern Red Sea Boundary
Zone. Appl. Sci. 2024, 14, 1455.
https:/ /doi.org/10.3390/ app14041455

Academic Editors: Rosa Nappi,

Valeria Paoletti and Roberto Scarpa

Received: 28 November 2023
Revised: 26 January 2024
Accepted: 5 February 2024
Published: 10 February 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Egyptian National Seismic Network (ENSN), Seismology Department, National Research Institute of
Astronomy and Geophysics (NRIAG), Cairo P.O. Box 11421, Egypt; sayed.moustafa@nriag.sci.eg (S.S.R.M.);
myassien2002@nriag.sci.eg (M.H.Y.); ahmad_m_faried@nriag.sci.eg (A.M.E.)

Department of Archeology, College of Tourism and Archeology, King Saud University,

Riyadh P.O. Box 145111, Saudi Arabia

Astronomical, Physical and Mathematical Geodesy (APMG) Group, Institute of Geodesy and Geoinformation,
University of Bonn, 53117 Bonn, Germany; elsaka@geod.uni-bonn.de

*  Correspondence: mmetwaly@ksu.edu.sa

Abstract: A comprehensive geostatistical analysis was conducted on a dataset comprising 24,321 seismic
events in the Red Sea region, spanning from 1997 to 2020. This analysis involved the creation of a new
seismic activity database, incorporating data from both Egyptian and Saudi Seismic Networks. This
enriched database provided a robust foundation for a detailed examination of the seismic patterns
and activities in the region. Utilizing geographic information systems and various spatial analytic
methods, it identifies seismic patterns and tectonic influences. The findings reveal significant seismic
clustering along the Central Red Sea axis, indicative of active rifting between the Nubian and Arabian
plates. The study demonstrates spatial autocorrelation in seismic activities, with high-high clusters
marking zones of elevated seismicity. Kernel Density Estimator analyses highlight concentrated
seismic activity in the Gulfs of Aqaba and Suez. Higher magnitude events are shown to localize
in areas of greater tectonic stress, aligning with known geological features. This research provides
critical insights into the seismic dynamics of the Red Sea, showcasing the effectiveness of geostatistical
techniques in analyzing seismic data in tectonically active regions.
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1. Introduction

The Red Sea is a key crossroads across multiple continents, representing a nexus
of geopolitical, economic, and environmental concerns. As a vital maritime artery, this
distinctive body of water enhances global trade by offering the most efficient route, thereby
playing an essential role in international commerce [1,2]. The ecological significance of
the Red Sea is profound. Hosting some of the world’s most diverse coral reefs, it is a vital
center for marine biodiversity. Yet, this natural region is under threat from various factors
including seismic activity, pollution, and the detrimental effects of climate change [3],
underscoring the need for concerted conservation efforts.

Situated within the Afro-Arabian Rift System, the Red Sea region is characterized by
significant tectonic activity, resulting from the intricate interactions between the African
and Arabian plates [4,5]. These plate dynamics result in various tectonic activities, such
as rifting and spreading, increasing the future hazard of the region. The area is structured
by significant fault systems including the Red Sea Rift, the Gulf of Suez, and the Gulf of
Aqaba [6]. Historical records reported the occurrence of seismic activity in the Red Sea
region in 859, 1121, 1191, 1269, 1408, 1630, and 1710 AD, with impacts reaching as far as the
Al-Madinah and Makkah Provinces in Saudi Arabia [7,8]. Seismic activity in the Red Sea
region, with its proximity to populated areas, presents hazards for neighboring countries,
heightening the risk to life and property [9,10].
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Observed seismic occurrences are not evenly distributed in the Red Sea tectonic
environment, where the rift system is both extended and surrounded by divergent plates.
Therefore, in this tectonically active region, it is crucial to understand the spatial and
temporal patterns and characteristics of earthquake activities.

The Red Sea region is characterized by seismic activity predominantly featuring small-
to-moderate-magnitude earthquakes [7,8]. The study of small-to-moderate-magnitude
earthquakes in this region is particularly vital. These events, though less catastrophic than
their higher-magnitude counterparts, contribute significantly to the overall seismic hazard
due to their higher frequency of occurrence.

Conventional seismic analyses often employ methodologies such as cluster and fractal
analyses for spatial data interpretation, and Bayesian information criteria alongside gen-
eralized Poisson regression for temporal data analysis. These techniques, while effective
in many settings, may not fully capture the complexity of the seismic activity in the Red
Sea. Therefore, our study introduces an innovative approach, integrating both spatial
and temporal dimensions of seismic data, to provide a more comprehensive understand-
ing of seismic patterns. This methodology is inspired by successful applications in other
seismically active regions.

A significant approach for gaining more detailed knowledge of the geodynamic pro-
cesses in the Red Sea region is through comprehensive analysis of earthquake data over
time and space to discern patterns and mitigate future seismic hazards [11-13]. These
methodologies typically integrate Geographic Information Systems (GIS) with advanced
statistical models to map and analyze the distribution and frequency of seismic events.
GIS provide a platform for visualizing and analyzing spatial seismic activity data, while
statistical models can be used to identify patterns and relationships in the seismic activity
enabling identification of risk areas and temporal patterns of seismicity [14-17]. Under-
standing spatial and temporal seismic patterns sheds light on the stress distribution and
accumulation within the crust, offering insights into the mechanics of earthquake genera-
tion and the potential for larger, more damaging events [14]. Those approaches could aid in
preparation efforts to identify spatial clusters or concentrated areas of seismic activity [11].

The use of spatial and temporal statistical techniques, like the Average Nearest Neigh-
bor (ANN) analysis [18], is crucial for understanding the spatial distribution of seismic
events. By evaluating the average distance between neighboring earthquakes, ANN helps
in identifying whether the seismicity is clustered, dispersed, or randomly distributed.
This information is crucial for understanding the underlying tectonic processes and for
assessing the likelihood of future seismic events in the region. Quadrat Count Analysis
(QCA) [19] further complements ANN. This method involves dividing the study area into
equal-sized quadrats and counting the number of earthquakes within each. By comparing
these counts with a theoretical random distribution, patterns in the spatial distribution of
seismicity could be discerned. This technique is particularly useful in the Red Sea region
for identifying zones of heightened seismic activity, which may correlate with fault lines.
Global Moran’s I (GMI) [20] is a measure of spatial autocorrelation that quantifies how
seismic events are related to each other over the entire study area. In the Red Sea, a high
GMlI value indicates a clustered pattern, which suggests that these seismic events are part of
a distributed seismicity, influenced by underlying tectonic processes, rather than occurring
in an entirely random manner. This global perspective is essential for a comprehensive un-
derstanding of the region’s seismicity. Complementing GMI, Local Moran’s I (LMI) [14,20]
provides a more detailed perspective with precise localized clusters of seismic activity. This
technique is particularly useful for pinpointing areas within the Red Sea region where
earthquake activity is significantly higher or lower than average. LMI can reveal localized
seismic hotspots or areas of heightened seismic activity. Integrating results from these
methods enhances our understanding of the region’s complex tectonic dynamics. This
understanding is invaluable for developing more effective earthquake monitoring, hazard
assessment, and mitigation strategies, ultimately contributing to the safety and resilience
of the affected regions.
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This study explores the transformative role of advanced spatial and temporal statistical
techniques in analyzing seismic behavior in the Red Sea region. Focused on small-to-
moderate-magnitude earthquakes, which are predominant in this area, our research aims
to deepen the understanding of seismic patterns and trends. This enhanced knowledge
is critical for assessing and mitigating future seismic hazards or risks. This article aims
to pinpoint the spatial localization of seismic hotspots with unprecedented granularity. It
demonstrates how methods such as Average Nearest Neighbor (ANN), Quadrat Count
Analysis, Global Moran’s I (GMI), and Local Moran’s I (LMI) can be effectively employed to
analyze and interpret the spatial and temporal patterns of seismic events in this tectonically
active rift system.

The adoption of these techniques serves to elucidate the intricate inner mechanisms
that underlie seismic phenomena in the Red Sea area. The Average Nearest Neighbor
facilitates the examination of clustering patterns, Quadrat Count Analysis provides insights
into the distribution of seismic events, while Global and Local Moran’s I offer a robust
assessment of spatial autocorrelation, shedding light on the interconnectivity and localized
variations within seismic data.

By achieving this, this article seeks to contribute to a broader understanding of the
region’s seismic dynamics, emphasizing the correlation between seismic patterns and un-
derlying geological structures. Additionally, the goals include highlighting the importance
of these statistical techniques in enhancing earthquake monitoring and hazard assessment,
thus aiding in the development of more robust earthquake preparedness and mitigation
strategies. Ultimately, this article strives to provide a comprehensive overview that not
only advances academic knowledge but also serves as a practical guide for seismologists
and geoscientists working in the field of earthquake research and hazard management.

The structure of the current article is as follows: Section 1 introduces the study’s scope
and objectives. Section 2 presents the seismotectonic setting of the Red Sea region. Section 3
describes the research methodology used. Section 4 discusses the experimental design, in-
cluding data collection and statistical techniques for data analysis. Finally, Sections 5 and 6
present and interpret the findings, concluding with the study’s contributions.

2. Seismotectonic Framework

The Red Sea embodies a significant segment of an expansive rift system that spans
multiple geologic features. This region serves as a potential model for understanding the
initial rupture of continental lithosphere and its subsequent transformation into oceanic
spreading centers, which are key elements in plate tectonics [6].

Recent studies have elucidated the absolute and relative timing of key events in the
Red Sea’s geological history, categorizing them into six major phases. The first stage is
marked by plume-related basaltic trap volcanism, originating around 31 Ma in Ethiopia,
NE Sudan, and SW Yemen, followed by rhyolitic activity near 30 Ma [21]. This early
magmatism occurred without any demonstrable extension. The second phase involved
marine syntectonic sediment deposition on the continental crust in the central Gulf of Aden
between 29.9 and 28.7 Ma, signifying early Oligocene rifting east of Afar [6].

The third phase saw the formation of a small rift basin in the Eritrean Red Sea around
27.5-23.8 Ma, coinciding with extension and rifting within Afar and the creation of the Red
Sea as a rift basin. A renewed phase of volcanism characterized the fourth stage, which
began around 24-23 Ma. This activity comprised basaltic dikes as well as layered gabbro
and granophyre bodies, and extended from Afar and Yemen to northern Egypt. This phase
was accompanied by substantial rift-normal extension and deposition of mostly marine
and marginal marine syntectonic sediments [4,5].

Regions such as the Gulf of Agaba and the Dead Sea Rift exhibit elevated and con-
centrated seismic activity. These areas are tectonically active, linked to the opening of the
Northern Red Sea and the Gulf of Aqaba, and also to a major continental strike-slip plate
boundary [21-23]. The Gulf of Aqaba has experienced left-lateral strike-slip faulting with a
110 km offset from the early Tertiary period to the present. The Arabian Plate boundary
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extends from the Afar region through the Gulf of Aden, eventually connecting to the Zagros
fold belt (see Figure 1a).
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Figure 1. (a) Principal geological and tectonic characteristics of the Red Sea region, including the
extensional ridges and oceanic troughs, as well as the adjacent elevated peripheries of the Arabian and
Nubian Shield, accompanied by the dispersion of Late Cenozoic volcanic terrains, commonly known
as harrats (adapted from [24]). (b) Spatial distribution of documented historical and instrumentally
recorded seismic occurrences within the vicinity of the Red Sea (adapted from [25]).

The Red Sea region exhibits seismic activity at varying levels in its northern, southern,
and central areas, closely linked to its tectonic characteristics. The Gulf of Aqaba and
Suez, with their strike-slip faults, are active, and the Red Sea’s axial trough is characterized
by concentration of seismic activity, especially at intersections with northeast-trending
strike-slip faults [5].

Fault plane solutions from major earthquakes indicate that the region acts as a diver-
gent boundary between the Arabian and Nubian Plates, marked by seafloor spreading
northwestward. Seismic activity is predominantly shallow, with over 97% of seismic events
in the two Gulfs occurring at depths of less than 10 km. In contrast, seismicity in the
Northern and Southern Red Sea varies in depth, suggesting lithospheric deformations in
both the upper crust and the uppermost mantle [26,27].

The seismicity in the Red Sea is closely related to the tectonic activities at the spreading
center and along the transform faults segmenting the rift. These tectonic forces result in a
complex pattern of seismic events, providing a unique opportunity to study the dynamics
of plate tectonics, particularly in the context of nascent ocean basin formation.

The seismic activity in the Red Sea is dominated by the complex interplay of tectonic
movements due to the rifting and spreading processes. This active tectonic environment
generates a spectrum of seismic events, from small tremors to moderate earthquakes.
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These events are concentrated along the rift where the Arabian and African Plates are
moving apart, and along the network of transform faults that segment the rift. Historically,
the region has experienced a significant number of seismic events. Between 627 AD
and 1955 AD, 88 major and destructive earthquakes were documented [7]. Instrumental
records from 1960 to 2020 show 1310 earthquakes with a local magnitude of 4.0 or greater,
with only one reaching a magnitude of 7.1, while the rest were below this magnitude
(Figure 1b) [17,27,28].

3. Related Work and Methodology

Traditional seismological techniques have been employed to study seismic activity in
tectonically complex areas. The emergence of geospatial statistical evaluation, however,
has significantly enhanced our analytical capabilities. This multidisciplinary approach
offers detail and flexibility in analyzing seismic activity data [14]. To identify statistically
significant patterns in seismic activity data, a series of analyses employing four distinct
techniques was conducted. These methods have been effectively utilized in numerous stud-
ies across the globe, including Romania [29], Indonesia [30], the Red Sea [14], China [31],
and Pakistan [32]. It has consistently yielded valuable insights into areas of heightened
seismic activity, spatial configurations of earthquake events, and the spatiotemporal dynam-
ics, mechanisms, and characteristics of seismic activity [33]. The approach and statistical
method applied in this study are novel in their application to identifying patterns in the
spatial distribution of seismic events in the Red Sea. The statistical approaches employed
and detailed in subsequent sections play a crucial role in revealing the spatial relationships
and intrinsic patterns within the Red Sea region.

3.1. Average Nearest Neighbor (ANN)

The Average Nearest Neighbor (ANN) method is a widely used technique in spatial
statistics to analyze the pattern of a set of earthquakes within a given space. It provides a
measure to determine whether the earthquake epicenter pattern exhibits clustering, random-
ness, or uniformity [14,18,34,35]. To define the ANN method, consider a set of n earthquake
epicenters in the Red Sea region. The method computes the distance from each earthquake
to its nearest neighbor, resulting in n distances. The average of these distances, denoted
as D, is compared to the expected average distance for a random pattern, E[D], in the Red
Sea region of the same size and shape. The ratio of these two distances is used to quantify
the earthquake pattern [36]:

D
R = ED] (1)

The expected average distance E[D] in a random distribution can be estimated for a

two-dimensional space with uniform point distribution using the formula [18]:

1
2V

where A is the density of earthquakes (number of earthquakes per unit area) in the Red
Sea region. The value of R indicates the nature of the earthquake pattern: If R = 1, the
pattern is considered random. If R < 1, the earthquakes are more clustered than expected
in a random pattern. If R > 1, the earthquakes are more regularly spaced (uniformly
distributed) than expected in a random pattern. This method is simplistic yet powerful in
assessing spatial earthquake patterns.

E[D] 2)

3.2. Quadrat Count Analysis (QCA)

Quadrat Count Analysis is a statistical tool used in the study of spatial patterns. It is
particularly useful in seismology for analyzing the distribution of earthquake epicenters.
The methodology involves dividing the study area into smaller, non-overlapping subareas
of equal size, known as quadrats [19]. The number of seismic events occurring within each
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quadrat is then tallied, producing a discrete spatial frequency distribution of counts. The
variance-to-mean ratio (VTMR) or the index of dispersion is used to evaluate the pattern of
seismic activity in the Red Sea region. The VTMR is a dimensionless number that serves as
a test statistic for the spatial randomness of observed seismic events. It is defined as the
variance of the quadrat counts divided by the mean count [19,37]:

2
VTMR = % (3)

where 02 is the variance of the quadrat counts, and y is their mean. In a completely random
spatial process adhering to a Poisson distribution, the VTMR would be approximately
equal to one. Deviations from this value indicate non-random patterns. Specifically, a
VTMR greater than one suggests clustering, while a value less than one indicates a regular
or overdispersed distribution. The significance of the observed VTMR is further evaluated
using the Z-score, which measures the number of standard deviations the observed VTMR
is from the expected value under the null hypothesis of spatial randomness [38]. The
Z-score is given by:

_ VITMR -1

2

n

Z 4)

where 7 is the number of quadrats. A high absolute value of the Z-score indicates that the
null hypothesis can be rejected, implying a substantial departure from spatial randomness.
The p-value associated with the Z-score quantifies the likelihood of observing a VIMR as
extreme as, or more extreme than, the one calculated under the assumption that the null
hypothesis holds true. A low p-value (typically less than 0.05) leads to the rejection of the
null hypothesis, affirming the presence of a statistically significant spatial pattern [39].

3.3. Global and Local Moran’s I

Spatial autocorrelation is an important index to express the spatial behavior of geo-
graphical elements, reflecting the interdependence between some elements in the study
area [30]. The global indicators of spatial association, such as Global Moran’s I, and the
Local Indicators of Spatial Association (Local Moran’s I, also known as LISA), are frequently
employed to quantify spatial autocorrelation [33]. These metrics, Global and Local Moran’s
I, are robust analytical techniques that offer valuable insights into the spatial structures
and associations inherent in geospatial datasets. Their application extends across various
domains, offering a quantitative basis for spatial pattern analysis and decision making [39].
Both Global and Local Moran'’s I play a pivotal role in spatial analysis, contributing to a
comprehensive understanding of the distribution of earthquake epicenters. They assist
in unraveling the spatial dynamics and patterns, which are crucial for informed policy
making and resource allocation decisions [40].

3.3.1. Spatial Weight Matrix

The estimation of a spatial weight matrix is essential in the context of Global and Local
Moran’s I analysis. This matrix defines the spatial relationships between individual data
points, specifying which observations are neighbors and to what extent they influence one
another within a given geographic area. Thus, the accurate estimation of the spatial weight
matrix is a crucial prerequisite for meaningful spatial analysis and the interpretation of
results [41]. In this study, the spatial weight matrix characterizes the interactions between
geographical earthquake epicenters, primarily predicated on the proximity or contiguity
of the mapped areas. Spatial weights are formulated based on the adjacency connections
among these territories [42]. The construction of these weights is defined as follows:
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where m represents the number of regions, and y;; indicates the spatial adjacency relation
between regions 7 and k.

3.3.2. Global Moran’s I (GMI)

Global Moran’s I (GMI) is a statistical measure used to assess spatial autocorrelation in
geospatial data. Spatial autocorrelation refers to the degree to which a set of spatial features
and their associated data values are correlated with themselves in space. In essence, it
evaluates whether the pattern expressed is clustered, dispersed, or random [39]. The Global
Moran’s I is mathematically defined as [43]:

N XX wi(Xi — X) (X — X)

I =
XX wij (X — Y)z

(6)

where N is the number of spatial units indexed by i and j, X; and X; are the values of the
variable of interest for spatial units i and j, X is the mean of X, and wj; is the spatial weight
between units i and j.

This statistic falls in the range of [—1, 1], where a value close to +1 indicates clustering,
—1 indicates dispersion, and a value around 0 implies randomness.

3.3.3. Local Moran’'s I

Local Moran’s I (LMI), is a statistical measure used to assess the spatial autocorrelation
of data within a geographic area. It identifies and quantifies the degree to which individual
data points are clustered or dispersed in relation to their neighboring data points. The
Local Moran’s I for a location i is given by [43]:

(x;-X

=" )Zwij(xj—i) (7)
]

where S? is the variance of X, and the other terms are as defined previously. The significance
of Local Moran’s I values is typically assessed through permutation tests, providing insights
into the local structure of the spatial correlation. High positive values suggest clusters of
similar high or low values, while negative values indicate spatial outliers.

While the GMI provides an overall measure of spatial autocorrelation, it does not
allow for the detection of local patterns of spatial association. Local Moran’s I (LMI), also
known as the Local Indicators of Spatial Association (LISA), identifies clusters of similar
values and outliers in spatial data [39,44]. LISA are applied to depict the spatial dynamics
of earthquake hazard. LISA cluster the mapped region into different clusters. High-high
(H-H) areas are characterized by high concentrated seismic activity and are surrounded
by regions with similarly high seismic hazard indices. In contrast, low-high (L-H) areas
exhibit potentially low seismic hazard, yet are encircled by regions with high seismic
hazard. Low-low (L-L) regions have low seismic hazard and are bordered by areas with
corresponding low indices. Finally, high-low (H-L) areas display high seismic hazard but
are surrounded by regions with lower seismic hazard levels. Utilizing these classifications,
LISA evaluate the seismic hazard of earthquakes at a significance level of p = 0.05, and
those provinces, autonomous regions, or municipalities that surpass this threshold are
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subsequently illustrated on a LISA cluster map. The mathematical expression for LISA is
structured as follows [44]:

1,7Mm . Vi ki =12 - 8

1 Sz Z,ulk(ﬂk 77)(1 # rlr — Lr 4y 1m> ( )
k=1

where $2 = Ly ™ (y, —i)(i=1,2,------ ,m), and I; represents the local autocorrelation

index.

3.4. Categorization of Concentrated Activity Areas

The categorization of hotspots or areas of heightened seismic activity using Getis-
Ord Gi* and Kernel Density Estimation (K) involves a two-step process to identify and
classify spatial patterns in a dataset. First, Getis-Ord Gi* is employed to detect statistically
significant hotspots or coldspots (areas of elevated or diminished seismic activity in the
Red Sea region) within the data. This statistic assesses the spatial clustering of high or low
values and provides a measure of significance for each location. Positive Gi* values indicate
hotspots of high concentrated seismic activity, while negative values indicate coldspots or
dissipated seismic activity areas [45]. Second, Kernel Density Estimation (K) is utilized to
create a smoothed density surface that highlights areas of high data concentration. This
helps in visualizing the intensity and extent of the intensified seismicity identified by
Getis-Ord Gi*. Kernel Density Estimation provides a continuous representation of spatial
patterns, allowing for a more nuanced understanding of the data distribution.

3.4.1. Getis-Ord Gi*

The Getis-Ord Gi* statistic is a measure used to assess the degree of spatial clustering
of values within a geospatial seismicity dataset. It is valuable for identifying areas with
heightened or diminished seismic activity [46] of high or low earthquake magnitude values.
The formula for calculating the Getis-Ord Gi* statistic is as follows [45]:

er'l:l WijXj — X ]V'l:l Wijj

Gi*(d) = ©)

where Gi*(d) represents the Getis-Ord Gi* statistic at a given distance threshold d.  is the to-
tal number of spatial units or observations. x; represents the value of the variable of interest
at spatial unit j. X represents the mean of the variable across all spatial units. w;; represents
the spatial weight between spatial units i and j, typically based on distance.

The Getis-Ord Gi* statistic evaluates whether the observed spatial clustering of high or
low values is significantly different from what would be expected under spatial randomness.
Positive values of Gi* denote spatial clustering of high values, indicative of concentrated
areas with heightened seismic activity. Conversely, negative values signify clustering of
low values, highlighting regions with diminished seismic activity [46].

3.4.2. Kernel Density Estimation (K)

Kernel Density Estimation (K) is a statistical technique used to estimate the probability
density function of a continuous random variable from a set of data points [47]. It is
particularly valuable for visualizing data distribution in a non-parametric way [48]. The
formula for Kernel Density Estimation is as follows [49]:

f(x)zifK(x;xi> (10)

where f(x) represents the estimated probability density function at point x. 1 is the total
number of data points. x; represents each data point. K(u) is the kernel function, which
is a symmetric probability density function (such as the Gaussian or Epanechnikov ker-
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nel). i is the bandwidth parameter, which determines the width of the kernel and affects
the smoothness of the estimated density. In this equation, the kernel function is centered
at each data point x; and scaled by the bandwidth . The kernel functions are summed
up and normalized by # to create a smooth estimate of the underlying probability density
function.

4. Experimental Design

This research utilizes four statistical methods, all integrated into an advanced geospa-
tial computational framework. These methods are employed to examine the temporal
and spatial patterns of earthquake occurrences in the Red Sea region. For this study, we
compiled comprehensive seismic data from both Saudi and Egyptian seismological net-
works, encompassing a range of time periods to develop an extensive seismicity catalog
database. The Saudi dataset for this research is sourced from the Saudi Geological Survey
(5GS), which has managed the Saudi National Seismic Network (SNSN). The SGS began
deploying broadband seismic stations in 2004, and subsequently controlled the seismic
stations from the King Abdulaziz City for Science and Technology (KACST) and King Saud
University (KSU), following a directive from the Saudi Council of Ministers. Seismic data
were collated from KSU (up to 2003), KACST (2004-2005), and SGS (2006-2020). The second
pivotal dataset was acquired from the Egyptian National Seismological Network (ENSN),
managed by the National Research Institute of Astronomy and Geophysics (NRIAG). The
ENSN has played a crucial role in capturing a range of seismic events in the Red Sea area,
documenting earthquakes with diverse magnitudes and characteristics. The ENSN’s data,
covering the period from 1998 to 2022, are integral to this study.

The spatial configurations of seismic stations within both the SNSN and ENSN are
detailed in Figures 2a and 2c, respectively. Concurrently, the spatial distribution of the
collected seismic events captured by these networks is illustrated in Figure 2b,d.

In our study, the seismic data from the southern section of the Red Sea, specifically
below latitude 18-19 N, have been deliberately excluded from the final database. This
decision was driven by the notable disparity in data availability between the two data
sources of the Red Sea. As clearly illustrated in Figure 2b, the Egyptian side of the Red
Sea, encompassing the southern section, offered limited seismic data. In stark contrast, the
Saudi side provided a more robust and comprehensive dataset. This uneven distribution of
data led to the decision to exclude the southern section from our analysis, ensuring that
our study was based on a dataset that was both reliable and adequately representative of
the seismic activities we aimed to investigate. This methodological choice was essential
to maintain the scientific rigor and accuracy of our findings, despite the geographical
limitation it imposed.

Table 1 offers a detailed statistical summary of the datasets from the ENSN and the
SNSN. It includes important statistics like the total count, mean, standard deviation, and
range for different temporal and spatial parameters of seismic events. These parameters
cover the date and time of each event (year, month, day, hour, minute, second) and geo-
graphical details (latitude, longitude, depth, magnitude). Collecting these data shall help in
understanding the distribution, central tendency, and variation of seismic activities within
the mapped area.

Based on the spatial distribution depicted in Figure 2 and the summary statistics
presented in Table 1, it is evident that the collected ENSN and SNSN datasets closely align
in terms of their sample sizes. Specifically, ENSN comprises 50,747 earthquakes, while
SNSN encompasses 51,531 events. While the ENSN data are more current, covering the
period from 1998 to 2022, SNSN offers a longer temporal span, ranging from 1988 to 2020.
This is further substantiated by the average year of recorded events: ENSN'’s mean year is
2008, slightly more recent than SNSN'’s 2005 (Table 1), implying temporal variations in data
collection. In spatial terms, both datasets encompass similar geographical extents. However,
SNSN exhibits a broader distribution, as evidenced by its higher mean latitude of 27.64" and
longitude of 35.01°, compared to ENSN’s mean latitude of 26.72" and longitude of 34.80".
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The ENSN dataset has a slightly lower standard deviation in latitude and longitude, which
reflects a more concentrated area for data collection. This is supported by the geographical
distribution of the seismic stations employed in both networks. Daily temporal distribution
is consistent in both datasets, although ENSN has a marginally higher mean hour of 12.17,
compared to SNSN's 11.67. Depth and magnitude reveal further distinctions; the depth of
seismic events in ENSN tends to be deeper on average (15.42 km) with a higher variance
(7.52) compared to SNSN (13.57 km, std: 8.24). ENSN's records penetrate deeper into the
Earth’s crust, with a maximum depth of 75.19 km, and also display more intense seismic
events, peaking at a magnitude of 5.7. In contrast, SNSN'’s data primarily encompass events
of moderate depth and magnitude, with averages of 13.57 km and 1.61, respectively.
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Figure 2. (a) Spatial configuration of seismic stations operated by the Saudi Geological Survey
(SGS) [50]. (b) Spatial distribution of collected earthquake events captured by the Saudi National
Seismic Network (SNSN). (c) Network topology of seismic stations in the Egyptian National Seismic
Network (ENSN) [51]. (d) Geospatial variability in earthquake events recorded and collected by the
Egyptian National Seismic Network (ENSN).
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Table 1. Summary statistics of collected ENSN and SNSN seismic datasets. It includes counts, means
(averages), standard deviations (measures of variation), minimum and maximum values, as well as
quartiles (25th, 50th, and 75th percentiles) for various parameters within the dataset.

Dataset  Statistic Year Month Day Hour Minute Second  Latitude Longitude Depth  Magnitude
count 50,747 50,747 50,747 50,747 50,747 50,747 50,747 50,747 50,747 50,648
mean 2008 6.42 15.82 12.17 29.31 29.88 26.72 34.80 15.42 1.62
std 5.28 3.46 8.83 7.55 17.18 17.30 1.62 0.93 7.52 1.30
ENSN min 1998 1 1 0 0 0 15.08 32.32 0.01 0.9
25% 2005 3 8 5 14 14.85 2541 34.28 10 11
50% 2007 6 16 14 29 29.78 27.40 34.64 15 1.63
75% 2012 9 23 19 44 45.00 27.72 35.20 19.98 21
max 2022 12 31 23 59 59.99 29.95 40.67 75.19 5.7
count 51,531 51,531 51,531 51,531 51,531 51,531 51,531 51,531 51,531 51,531
mean 2005 6.60 15.92 11.67 29.48 29.99 27.64 35.01 13.57 1.61
std 6.05 3.46 8.70 7.40 17.17 17.31 1.78 0.89 8.24 0.80
SNSN min 1988 1 1 0 0 0 18.65 32.39 0.00 0.12
25% 2002 4 8 5 15 15.00 27.39 34.61 8.47 1.00
50% 2004 7 16 12 29 30.00 28.24 34.74 13.70 1.50
75% 2008 10 23 18 44 45.00 28.83 34.88 1848 2.00
max 2020 12 31 23 59 59.98 29.86 39.71 68.15 4.35
Following data collection, each seismic event was carefully categorized based on
parameters including annual frequency, magnitude range, and depth variations. These
consolidated data were then integrated into a unified GIS database. In the process of
consolidating the ENSN and SNSN catalogs, a multifaceted approach was employed to
ensure data integrity and compatibility. Initially, both catalogs were subjected to a rigorous
investigating to remove non-tectonic seismic events, specifically focusing on the exclusion
of quarry blasts utilizing the ZMAP software version 7 [52]. Subsequently, statistical outlier
detection methods, such as the Modified Z-score [53], were applied to remove anomalous
events with aberrant magnitudes or locations or depths. To tackle the issue of disparate
local magnitude (M;) scales, a unifying transformation was executed to convert all reported
magnitudes to moment magnitude (My,). To standardize magnitude measurements across
datasets, all values were normalized to the moment magnitude scale (M,;). This was
facilitated by a series of empirically derived conversion equations, each tailored to the
specific seismological characteristics of the corresponding network. This standardization
relied on the M, scale’s proven reliability and employed conversion relations delineated
by Moustafa et al. [35] for ENSN data and by Babiker et al. [54] for SNSN data. Finally, the
homogenized datasets were merged, thereby producing a comprehensive, unified seismic
catalog with uniform magnitude reporting. Figure 3 depicts the spatial distribution of
selected seismic events. Meanwhile, Table 2 provides descriptive statistics for each of the
dataset’s parameters.
Table 2. Descriptive statistics of the comprehensive earthquake catalog for geospatial statistical
analysis of seismic activity in the Red Sea region.
Statistic  Year = Month  Day Hour Minute Second Latitude°N Longitude °E Depth Magnitude
(km) My
count 37,730 37,730 37,730 37,730 37,730 37,730 37,730 37,730 37,730 37,730
mean 2006 6.34 15.89 12.04 29.27 29.82 27.15 34.88 15.04 1.66
std 3.93 3.45 8.77 7.48 17.17 17.38 1.67 0.79 6.85 0.51
min 1997 1.00 1.00 0.00 0.00 0.00 22.03 32.32 1.00 1.00
25% 2003 3.00 8.00 5.00 14.00 14.70 25.48 34.49 10.00 1.20
50% 2005 6.00 16.00 13.00 29.00 30.00 27.61 34.73 14.60 1.64
75% 2009 9.00 23.00  19.00 44.00 45.00 28.51 34.90 19.50 2.00
max 2020 12.00 31.00  23.00 59.00 59.99 2991 37.96 34.21 3.20
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Figure 3. Selected seismic data: a compilation of key earthquake parameters from the ENSN and
SNSN datasets, highlighting spatial coordinates, and depth variations for the period 1997-2020.

In the following procedural outline, we detail the methodological steps for merging
seismicity catalogs obtained from the Saudi Seismic Network and the Egyptian Seismic
Network. This algorithm systematically guides the integration of seismic event data from
these two distinct sources, emphasizing data accuracy, quality control measures, and
conflict resolution to create a consolidated and standardized seismicity catalog:

1.  Saudi Seismic Network Catalog:
Import the seismic data from the Saudi Seismic Network catalog.
Identify unique events using distinctive event identifiers, such as event IDs
and timestamps.

e  Exclude redundant events within to streamline the dataset.

2.  Egyptian Seismic Network Catalog:
Import seismic data from the Egyptian Seismic Network catalog.
Identify events unique to Egyptian catalog using specific event identifiers for
cross-referencing.

e  Eliminate redundant events within Egyptian catalog to enhance data clarity.

3. Common Event Identification:

e  Determine seismic events that exist in both catalogs, employing event identifiers.
e  Exclude duplicate events shared between the Saudi Seismic Network and the
Egyptian Seismic Network catalogs.
4. Merge Process:

e  Combine the remaining unique events from both catalogs to create the merged
seismicity catalog.
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e  Ensure the accuracy of metadata by updating information such as event location,
magnitude, and depth.

5. Quality Control Measures:

e Implement rigorous quality control checks to address potential discrepancies
and maintain data accuracy.

e Resolve conflicts arising from discrepancies in seismic event information between
the two catalogs.

6.  Conflicting Data Strategy:

e  Use 10 s origin time difference and 10 km epicentral distance difference between
the two catalogs to manage conflicting data, prioritizing information from either
the Saudi Seismic Network or the Egyptian Seismic Network.

e  Utilize additional data sources to resolve conflicts and ensure data consistency.

7.  Data Format Standardization:

e  Standardize the format of the merged seismicity catalog to ensure uniform repre-
sentation.
e  Preserve the integrity of data presentation for subsequent analysis.

8.  Documentation:

e  Document the merging process, including steps taken to resolve conflicts, quality
control measures, and updates to metadata.

e Provide a clear record of the synthesis of seismic data from the Saudi Seismic
Network and the Egyptian Seismic Network catalogs.

9.  Validation Checks:

e  Perform validation checks on the merged catalog to confirm the success of the
merging process.
e  Ensure that the resulting dataset aligns with expectations and maintains data
integrity.
10.  Final Review:

e  Conduct a final review of the merged catalog to verify compliance with standards
and the inclusion of all relevant seismic events.

e  Confirm that the merged dataset effectively represents the seismic activity cap-
tured by both the Saudi Seismic Network and the Egyptian Seismic Network.

11. Save and Export:

e Preserve the final merged seismicity catalog in the desired format for subsequent
analytical endeavors.

Figure 3 displays the geographic distribution of seismic activity in the Red Sea, em-
phasizing the spatial concentration of earthquakes. This concentration is aligned along
certain longitudinal and latitudinal lines, indicative of fault zones. These zones reveal
where tectonic stress accumulates and is episodically released, typically near tectonic
boundaries. Areas with reduced seismic activities are highlighted, suggesting more stable
tectonic regions. Such distribution patterns offer insights into the region’s tectonic dynam-
ics. Furthermore, two cross-sectional views detailing the depth profiles of these earthquakes
relative to latitude and longitude are depicted. This perspective provides a comprehensive
understanding of the seismic activity’s vertical extent. Variations in earthquake depth
may reflect differences in the crust or lithospheric layer’s composition or rheology within
the Red Sea. The clustering of earthquakes at specific depths could indicate distinct fault-
ing mechanisms, each associated with its characteristic depth range. The occurrence of
deeper earthquakes might signify an interaction zone between the mantle and crust. These
depth-related observations are integral to grasping the complex geodynamics of the Red
Sea area.

Table 2 presents data on 37,730 seismic events recorded in the Red Sea region from
1997 to 2020. The table combines the temporal and spatial attributes of earthquakes from
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the ENSN and SNSN datasets. The data span 23 years, indicating a temporal distribution
with an average occurrence year of 2006. This central point suggests a concentration
of seismic activities around this period, although the standard deviation of 3.93 years
shows a wide spread over two decades. The dataset’s temporal consistency is evident in
its even distribution across months, days, hours, and minutes, with standard deviations
within normal ranges, indicating no significant time-based anomalies. Geographically, the
mean coordinates are 27.15 N and 34.88 E, aligning closely with the individual dataset
averages. The small standard deviations in latitude and longitude confirm a consistent
geographical focus. The average earthquake depth of 15.04 km, with a standard deviation
of 6.85 km, underlines the tectonic dynamics of the Red Sea and the variability in seismic
event depths. The moment magnitude (M) has an average of 1.66 and a standard deviation
of 0.51, ranging from 1.00 to 3.20. This range suggests a predominance of low-to-moderate-
magnitude earthquakes, with only a fraction exceeding a magnitude of 2. The absence of
extremely high-magnitude events is noteworthy. Additionally, the quartile distribution
aligns the median depth and magnitude with their means, indicating a near-symmetrical
distribution. This symmetry could simplify statistical modeling by reducing the need for
non-linear transformations to achieve data normality.

5. Statistical Characterization of Seismic Activity

Investigating the statistical characteristics of earthquakes in the Red Sea region is
essential for comprehending seismic activity and crustal deformation in rift zones. The
examination of the temporal progression and geographical dispersion of seismic events is
vital for deciphering patterns of stress accumulation and release. Such insights are useful
in advancing seismic forecasting and hazard management strategies [17]. Moreover, the
analysis of small-to-moderate-magnitude earthquakes provides valuable information on
the initial stages of seismic processes, which is crucial for enhancing preparedness and
mitigation efforts [55].

5.1. Temporal Patterns

To gain insight into the development of seismic activity in the Red Sea region, the
temporal distribution of earthquakes was analyzed across multiple scales, as depicted
in Figure 4. Each plot in this figure is tailored to assess earthquake frequency at specific
time resolutions, including daily, weekly, monthly, and yearly intervals. Figure 4a sheds
light on daily changes, revealing a non-uniform distribution of seismic activity. The daily
peak frequency reaches 142 seismic events, while the mean frequency is about 4 events
per day. This variability in daily event counts may be indicative of episodic clusters of
seismic activity, possibly influenced by underlying tectonic processes. The data reveal
that it is somewhat quieter at night in most places. Turning to a weekly seismic activity,
Figure 4b illustrates the weekly irregularity of the reported earthquakes. The plot shows
a weekly peak of 445 earthquakes, compared with an average frequency of 30 events
per week. The range of weekly event counts is quite broad. This significant variability
indicates that the region undergoes periodic episodes of increased seismic activity, likely
influenced by underlying tectonic interaction processes. Figure 4c presents the observed
monthly distributions, highlighting any potential seasonal cycle patterns. These could
possibly be linked with geological processes like rifting affecting the area. The reported
activity records a high monthly frequency of 849 earthquake events, with an average rate of
134 events per month. This variability in monthly seismic activity suggests the presence of
complex temporal dynamics, possibly punctuated by bursts of heightened seismic events.
The substantial spread in the number of events, as captured by the standard deviation,
indicates that the seismic behavior in the Red Sea region is not uniformly distributed over
time, perhaps influenced by episodic tectonic activities or other underlying geophysical
processes. Lastly, on an annual scale, Figure 4d includes the yearly distribution, exhibiting
multi-year patterns. The annual data indicate a peak of 4982 earthquakes, with a mean
incidence of 1572 occurrences each year. The data suggest that seismic activity in the area is
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not constant over various years, underlining the necessity for long-term monitoring and
study to understand the underlying dynamics.
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Figure 4. Temporal distribution of earthquakes in the Red Sea across different time scales. Each
subplot illustrates the frequency of earthquakes over a specific period: (a) daily, (b) weekly,
(c) monthly, and (d) yearly. Horizontal dashed lines in each subplot indicate the minimum (red),
maximum (green), and mean (blue) counts for that time scale.

The analysis of temporal patterns suggests that the Red Sea region displays a consistent
level of seismic activity. The distribution over time does not reveal a clear trend of increasing
or decreasing seismic events across the observed years; instead, the activity fluctuates.
There are noticeable periods of more frequent seismic events, as indicated by clusters
of taller bars in the data. Pronounced spikes representing days with exceptionally high
activity could correspond to significant seismic occurrences or sequences, such as swarms
of earthquakes or series of aftershocks. These findings corroborate the results of several
previous studies [5,8,56,57].

5.2. Spatial Distribution

Understanding seismicity patterns is fundamentally linked to the spatial distribution
of earthquake moment magnitudes (M) and the variability of depth in relation to latitude
and longitude, as depicted in Figure 5. Moment magnitude combined with depth offers
crucial insight into the geodynamic processes that shape the Earth’s crust.



Appl. Sci. 2024, 14, 1455 16 of 32

Earthquake Magnitude Distribution by Latitude Earthquake Depth Distribution by Latitude

35
3.0 30
25
E 25
Y E20
2 £
5 Z0 g 15
=
1.5 L 10
5
1 'u _
0
22 24 26 28 30 22 24 26 28 30
Latitude (degrees) Latitude (degrees)
(a) (b)
Earthquake Magnitude Distribution by Longitude Earthquake Depth Distribution by Longitude
35
L 30
25
25 _
5 Ex
= =
=] =
£ 2.0 3
5 il
©
=
10
1.5
5
1.0 0
32 33 34 35 36 37 38 32 33 34 35 36 37 38
Longitude (degrees) Longitude (degrees)

(©) (d)

Magnitude vs Depth

7400,

fe00f
E

/~4oo 2

200

(e)

Figure 5. Multifaceted analysis of spatial earthquake distribution characteristics in the Red Sea:
(a,c) showing the distribution of earthquake magnitudes across latitudinal and longitudinal ranges.
(b,d) depicting the depth distribution of earthquakes along latitudinal and longitudinal coordinates.
(e) A 3D histogram illustrating the frequency of earthquakes across varying magnitudes and depths.
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Figure 5 displays a density plot that illustrates the distribution of earthquake moment
magnitudes (M;,) and depths in relation to either latitude or longitude. Figure 5a illustrates
a concentration of seismic events with magnitudes predominantly clustered between
latitudes of 24 and 28 degrees, indicating a zone of heightened seismic activity within this
range. The accompanying marginal histogram exhibits pronounced peaks that correspond
to the densest areas, revealing that most earthquakes occur with magnitudes between 1.5
and 3.0 M.

These observations suggest that seismic activity is not uniformly distributed but is
instead focused in specific regions, potentially aligning with underlying geological struc-
tures such as tectonic plate boundaries or rift zones. Figure 5b indicates that the deepest
earthquakes are concentrated around latitudes of 25 to 26 degrees and 28 to 29 degrees,
hinting at a potential correlation with geologically active events. The marginal histograms
demonstrate that the majority of seismic events take place at depths of less than 10 km,
with a decline in frequency at greater depths. Figure 5¢ highlights a notable concentration
of seismic activity, particularly of lower magnitudes, around a 35-degree longitude.

The marginal histograms exhibit a pronounced spike at this longitude, indicating that
the majority of earthquakes recorded in this dataset have magnitudes just above 2.0 My,.
Figure 5d depicts a seismic depth distribution chart by longitude in the Red Sea region,
revealing a considerable aggregation of events at shallower depths around a 35-degree
longitude, indicating geological activity in this longitudinal range. The marginal plots
display a significant peak at a 35-degree longitude, predominantly at depths of less than
10 km, with a gradual decrease in the number of events at greater depths. This pattern
suggests the presence of specific zones within the Red Sea region that exhibit heightened
seismic activity, especially at shallower depths. From Figure 5e, it is evident that most
earthquakes in the dataset are of relatively low magnitude, clustering around 2.0 to 3.0 My,
and occur at shallow depths, primarily less than 15 km. There is a noticeable decrease in
earthquake frequency with increasing magnitude and depth. The highest frequency of
events is found at lower magnitudes and shallow depths. The prevalence of shallower
earthquakes can be associated with crustal movements, while the presence of deeper events
may signal subduction zones or other profound tectonic activities.

The observed patterns indicate that seismic activity is indeed concentrated within
specific latitudinal and longitudinal bands, but the depth of these earthquakes varies within
these bands, suggesting a more complex seismic profile. This complexity emphasizes
the necessity of considering the full three-dimensional distribution of seismic events to
thoroughly understand the regional tectonics.

Moreover, the apparent correlation between the spatial distribution of seismic activity
and geological structures highlights the dynamic nature of the lithosphere in the Red Sea
region [5,8,15,58].

5.3. Progression of Earthquake Activity

For a comprehensive analysis of the temporal and seismic magnitude progression
in the Red Sea zone, the final selected seismicity catalog was divided into four distinct
time intervals and corresponding magnitude ranges. The temporal categorization was as
follows: the period from 1997 to 2002, with an occurrence of 6238 seismic events; 2002
to 2008, encompassing 20,337 events; 2008 to 2014, reporting 10,120 events; and 2014 to
2020, recording 1035 events. In terms of magnitude, the segmentation was delineated into
four ranges: a magnitude interval of 1.00-1.55, accounting for 16,750 events; 1.55-2.10,
comprising 14,703 events; 2.10-2.65, capturing 4843 events; and 2.65-3.20, with a total of
1434 events. This bifurcation facilitated a granular analysis of seismic activity over time
and across varying seismic intensities.

5.3.1. Average Nearest Neighbor (ANN)

To estimate the ANN index, the Euclidean distance between each seismic event and
its nearest counterpart was calculated. These distances were then averaged to produce
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a composite measure. The ANN index is derived by contrasting this average distance in
the observed dataset with the expected average distance under a hypothetical random
distribution [59]. The results of the estimated ANN for the Red Sea region are presented in
Table 3.

Table 3. Average Nearest Neighbor (ANN) analysis of seismic event patterns categorized by both
magnitude and year ranges.

Magnitude Range D?slt\;l:ce Mean Z-Score p-Value Detected Pattern
1.00-1.55 0.00647 0.02350 —307.93 0.000013 Clustered
1.55-2.10 0.00776 0.02633 —294.62 0.000059 Clustered
2.10-2.65 0.01656 0.04702 —158.48 0.000071 Clustered
2.65-3.20 0.03031 0.08822 —86.970 0.000066 Clustered

Year Range

1997-2002 0.00962 0.04228 —140.66 0.000020 Clustered
2002-2008 0.00564 0.02282 —393.49 0.000009 Clustered
2008-2014 0.01034 0.03084 —252.56 0.000081 Clustered
2014-2020 0.03012 0.10284 —66.440 0.000063 Clustered

The ANN analysis for both magnitude and year ranges of earthquake data shows
that there is a pronounced clustering pattern, as evidenced by the large negative Z-scores.
The extreme Z-scores and p-values indicate a significant departure from a random spatial
distribution, revealing that earthquakes are clustered rather than randomly dispersed in
both spatial and temporal dimensions. The spatial clustering of earthquakes does not vary
significantly with magnitude within the range of 1.00-3.20, suggesting that seismic events
occur in close proximity to one another, regardless of size. Additionally, the persistent
clustering across various time periods from 1997 to 2020 suggests that the region’s spa-
tial seismic characteristics have remained stable over time. However, variations in ANN
distances across different years may reflect changes in seismic activity intensity or concen-
tration. This observed consistent clustering of seismic events may suggest the presence of
active seismic faults or specific geophysical conditions favorable for earthquakes, a notion
also highlighted in [14].

5.3.2. Quadrat Count Analysis (QCA)

The outcomes of the QCA, detailed in Table 4, were obtained from both earthquake
magnitude intervals and annual data. These results provide crucial insights into the spatial
and temporal dynamics of seismic activity in the studied region.

Table 4. Quadrat Count Analysis (QCA) of seismic event patterns categorized by magnitude and
year ranges.

Magnitude Range Mean Variance Z-Score p-Value Detected Pattern
1.00-1.55 1.1831 0.0342 75.3441 0.000023 Clustering
1.55-2.10 1.8640 0.0248 54.2673 0.000016 Clustering
2.10-2.65 2.3101 0.0255 —47.4820 0.000056 Dispersion
2.65-3.20 2.8529 0.0194 —82.7884 0.000079 Dispersion

Year Range

1997-2002 2000 0.9385 —43.6551 0.000035 Dispersion
2002-2008 2004 2.0619 121.4927 0.000054 Clustering
2008-2014 2010 2.1741 20.37150 0.000044 Clustering
2014-2020 2016 3.1774 —88.4000 0.000022 Dispersion

The QCA of the earthquake dataset revealed distinct patterns in magnitude and tem-
poral distributions. In magnitude, significant clustering was observed in lower ranges
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(1.00-1.55 and 1.55-2.10) with high positive z-scores and low p-values, indicating a higher
frequency of smaller earthquakes. Conversely, higher magnitude ranges (2.10-2.65 and
2.65-3.20) showed dispersion, with negative z-scores and p-values near zero, suggesting
fewer large earthquakes. Temporally, the years 2002-2008 and 2008-2014 demonstrated
significant clustering (high positive z-scores and low p-values), indicating more frequent
seismic activity, whereas 1997-2002 and 2014-2020 showed dispersion, suggesting less
activity. These results indicate a complex interplay of geological and tectonic factors influ-
encing the distribution and frequency of earthquakes. The frequent occurrence of smaller
quakes is consistent with global seismic trends, and the observed temporal clustering could
reflect regional geological changes.

The VTMR and ANN analyses (Tables 3 and 4) distinctively evaluate the spatial distri-
bution of seismic events. The VTMR, focusing on frequency distribution within the Red
Sea area, is sensitive to event clusters such as aftershocks or swarms, as it assesses the vari-
ability of seismic occurrences. This method is susceptible to skewness from localized event
density increases. In contrast, the ANN index, by measuring distances between seismic
events, provides insights into spatial uniformity, capturing spatial distribution patterns less
apparent in VTMR'’s frequency distribution analysis. The ANN analysis, using a pairwise
distance metric, provides a clear understanding of spatial relationships in seismic events.
This approach is less affected by anomalies or dense clusters, giving a comprehensive
view of how earthquakes are distributed. Additionally, ANN flexibly accommodates the
variations in spatial tectonic activity. In contrast, the VTMR is limited by its dependence
on predefined spatial areas, potentially missing finer details in seismic patterns. VTMR
identifies areas of high event concentration, while ANN discerns spatial uniformity or
irregularity. Parallel findings in the Red Sea region [14] and Balochistan area [60] confirm
the effectiveness of these methodological analyses in diverse geographical contexts.

In the pursuit of estimating the spatial weight matrix for the Global and Local Moran’s
I analysis, the application of queen contiguity represents a methodologically sound ap-
proach within the realm of spatial statistics. The formulation of this spatial weight matrix
is crucial for discerning and quantifying spatial autocorrelation patterns in the dataset
under investigation. Subsequently, this spatial weight matrix is applied in the calculation of
Global Moran’s I, providing a measure of overall spatial autocorrelation in the dataset. The
Local Moran’s I analysis further extends this examination by discerning spatial patterns at
the local level, offering insights into clusters, outliers, and spatial heterogeneity.

5.3.3. Global Moran’s I (GMI)

The queen contiguity criterion is employed to establish adjacency relationships among
spatial units. In this context, spatial units are considered neighbors if they share any
boundary or vertex. Formally, the spatial weight matrix (W) is constructed by assigning
binary weights of 1 to neighboring units and 0 to non-neighboring units. The resultant
matrix encapsulates the spatial relationships inherent in the geographical distribution of
the observed seismic activity as outlined in Equation (5).

Global Moran’s I (GMI) constitutes a statistical index of spatial autocorrelation [61],
signifying the degree of correlation among seismic occurrences within proximate spatial
locales [60]. The spatial analysis of seismic activity in the Red Sea region, as indicated by
the GMI indeX, is presented in Table 5.

Table 5. Global Moran’s I (GMI) analysis of seismic event patterns categorized by both magnitude range.

Magnitude Mean Detected
Range GMI Index Magnitude Z-Score p-Value Pattern
1.00-1.55 0.143011 1.183140 24.870270  0.000001 Clustered
1.55-2.10 0.107987 1.863986 17.478009  0.000003 Clustered
2.10-2.65 0.042225 2.310083 3.895662  0.000098 Clustered

2.65-3.20 0.067881 2.852866 3.408918 0.000652 Clustered
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The GMI Index, detailed in Table 3, shows significant clustering in seismic activity
across various magnitude ranges in the Red Sea region. The lowest magnitude range
(1.0-1.55) has a GMI Index of 0.143011, with a high Z-score of 24.870270 and a p-value
of practically zero, indicating strong clustering. This clustering diminishes slightly but
remains significant in higher magnitudes: 1.55-2.1 range has a GMI of 0.107987, 2.1-2.65
a GMI of 0.042225, and 2.65-3.2 a GMI of 0.067881. Even as the Z-scores decrease (to
3.408918 in the highest magnitude range), they stay high, underscoring the clustered nature
of seismic events. The consistently low p-values across all ranges further support the
non-randomness of this pattern. This clustering trend, as highlighted in previous studies
like [14], is crucial for understanding seismic risks and preparing for potential disasters in
the Red Sea region.

To validate the interpretations derived from the estimated GMI values in Table 3,
scatter plots depicting the distribution of earthquake magnitudes and their spatial lags were
created, as illustrated in Figure 6. These GMI scatter plots provide an extensive quantitative
analysis of spatial autocorrelation in earthquake magnitudes specific to the Red Sea region.
The scatter plots show data points primarily clustering around the mean, indicating a
consistent spatial pattern across different magnitude ranges. Positive GMI values suggest
that areas with similar magnitude earthquakes are geographically close, a significant
observation for the tectonically active Red Sea rift. Supporting this, studies by [14,60]
and [31] have independently confirmed similar findings, validating the effectiveness and
reliability of the GMI method in spatial analysis of Red Sea seismicity.
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Figure 6. Global Moran’s I (GMI) scatter plots depicting spatial autocorrelation across distinct earth-
quake magnitude ranges. Each plot is partitioned into quadrants by blue dashed lines, representing
the respective means of magnitude and spatial lag of magnitude. Red line represents the fitting of a
regression between magnitude and the spatial lag of magnitude. This regression fitting is crucial for
illustrating the relationship between the magnitude of seismic events and their corresponding spatial
lags. By doing so, it allows us to understand how the magnitude of a seismic event correlates with
the magnitudes of events in its proximity, providing valuable insights into the spatial distribution of
seismic intensity.
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5.3.4. Local Moran’s I (LMI)

Local Moran'’s Index (LMI) was utilized to uncover and interpret local autocorrelation
patterns in seismic activity [61]. This analysis is crucial for identifying spatial patterns
not evident in global measures, revealing clusters, outliers, and local spatial dependencies
and heterogeneities [43]. The comprehensive LMI results presented in Table 4 provide a
thorough analysis of spatial clustering and autocorrelation in seismic events, highlighting
regions that may be influenced by seismotectonic activities. Incorporating Z-scores and
p-values into LMI calculations enhances the precision in identifying seismic activities
deviating from random patterns.

In Table 6, the LMI analysis, categorizing seismic events in the Red Sea area by magnitude
range, reveals significant spatial autocorrelation. The LMI Index values, across magnitudes
ranging from 1.00 to 3.20, consistently indicate clustering, evidenced by positive values.
For the 1.00-1.55 magnitude range, an LMI Index of 0.123003, a low but significant Z-score
of 0.224410, and a p-value of 0.005188 suggest modest clustering, reflective of minor fault
activities or stress adjustments in the crust. As magnitudes increase, the LMI Index slightly
decreases, with the 1.55-2.10 range showing 0.090980, indicating a dispersed clustering pattern,
potentially due to varying geological processes. The 2.10-2.65 range’s further reduced LMI
Index of 0.029216, alongside a Z-score of 0.063909 and a significant p-value of 0.001094, still
indicates notable clustering but less intense than lower magnitudes, suggesting concentrated
seismic activity aligning with major fault lines or tectonic stress zones. In the highest range,
2.65-3.20, the LMI Index increases to 0.062832, with a Z-score of 0.083825 and a p-value of
0.006475, denoting more pronounced clustering for higher magnitudes, possibly influenced by
major tectonic features. Overall, the LMI analysis reveals a complex relationship between the
magnitude and spatial clustering of seismic events in the Red Sea area. It highlights seismicity
patterns that are intricately linked to the region’s seismotectonic framework. The observed
clustering suggests concentrated distributions of stress and strain, indicating that seismic
activity is not random but rather concentrated in specific areas. These areas likely correspond
to key geological structures like faults and rifts, underscoring the importance of this analysis
in understanding and predicting seismic behavior in tectonically active regions [5,8,58].

Table 6. Local Moran’s I (GMI) analysis of seismic event patterns categorized by both magnitude

range.
Magnitude Mean Detected
Range LMl Index Magnitude Z-Score p-Value Pattern
1.00-1.55 0.123003 1.183140 0.224410 0.005188 Clustered
1.55-2.10 0.090980 1.863986 0.175247 0.007915 Clustered
2.10-2.65 0.029216 2.310083 0.063909 0.001094 Clustered
2.65-3.20 0.062832 2.852866 0.083825 0.006475 Clustered

5.3.5. Local Variations and Concentrated Areas in Seismic Activity

The geostatistical characterization of seismic activity in the Red Sea region has been
augmented through the integration of univariate Local Indicators of Spatial Association
(LISA) [44] and Getis-Ord Gi* [62,63] statistics. This method offers a thorough insight into
localized variations and clusters, enabling the identification of concentrated areas with
heightened seismic activity.

An analysis of Local Indicators of Spatial Association (LISA) maps was performed to iden-
tify clusters and statistically significant seismicity data. The goal was to generate cluster maps
using spatial autocorrelation data, as described in Anselin’s 2009 work on OpenGeoDa [64].
This analysis aimed to pinpoint spatial patterns of earthquake events, including earthquake
clusters, as well as to understand the spatiotemporal dynamics, mechanisms, and charac-
teristics of seismic activity. Figures 7 and 8 display the outcomes of a Local Indicators of
Spatial Association (LISA) analysis, examining seismic events in the Red Sea region over four
distinct time frames: 1997-2002 (Figure 7a), 2002-2008 (Figure 7b), 2008-2014 (Figure 8a),
and 2014-2020 (Figure 8b). This analysis categorizes earthquake events into distinct clusters
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based on their spatial correlations and magnitudes. This temporal segmentation facilitates
the examination of evolving or consistent seismic patterns. The analysis categorizes seismic
spatial patterns into four clusters: high-high (HH), indicating regions of frequent, intense
seismic activity; low-low (LL), denoting areas with minimal seismic events; and two types
of spatial outliers, high-low (HL) and low-high (LH), which identify areas where seismic
magnitudes significantly diverge from their immediate environments. HH clusters suggest
seismicity clustering, potentially linked to active tectonic features, while LL clusters imply
areas of relative tectonic inactivity. The HL and LH outliers may signal localized geophysical
anomalies or tectonic complexities, where observed seismic activities markedly differ from
those of surrounding areas.
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Figure 7. Spatial distribution of Local Indicators of Spatial Association (LISA) clusters and corre-

(b) 2002-2008 LISA clusters and significance

sponding significance maps for two distinct periods: 1997-2002 and 2002-2008.
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Adjacent to these cluster maps, the figures also illustrate the statistical significance of
the identified clusters, employing p-value thresholds to challenge the hypothesis of random
spatial distribution. Clusters with significant p-values, especially along the central axis of
the Red Sea, highlight a spatially correlated pattern that could be connected to the region’s
tectonic structure. Conversely, clusters lacking statistical significance might represent either
random distributions or an insufficiency of data to establish a discernible pattern.

The aggregation of significant clusters along the Red Sea’s central axis is particularly
salient, possibly indicating a correlation with the seafloor spreading center and related
earthquake activities. Non-significant clusters, though less conclusive, may still hold
interest as they could represent areas of more random seismic activity or locations with
inadequate data to confirm spatial patterns.

Opverall, the analysis reveals both concentrated and isolated seismic events in the Red
Sea region, with varying degrees of statistical significance suggesting a complex seismic
structure; some areas, especially along the central axis, have consistently exhibited high
seismicity over the examined periods. The persistence of HH clusters could imply ongoing
tectonic activities, such as rifting, that continuously produce earthquakes. Additionally,
the presence of significant HL outliers highlights potential unforeseen seismic hazards in
typically quiescent areas, necessitating further research for comprehensive risk assessment.

The Getis-Ord Gi* statistic, on the other hand, is used to identify "hot spots” and "cold
spots’ of seismic activity in the mapped area. It is more about the intensity or concentration
of earthquake magnitudes in a geographical space of the area. Figures 9 and 10 show the
results from the Getis-Ord Gi* analysis, which investigates seismic activities in the Red Sea
area across four separate time periods: from 1997 to 2002 (illustrated in Figure 9a), 2002 to
2008 (Figure 9b), 2008 to 2014 (Figure 10a), and 2014 to 2020 (Figure 10b).

The Getis-Ord Gi* method computes a Z-score for each earthquake’s magnitude,
signifying the extent of spatial clustering of either high or low magnitude values. This
approach evaluates the magnitude of an individual earthquake and its neighboring events,
contrasting this localized aggregate with the total sum of magnitudes across the region.
This comparison yields an understanding of the concentration levels of either high or
low magnitude values in specific areas. Consequently, regions with elevated Z-scores are
classified as hotspots, indicating that the observed earthquake magnitude is significantly
above the average. Conversely, areas with diminished Z-scores are identified as coldspots,
signifying that the magnitude is below average.

Figure 9a illustrates the Getis-Ord Gi* clustering analysis for Red Sea earthquakes
between 1997 and 2002, pinpointing areas with diverse intensities of seismic activity. The
spatial distribution map categorizes regions into high Gi* to signify prominent earthquake
clustering and then into zones of progressively decreasing activity. Additionally, the Gi*
significance map portrays the statistical significance of these concentrated or dissipated
seismic activity areas. This analysis accentuates areas with heightened seismic activity,
especially along the rift axis where the African and Arabian plates diverge, indicating a
robust link with tectonic movements. Expanding on this, Figure 9b continues the analysis
for the period from 2002 to 2008. Both the concentrated areas map and the significance
map in this figure delineate the spatial intensity or clustering and statistical significance
of seismic activities. Notably, high Gi* values or clustered seismicity are primarily located
along the central axis of the Red Sea, marking the divergent boundary and underscoring
areas of intense seismic activity. In contrast, the peripheral areas, designated as low Gi* and
very low Gi*, correspond to more stable parts of the oceanic crust. The significance map’s
corroboration of these clusters underlines their non-random distribution, with a strong
association to the tectonic dynamics at the Red Sea’s spreading center. This concurrence
underscores the efficacy of the Getis-Ord Gi* method in discerning seismic patterns in
direct relation to tectonic processes.
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(b) 2002-2008 Getis-Ord Gi* and significance

Figure 9. Spatial distribution of Getis-Ord Gi* clustering analysis and associated significance maps
for the intervals 1997-2002 and 2002-2008.
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Figure 10. Spatial distribution of Getis-Ord Gi* clustering analysis and associated significance maps
for the intervals 2008-2014 and 2014-2020.

Figure 10ab present the Getis-Ord Gi* statistic maps for the 2008-2014 and
2014-2020 periods, respectively, in the Red Sea region. These maps visually represent
seismic activity, with hotspots in various shades of red and coldspots in shades of blue,
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delineating a spectrum of earthquake activity from high Gi* to very low Gi*. Accompanying
these are the Gi* significance maps, which use a color gradient from dark green to yellow to
indicate the statistical significance of these seismic patterns, thereby identifying areas where
seismic clustering is not random. The distribution of high Gi* hotspots, predominantly
along the Red Sea’s axial trough, is consistent with the region’s tectonic activity. This
zone is an area of active rifting between the African and Arabian plates, characterized by
seismic events associated with the formation of new oceanic crust and extensional tectonics.
The concentration of seismic hotspots along this tectonic boundary points to their strong
association with primary rifting processes, including seafloor spreading, faulting, and
magmatic activity. In contrast, areas marked as low Gi* and very low Gi* are typically
found on the flanks of the rift, indicating regions that are more stable and less affected by
tectonic activity. The Gi* significance maps lend statistical credibility to these observations,
affirming the spatial distribution of seismic hotspots and their significant alignment with
the tectonic structure of the Red Sea rift system. These findings underscore the profound
connection between seismic events and tectonic mechanisms in the Red Sea, exemplifying
an active divergent plate boundary.

Upon meticulous analysis of the results presented in Figures 7-10, a discernible sys-
tematic variation within a 26.7 to 27.7 latitude range was observed. This variation can be
attributed to a confluence of factors. Primarily, it emerges from the differential seismicity
reported across each distinct time period under consideration. These discrete temporal
intervals exhibit unique patterns of seismic activity, significantly contributing to the varia-
tions observed. Additionally, the statistical framework underpinning the Local Indicators
of Spatial Autocorrelation (LISA) method must be acknowledged. The method’s statistical
nature, as rigorously outlined in the significance figures for each period in each respective
graph, plays an integral role in shaping these variations. The LISA methodology, with
its focus on spatial autocorrelation, adeptly identifies regions characterized by significant
spatial clustering or dispersion of seismic events. These variations are reflective of the
intricate and dynamic interplay of spatial patterns in seismic activity across different time
frames. These variations reflect the complex interplay of spatial patterns in seismic activity
over time.

A Kernel Density Estimator (KDE) [48,65] is a robust statistical method for analyz-
ing the spatial intensity of seismic events. This assists in identifying areas with higher
earthquake frequencies, known as hotspots or local clusters. Figure 11 displays a series
of KDE-derived clustered patterns, each corresponding to a different moment magnitude
(M) range. Figure 11a—d present a sequential spatial analysis of seismic activity in the Red
Sea region across increasing moment magnitude ranges. Starting from 1.00 < M, < 1.55in
Figure 11a, the activity is primarily concentrated in the Gulf of Aqaba and Northern Red
Sea, highlighting areas of potential tectonic or volcanic significance. This pattern persists
and intensifies in the 1.55 < My, < 2.10 range (Figure 11b), with notable clusters also in the
southern Gulf of Suez. As the magnitude range extends to 2.10 < M, < 2.65 in Figure 11c,
and further to 2.65 < M, < 3.20 in Figure 11d, the seismicity demonstrates a more focused
pattern. The density and spatial distribution of events increase, especially in the central
part of the Red Sea, indicating a higher potential for accumulating and releasing signifi-
cant seismic energy. This trend suggests that larger events are concentrated in areas with
heightened tectonic stress, aligning with the region’s geotectonic dynamics and marking
them as zones of pronounced seismic activity. There is a noticeable shift from widespread
distribution of lower magnitude events (see Figure 11a) to a more concentrated pattern
of higher magnitude events (see Figure 11d). This transition suggests zones of higher
stress accumulation within the Earth’s crust, particularly in the Central Red Sea. These
areas emerge as having key concentrated seismic activity with an elevated likelihood of
experiencing substantial seismic events. KDE visualizations are crucial for seismic hazard
assessment, indicating that while lower magnitude events are common and dispersed,
the potential for damage escalates with higher magnitude events concentrated in active
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tectonic zones. This gradient in seismicity underscores the need for differentiated disaster

preparedness and infrastructure resilience strategies across the region [17].
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6. Conclusions

This study has conducted an in-depth geostatistical analysis of seismic activity in the
Red Sea region, covering the period from 1997 to 2020. Utilizing a GIS framework and a
suite of spatial analytic methods—including ANN, QCA, Global Moran’s I, Local Moran’s
I, and the Getis-Ord Gi* statistic—we have effectively unraveled the complex temporal
and spatial dynamics of seismic events in this tectonically active area. Our findings have
outlined distinct seismic patterns along the Central Red Sea axis, which are indicative of
the rifting dynamics between the African and Arabian plates.

The application of ANN and QCA has shed light on the general distribution and
density of seismic occurrences, while GMI and LMI have been instrumental in highlighting
areas of spatial clustering and dispersion. Notably, LMI has revealed significant clustering
of seismic activities across different magnitudes, suggesting a nuanced relationship between
earthquake magnitudes and the region’s dynamic tectonic setting.

Through LISA analysis for various periods, we have demonstrated consistent spatial
autocorrelation in seismic activities. The identification of high-high clusters along the
central rift axis underscores zones of elevated seismicity, while low-low clusters indicate
areas of relative tectonic stability. These findings, corroborated by LISA significance maps,
align well with the known tectonic divergence in the Red Sea.

Moreover, the analysis of Getis-Ord Gi* statistic maps has confirmed persistent seismic
clustering along the central rift, indicative of active tectonic rifting. The temporal consis-
tency of these patterns underscores the ongoing nature of the rifting process, which is
integral to the formation of new oceanic crust in the Red Sea.

Kernel Density Estimator analyses across various moment magnitude ranges have
revealed concentrations of seismic activity in key areas such as the Gulfs of Aqaba and
Suez, as well as the Central and Northern Red Sea. This spatial distribution correlates
with known geological features and fault lines. Importantly, higher magnitude events tend
to localize in areas of greater tectonic stress, highlighting the complex interplay between
seismic events and the underlying geological framework. Our comprehensive analysis
revealed pronounced seismic patterns along the Central Red Sea axis, correlating with
tectonic rifting between the African and Arabian plates. The spatial analysis techniques
employed delineated areas of heightened seismic activity and zones of relative tectonic
stability. Notably, the Local Moran’s I highlighted significant clustering of seismic activities,
with variations in intensity across magnitudes. The Getis-Ord Gi* statistic maps confirmed
persistent seismic hotspots along the central rift, indicative of active tectonic processes.
Kernel Density Estimator analyses revealed a concentration of seismic activity in key geo-
logical areas, with higher magnitude events localizing in regions of greater tectonic stress.
These findings underscore the dynamic tectonic setting of the Red Sea and demonstrate the
utility of geostatistical techniques in seismic analysis.
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